
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. , NO. , MON YEAR 1

Greedy Routing by Network Distance Embedding
Chen Qian, Member, IEEE, Member, ACM and Simon S. Lam, Fellow, IEEE, Fellow, ACM

Abstract—Greedy routing has been applied to both wireline
and wireless networks due to its scalability of routing state
and resiliency to network dynamics. In this work, we solve a
fundamental problem in applying greedy routing to networks
with arbitrary topologies, i.e., how to construct node coordinates
such that greedy routing can find near-optimal routing paths
for various routing metrics. We propose Greedy Distance Vector
(GDV), the first greedy routing protocol designed to optimize end-
to-end path costs using any additive routing metric, such as: hop
count, latency, ETX, ETT, etc. GDV requires no physical location
information. Instead, it relies on a novel virtual positioning
protocol, VPoD, which provides network distance embedding.
Using VPoD each node assigns itself a position in a virtual space
such that the Euclidean distance between any two nodes in the
virtual space is a good estimate of the routing cost between
them. Experimental results using both real and synthetic network
topologies show that the routing performance of GDV is better
than prior geographic routing protocols when hop count is used
as metric and much better when ETX is used as metric. As
a greedy routing protocol, the routing state of GDV per node
remains small as network size increases. We also show that GDV
and VPoD are highly resilient to dynamic topology changes.

I. INTRODUCTION

Greedy routing protocols have been proposed for both large-

scale wireless [2] [10] [11] [15] [12] and wireline layer-

2 networks [1] [27] [23] [32] [5]. In greedy routing, the

routing state needed per node is independent of network size;

hence greedy routing provides scalability of routing state as

well as resiliency to network dynamics. Greedy routing is

also known as geographic routing because most prior studies

use the geographic locations of nodes for routing decisions.

Geographic routing uses greedy forwarding as its basis, i.e.,

for a packet with destination t, a node u selects, as the next

hop to t, a physical (one-hop) neighbor that minimizes the

physical distance from a physical neighbor to t among all of

u’s physical neighbors.

Geographic routing finds good routing paths only if the

physical distance between two nodes can, at least approxi-

mately, predict the routing cost between them. This assumption

is invalid in wireline networks. For example, two routers in

the same room may connect to different networks. Even for

many wireless networks, the physical distance between two

nodes is a poor predictor of the routing cost between them. We

illustrate this point by analyzing the trace data of GreenOrbs

[17], a large-scale wireless sensor network project deployed in

This work was sponsored by National Science Foundation grants CNS-
0830939, CNS-1214239, and CNS-1464335, and University of Kentucky
College of Engineering Startup Grant. An abbreviated version of this paper
[22] appeared in Proceedings of IEEE ICDCS Conference, Minneapolis, MN,
June 2011.

Chen Qian is with the Department of Computer Science, University of
Kentucky, Lexington, KY, 40506 (e-mail: qian@cs.uky.edu). Simon S. Lam
is with the Department of Computer Science, The University of Texas at
Austin, Austin, TX 78712 (e-mail: lam@cs.utexas.edu).

0 200 400 600
0

2

4

6

8

10

H
o

p
 c

o
u

n
t

Distance (m)
0 100 200 300 400 500

0

2

4

6

8

10

H
o

p
 c

o
u

n
t

Distance (m)

Fig. 1. Physical distances and network distances (in hop count) for all pairs
of nodes in two GreenOrbs networks

Tianmu Mountain, China. We focus on two different network

deployments named “Network1” and “Network2”, with 200

and 213 TelosB motes respectively based on the measurement

results of GreenOrbs on 8/3/2011 and 8/5/2011. When two

nodes can receive packets from each other and the RSSI is

higher than a threshold (-80 dBm), we consider that there

exists a communication link between them.

Figure 1 shows the physical distances and shortest-path hop

counts for all pairs of nodes in Network1 and Network2.

Physical distances are computed based on GPS readings. From

Figure 1, note that the physical distance between two nodes

is not an effective estimator of the network distance between

them in hop count. Suppose node a has two neighbors b and

c which are 150 m and 130 m away from the destination

respectively. a will send the message to c which is closer to

the destination. However, from the results in Figure 1, it is

possible that c is 5 hops to the destination but b is only one

hop to the destination. As a result, geographic routing using

physical locations of nodes would make suboptimal routing

decisions and result in end-to-end paths with large routing

costs.

The problem becomes more challenging if we want to

incorporate various link cost metrics into geographic routing,

such as, latency, ETX [4], and ETT [7], as well as metrics

reflecting available bandwidth [31]. These metrics are used to

incorporate the effects of link loss, capacity, asymmetry, and

interference and to achieve high throughput. However, they

were intended for shortest-path routing protocols and cannot

be used by geographic routing directly.

In this paper, we present Greedy Distance Vector (GDV),

the first greedy routing protocol designed with the objective of

providing near-optimal paths for any additive routing metric.

GDV is designed for layer-2 networks (wireline and wireless)

that do not use IP routing. To apply GDV, each node computes

a virtual position (position in a virtual space) for itself by

running the Virtual Position by Delaunay (VPoD) protocol

to be presented in this paper. VPoD provides the property

of network distance embedding, i.e., the Euclidean distance

between each pair of nodes in the virtual space is a good

estimate of the routing cost between them.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. , NO. , MON YEAR 2

In GDV routing, a node u chooses a neighbor v as the next

hop to destination t to minimize the routing cost c(u, x) +
D̃(x, t) for x ∈ Nu where c(u, x) is the cost of link u-x
and Nu is the neighbor set.1 This routing decision process is

similar to the well-known Distance Vector (DV) routing, in

which a next hop node is chosen when it minimizes c(u, x)+
D(x, t) for x ∈ Nu and D(x, t) is from the distance vector.

However, unlike DV routing, the routing cost D̃(x, t) from x to

t is computed locally by node u from the virtual positions of x
and t. Since c(u, v)+D̃(v, t) ≈ c(u, v)+D(v, t), the quality of

GDV paths is expected to be close to that of optimal DV paths.

Furthermore, as a greedy routing protocol, GDV does not have

the disadvantages of DV routing, i.e., large routing state and

slow convergence, which are impediments to scalability.

The GDV and VPoD protocols presented in this paper make

use of a georgraphic routing protocol, MDT [12], which pro-

vides guaranteed delivery for nodes with arbitrary coordinates

in a Euclidean space. The contributions of this paper include

the following:

• GDV is the first greedy routing protocol designed to

optimize end-to-end path costs using any additive routing

metric, such as, routing metrics that capture network and

link characteristics other than physical distances.

• GDV and VPoD are designed for layer-2 wireline and

wireless networks without location information. There-

fore, no localization protocol is needed.

• As a greedy routing protocol, GDV’s storage cost per

node remains low as network size (N) increases. The

routing costs from neighbors to a destination are com-

puted locally using virtual positions. (Unlike DV, there is

no need for nodes to exchange distance-vector messages

of size O(N).)
• VPoD provides effective network distance embedding.

GDV performs better than prior greedy routing protocols

when hop count is used as metric and much better when

ETX is used as metric.

• GDV provides guaranteed delivery when the network

topology is static. GDV and VPoD are highly resilient

to dynamic topology changes.

• Every node runs the same protocols. GDV and VPoD

do not require special nodes, such as, beacons and land-

marks, and do not use flooding.

GDV routing has been applied in the design and evaluation

of a large-scale layer-2 network architecture, named ROME

[21], [23], which is backwards compatible with Ethernet hosts.

ROME protocols include a stateless multicast protocol, a

Delaunay DHT, and host/service discovery protocols, all of

which make use of GDV routing. In this paper, we present

the ideas, design, specification, and performance evaluation of

GDV routing.

The balance of this paper is organized as follows. In Section

II, we present related work. In Section III, we introduce two

topics that underlie the GDV design, namely: network distance

embedding and multi-hop Delaunay triangulation (MDT). In

Section IV, we present the VPoD protocol. In Section V, we

1In GDV, the neighbor set is actually extended to include a set of Delaunay
triangulation neighbors to be introduced in Section III.

present the GDV protocol. In Sections VI and VII, we present

experimental results to evaluate VPoD and GDV performance

on wireless as well as wireline network topologies. We show

that GDV and VPoD are highly resilient to dynamic topol-

ogy changes. In Section VII, we present two optimization

techniques to make VPoD and GDV run more efficiently on

network topologies that have a significant number of low-

degree nodes. We conclude in Section VIII.

II. RELATED WORK

Geographic routing protocols have been proposed for large-

scale wireless networks, because the routing state required

is independent of network size. Various schemes have been

designed to move packets out of local minima. For 2D

networks, GFG [2], GPSR [10], and their variants [11] use

face routing on a planar graph constructed by planarization

algorithms. Leong et al. [15] proposed using a spanning tree to

guarantee delivery in 2D without planarization. Lam and Qian

proposed MDT [12] which provides guaranteed delivery and

low stretch in 3D as well as 2D, for any connected graph and

node locations specified by accurate, inaccurate or arbitrary

coordinates.

Virtual coordinate schemes have been proposed in the

absence of geographic locations, such as NoGeo [24], BVR

[8], VCap [3], HopID [33], GSpring [16], ABVCup [29], and

PSVC [34]. None of them attempt to predict routing cost.

Instead, their main purpose is to improve the packet delivery

rate.

Traditional geographic routing protocols use hop count as

the routing metric. De Couto et al. [4] showed that the hop

count metric has poor throughput for routing in multi-hop

wireless networks. Instead, several high-throughput routing

metrics have been proposed, such as ETX [4] and ETT [7],

which incorporate the effects of link loss, asymmetry, capacity

and interference. Lee et al. [14] proposed normalized advance

(NADV) for geographic routing. NADV selects the next-hop

node that minimizes ADV
Cost

, where ADV is the amount of

decrease in geographic distance and Cost is the link cost

such as ETX. A similar method is presented by Seada et al.

[26]. Both methods made geographic routing cost-aware of the

next hop and more efficient. But, unlike GDV, they provide

no routing cost information for the entire path.

The idea of latency (network distance) embedding in a

virtual space was used by several Internet virtual positioning

systems, such as, GNP [20] and Vivaldi [6]. They were

designed for hosts with Internet routing support. Both pro-

tocols use latency as routing cost. More specifically, GNP

requires that each node makes RTT measurements to a set of

geographically distributed landmark nodes. Vivaldi requires

that each node receives a significant fraction of its latency

measurements from high-latency, geographically distributed

nodes.

III. BACKGROUND

A. Network distance embedding

To illustrate the point that Vivaldi requires measurements

to nodes with high routing costs, consider the 121-node grid

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. , NO. , MON YEAR 3

1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21 22

23 24 25 26 27 28 29 30 31 32 33

34 35 36 37 38 39 40 41 42 43 44

45 46 47 48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63 64 65 66

67 68 69 70 71 72 73 74 75 76 77

78 79 80 81 82 83 84 85 86 87 88

89 90 91 92 93 94 95 96 97 98 99

100 101 102 103 104 105 106 107 108 109 110

111 112 113 114 115 116 117 118 119 120 121

Fig. 2. 121-node network in 2D physical space

1

2

3

45
6

7
8

9
10

11

12

13

1415

16
17

18
19

20

21

22

23

24

25
26

27
28

29

30

31

32

33

34

35
36

37

38

39
40

41

42

43

44

45

4647

48

49

50

51

52

53

54

55

56

5758

59

60

61

62

63
64

65

66

6768

69

7071

72

73

74

75

76

77

78
79

80

81

82

83848586

87

88

89

90

91

92

93 94

95

96

97
98

99

100

101

102

103

104
105

106107

108
109

110

111

112

113

114

115

116

117

118

119

120

121

(a) After 10 adjustment periods

1

2

3

4
5

6

7

8

9

10

11

12

13

14
15

16
17

18 19

20

21

22

23
24

25
26

2728

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

4647

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

6768

6970

71

72
73

74
75

76

77

78

79

80

81

82

83

8485

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113 114

115

116

117

118

119

120

121

(b) After 20 adjustment periods

Fig. 3. Virtual positions constructed by 2-hop Vivaldi

network shown in Figure 2. Each node is only aware of

its local connectivity and has no location information. We

enhance the Vivaldi algorithm [6] with routing support such

that it can sample (measure routing cost to) two-hop neighbors

as well as physical neighbors. In each adjustment period, a

node samples random nodes from its set of one-hop neighbors

100 times and its set of two-hop neighbors 100 times. Figure

3 shows the virtual positions of the nodes after 10 and 20

adjustment periods (hop count was used as routing metric). We

found that almost every node is close to its physical neighbors

in the virtual space. However, two nodes that are separated by

many hops may also be very close in the virtual space (such

as, many of the nodes near the center). Generally, there are

two kinds of relationships that are needed for virtual positions

to predict routing costs accurately [6]:

• Local relationships: nodes with low cost should be nearby

in the virtual space.
• Global relationships: nodes with high cost should be far

away in the virtual space.

Clearly, in this example, two-hop Vivaldi performs well for

local relationships but poorly for global relationships.

B. MDT routing support for VPoD

Since VPoD is designed for layer-2 networks that do not use

IP routing, it uses a greedy routing protocol instead. VPoD has

three requirements for such a greedy routing protocol: (i) The

protocol allows each node to choose and adjust its location in

a virtual space. (ii) The protocol provides guaranteed delivery.

(iii) The protocol provides support for nodes running VPoD

to converge to locations in the virtual space that satisfy the

network distance embedding property.

Before presenting MDT routing, we briefly introduce De-

launay triangulation (DT). A triangulation of a set S of nodes

(points) in 2D is a subdivision of the convex hull of nodes in

S into non-overlapping triangles such that the vertices of each

triangle are nodes in S. A DT in 2D is a triangulation such

that the circumcircle of each triangle does not contain any

other node inside [9]. The definition of DT can be generalized

to a higher dimensional Euclidean space using simplexes and

circum-hyperspheres. In each case, the DT of S is a graph

denoted by DT (S).
Nodes can construct a correct distributed DT by running

an iterative search protocol to find their DT neighbors under

the assumption that each node can directly communicate with

every other node [13]. For multi-hop layer-2 networks, MDT

protocols were designed for nodes to construct a distributed

multi-hop DT with the following properties [12]: (i) Each node

knows all of its physical neighbors and DT neighbors. (ii)

Each node, say u, maintains a soft-state forwarding table, Fu.

The forwarding tables of all nodes provide a forwarding path

(virtual link) from every node to each of its multi-hop DT

neighbors.

MDT-greedy routing: For a packet with destination t being

forwarded by node u, if u is not a local minimum then the

packet is forwarded to a physical neighbor of u closest to t;
else, the packet is forwarded, via a virtual link, to a multi-hop

DT neighbor closest to t.
For a set of nodes that maintain a correct multi-hop DT,

given a destination location ℓ, it is proved that MDT-greedy

always succeeds to find a node that is closest to ℓ, for nodes

located in a Euclidean space (2D, 3D, or a higher dimension).

From the above description, MDT-greedy routing satisfies

the first two requirements of VPoD. As for the third require-

ment, we will show that nodes running VPoD can quickly find

locations that satisfy the network distance embedding property.

IV. VIRTUAL POSITION CONSTRUCTION

We next present the VPoD protocol for nodes to find posi-

tions in a virtual space with the network distance embedding

property. Initially, each node only knows its physical (one-hop)

neighbors and the link costs to them. The link cost metric can

be any one that is additive (e.g., hop count, latency, ETX,

and ETT). Distances in the virtual space and routing costs

are measured in the same units. Thus comparison, addition,

and subtraction can be operated directly on distances and

routing costs. Hereafter, when we say distance, we refer to

the Euclidean distance between two nodes in the virtual space

rather than the physical distance between them.

A. Main ideas of VPoD

A node boots up and assigns itself an initial location in a

pre-specified virtual space (e.g., a rectangle in 2D). The node

discovers its physical neighbors and exchanges ID and location

information with them. When the node receives a start token to

run VPoD, it forwards the token to all of its physical neighbors

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. , NO. , MON YEAR 4

Node a

J A AJ

Node b

token

Node c

token

J: Join period

A: Adjustment period

u

adj() adj() adj() adj() adj() adj()

J A AJ

adj() adj() adj() adj() adj() adj()

J A AJ

adj() adj() adj() adj() adj() adj()

init(): execute Initialization()

adj(): execute Adjustment()

: adjustment timeout of node u

a

b

c

init()

init()

init()

Fig. 4. Main structure of VPoD

from which it has not received the same token. Any duplicate

token received by a node is discarded.2

The following algorithm is used for initial location assign-

ment:

• If u is the starting node, u sets its position to the

origin. Otherwise, at least one physical neighbor of u
has initialized its position, namely, the token’s sender.

• If only one physical neighbor, say v, of u has initialized

its position, u sets its position at a random position on

the circle or sphere centered at v. The radius is the link

cost between u and v.

• If two or more physical neighbors of u have initialized

their positions, u chooses the two that are farthest apart,

and computes the mid-point between the two nodes. In

order to avoid degenerate cases (three or more nodes on a

line), the actual position of u is set to a random position

in the disk centered at the mid-point whose radius is 1/10

of the distance between the two nodes.

All nodes that have received tokens run VPoD by first

running MDT protocols to construct a multi-hop DT using

their locations in the virtual space. MDT protocols have been

modified to record routing costs from each node to its multi-

hop DT neighbors. Each node then iteratively adjusts its

position in the virtual space to reduce prediction errors of

the distances between the node and its physical and multi-hop

DT neighbors. For a node u, VPoD provides two types of

adjustments:

1) Adjustments with physical neighbors to preserve local

relationships: If its distance to a physical neighbor v is

larger than its link cost to v, u adjusts its position so

that its distance to v is smaller.
2) Adjustments with DT neighbors to preserve global re-

lationships: If its distance to a multi-hop DT neighbor

v is smaller (larger) than the routing cost from u to v,

u adjusts its position so that its distance to v is larger

(smaller).

The main structure of VPoD is presented in Figure 4. After

receiving a token, each node runs MDT protocols during a

period of time, called J period. The MDT protocols construct

a multi-hop DT of a set of nodes in a distributed manner.

Different nodes may join the multi-hop DT asynchronously

2The first node to receive a token may be predetermined by the network
operator or by a leader election protocol based upon a simple criterion, such
as, largest ID.

1

2

3

4

5

6

7
8

9

10
11

12
13

14

15

16

17

18
19

20
21

22

23

2425

26

27

28

2930
313233

3435

36

37

38

39

40

41
4243

44

454647

48

49

50

51
52

53
54
55

5657
58

59

60

61

62

63
64

65

66

67
6869

70 71

72

73
74

75
7677

78

79
80

81
8283

8485

86 8788
8990

91

92
93
94 95

96 97
9899

100101
102103104

105

106107108 109110

111
112

113114115116117118119

120
121

(a) Initial positions

1
2

3
4

5 6

7

8

9 10

11

12 13

14
15

16 17

18

19
20

21
22

23 24
25

26
27

28

29

30
31 3233

34 35 36

37 38

39

40
41

42
4344

45 46 47 48

49
50

51 52
53

54
55

5657 58
59

60
61

62
63 64 65

66

67 68 69
70

71

72
73

74 75
7677

78 79 80

81
82

83

84
85

86
87

88

89
90

91 92

93

94

95
96 97 98 99

100
101 102

103
104

105

106

107
108 109 110

111

112
113 114

115
116

117

118
119

120 121

(b) After 10 adjustment periods

1
2 3 4 5

6
7

8
9

10

11

12 13 14 15
16 17

18
19

20
21

22

2324 25 26 27
28

29 30

31 3233

34 3536
37

38
39

40
41

42 4344

4546 47
48

49
50

51 52 53 54
55

5657 58 59

60 61
62 63 64 65

66

67 68 69
70

71
72 73 74 75

7677

78 79 80
81

82
83

84 85
86 8788

89
90

91 92
93

94
95

96 97
98

99

100

101 102

103
104

105
106 107

108 109110

111112
113

114
115

116
117

118
119 120

121

(c) After 20 adjustment periods

Fig. 5. Virtual positions constructed by VPoD

and when all nodes finish joining the correct multi-hop DT has

been constructed [12]. In the subsequent adjustment period,

called A period, the node executes the adjustment algorithm

iteratively to change its position in the virtual space. The multi-

hop DT needs to be re-constructed after several adjustment

iterations because many nodes may have changed their posi-

tions. In this manner, each node alternates between running

MDT protocols in a J period and the adjustment algorithm

in an A period. The MDT protocols and adjustment algorithm

will be described in more detail in the sections to follow.

Note that after receiving a token, each node runs asyn-

chronously. Different nodes may start their J and A periods at

slightly different times. After an adjustment execution, each

node sends its new virtual position and estimated error to

its physical neighbors and multi-hop DT neighbors. After a

number of alternating J and A periods, the node positions in

the virtual space converge and distances can be used to predict

routing costs between nodes. The MDT protocols are then run

one more time to update the multi-hop DT. VPoD will resume

when there is node churn. The node that detects a change will

initiate a token and pass it in the network to resume VPoD,

similar to the initialization phase of VPoD. VPoD does not

require any landmark or perimeter node and uses no flooding.

Every node in the network runs the same VPoD protocol. The

duration of a J period depends on the time for executing the

MDT join protocol. When MDT join finishes, a J period stops.

The length of an A period depends on message delivery times.

For our experiments on wireless networks, the duration of an

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. , NO. , MON YEAR 5

Adjustment():

1. esum 0; // summed error of this adjustment, initialized to 0;

2. for all v in Pu Nu do

3. if (v Pu and (,) (,)D u v D u v) or v Nu – Pu then

4. t tuple in Fu such that t.dest = v;

5. ev t.error;

6. f eu/(eu+ ev); // confidence of this update

7. xu xu + cc×f×[D(u, v) – (,)D u v]× ˆ()
u v

u x x ;

 // ˆ()
u v

u x x is a unit vector in the direction of xu - xv

8. esum esum + |D(u, v) – (,)D u v | / (,)D u v ;

// add the error of this sample

9. end if

10. end for

11. enew esum/|Pu Nu|; // average error

12. eu eu×(1 – ce) + enew ×ce;

13. Send the updated xu and eu to all nodes in Pu Nu;

Fig. 6. Pseudocode of the VPoD adjustment algorithm at node u

A period was set to 20 seconds. If the A period is too short,

nodes may not able to receive enough information to adjust

their coordinates. If it is too long, the convergence will be

delayed.

We ran VPoD for the 121-node grid network in Figure 2.

The results are shown in Figure 5. Note that the initial node

positions are quite arbitrary. After 10 adjustment periods, the

topology in the virtual space looks similar to that in the

physical space. After 20 adjustment periods, all local and

global relationships are preserved; compare Figure 5(c) with

Figure 2 where nodes are numbered. Note that adjustment

periods for VPoD and 2-hop Vivaldi are defined differently.

Experimental results in Figure 16 (to be presented) show that

2-hop Vivaldi uses much more storage and communication

costs per adjustment period than VPoD.

TABLE I
NOTATION

Pu physical neighbor set of node u

Nu DT neighbor set of node u

Fu forwarding table of node u

xu virtual position of node u, a vector

eu estimated position error of node u

D̃(v, t)
Euclidean distance between the virtual posi-

tions of v and t

c(u, v) cost of the link from u to v

D(v, t) routing cost from node v to node t

∆u adjustment interval value of node u

cc, ce tuning parameters to control the amounts of

change in node position and position error

B. MDT extensions to support VPoD

If a DT neighbor of u is not a physical neighbor, it

is said to be a multi-hop DT neighbor. In MDT proto-

cols, each entry in u’s forwarding table Fu is a 4-tuple,

< source, pred, succ, dest >, where dest may be a physical

or DT neighbor. To meet the requirements of VPoD, each

entry in MDT protocols used by VPoD is extended to a 6-

tuple < source, pred, succ, dest, cost, error >, where error
is the estimated position error of the dest node. If dest is a

physical neighbor of u, cost is the link cost to dest. If dest
is a multi-hop DT neighbor, cost is the routing cost to dest.
In tuples where dest is neither a physical nor DT neighbor,

both cost and error are empty.

Additionally, during execution of the MDT protocols, ev-

ery pair of DT neighbors exchange two messages, Neigh-

bor Set Request and Neighbor Set Reply. Each of these mes-

sages carries its source node’s position error and is also used to

record the routing cost of the reverse path from its destination

node to its source node. When the MDT protocols finish

execution, every node knows the cost and error values of

each of its DT neighbors. Also, a path from the node to each

of its DT neighbors has been stored in forwarding tables of

nodes along the path. The error values of physical neighbors

that are not DT neighbors are exchanged by link-layer keep-

alive messages.

Experimental results [12] show that MDT protocols con-

struct a correct multi-hop DT very quickly at system initializa-

tion. The protocols are highly resilient to churn, i.e., frequent

and dynamic topology changes due to addition and deletion

of nodes and links. They are also communication efficient

because nodes use an efficient iterative search to find multi-

hop DT neighbors (without flooding).

C. Adjustment algorithm

During each execution of the adjustment algorithm (see

pseudocode in Figure 6 with notation defined in Table I),

a node u may change its position multiple times to find

a position in the virtual space with less prediction error.

Before algorithm execution, node u first computes its distances

D̃(u, v) to its physical and DT neighbors using their current

virtual positions. Then, u updates its position (executes lines 4-

7 of pseudocode) with respect to every multi-hop DT neighbor

and some physical neighbors. Specifically, for a physical

neighbor v, u updates its position with respect to v if u’s

distance to v is larger than u’s routing cost to v, that is,

D̃(u, v) > D(u, v) (see line 3 of pseudocode). At the end

of algorithm execution, node u sends its updated position and

position error to all of its physical and DT neighbors.

When node u makes a position adjustment with respect

to v, it moves its position in the direction of [D(u, v) −
D̃(u, v)]× û(xu −xv), where xu and xv are position vectors,

and û(xu−xv) is a unit vector in the direction of xu−xv. The

magnitude of the movement is proportional to the magnitude

of D(u, v)− D̃(u, v), where D(u, v) is routing cost from u to

v and D̃(u, v) is distance between them. If D(u, v) < D̃(u, v),
u moves towards v; if D(u, v) > D̃(u, v), u moves away from

v. Note that u and v being physical neighbors usually implies

a short network distance. Hence when their virtual distance

is large, the protocol should move u towards v. When their

virtual distance is always short, the protocol should allow them

some range of movement and not force them to keep the exact

distance.

The magnitude of the movement is also proportional to the

confidence value f of this adjustment computed as follows.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. , NO. , MON YEAR 6

If v has a large position error, the position error of v may

propagate to u. To mitigate such error propagation, neighbors

with large position errors should have less influence in position

updates than those with small errors. Similar to Vivaldi, each

node u maintains a local variable eu for its estimated position

error. The confidence value f of the adjustment is defined to

be f = eu
eu+ev

.

The update rule for each neighbor v that causes a position

change is:

xu = xu + cc × f × [D(u, v)− D̃(u, v)]× û(xu − xv)

where cc is a tuning parameter to be determined (see Section

VI-E). The value of D(u, v) is available to u in the cost field

of the tuple in Fu whose dest field is v. Note that for a multi-

hop DT neighbor v, the cost field does not always store the

minimum routing cost from u to v, because the path in the

multi-hop DT may not be the shortest one. However, since the

main goal of adjusting with a multi-hop DT neighbor v is to

move u away from v, we found that an over-estimate of the

routing cost works effectively (because if D(u, v) > D̃(u, v),
u moves away from v).

After updating its position, node u also needs to update its

estimated position error. For each update caused by neighbor

v, u computes the prediction error ẽv by

ẽv = |D(u, v)− D̃(u, v)|/D̃(u, v)

If v does not cause an update, ẽv = 0. After checking all

neighbors, u computes the average over all of its physical and

DT neighbors:

enew =
∑

ẽv/|Pu ∪Nu|

The position error of node u is then updated by a moving

average:

eu = eu × (1− ce) + enew × ce

where ce is another tuning parameter in the range (0, 1). The

initial value of eu is 1. We use ce = 0.25 in our experiments.

At the end of the adjustment algorithm, node u sends the

updated values of xu and eu to all physical and DT neighbors.

D. Adaptive adjustment interval

The number of Adjustment() executions for node u during

an adjustment period is determined by ⌈ Ta

∆u

⌉, where Ta is the

duration of the adjustment period and ∆u is the adjustment

interval of node u, controlled by a timeout timer. One chal-

lenge is the choice of a proper value of ∆u at different stages

of the virtual position construction process. At the beginning

of an A period, using small intervals can help nodes rapidly

find approximate positions. When node positions are relatively

stable, the positions should be refined slowly for them to

converge. Also the multi-hop DT constructed in the previous

J period needs to be updated after several Adjustment() ex-

ecutions. If Adjustment() is executed too frequently with an

outdated multi-hop DT, node positions may oscillate and do

not converge.

We use an adaptive interval technique to achieve fast and

accurate convergence. The initial interval ∆u0 is set to a small

 GDV(u, t):

1. For each physical neighbor y,

Ry c(u, y) + (,)D y t ;

2. For each multi-hop DT neighbor y,

Ry D(u, y) + (,)D y t ;

3. Let v be the neighbor that minimizes Ry;

4. if Rv < (,)D u t then

 send the packet to v directly or by the

multi-hop path;

5. else

 MDT_greedy(u, t); //MDT forwarding

6. end if

Fig. 7. GDV pseudocode at node u to destination t

value, e.g., 2 sec. After that, each node calculates the average

position error of its physical and DT neighbors, denoted by ē.

The interval is then changed to

∆u = min{∆u0/ē, Ta}

Note that position errors are initialized to 1 and will decrease

with time. When the virtual positions converge and become

relatively stable, ē trends towards 0 and results in a large

∆u. Experimental results for different values of the adjustment

interval are presented in Section VI-C.

V. GDV ROUTING

Using GDV, each node performs greedy forwarding in the

multi-hop DT constructed by VPoD. When node u has a

packet to forward, it uses the virtual positions of its physical

and multi-hop DT neighbors and the destination t to compute

estimated routing costs, D̃(y, t). For each physical neighbor

y, node u computes the estimated routing cost via y to t by

Ry = c(u, y) + D̃(y, t) (line 1 in Figure 7). For every multi-

hop DT neighbor y, node u computes the estimated routing

cost via y to t by Ry = D(u, y) + D̃(y, t) (line 2 in Figure

7).

Node u selects the node v such that Rv = min
y∈Pu∪Nu

Ry

(line 3 in Figure 7). If Rv < D̃(u, t), u sends the packet to

v directly if v is a physical neighbor or by the virtual link

to v if v is a multi-hop DT neighbor (line 4 Figure 7). If

Rv < D̃(u, t) is not satisfied, node u runs MDT-greedy using

virtual positions of nodes without any consideration of routing

costs (line 5 in Figure 7).

When a node, say w, receives a packet that is being

forwarded in a virtual link and w is not the virtual link’s

destination, it skips lines 1-4 in the GDV pseudocode and

runs MDT-greedy. (This detail is omitted in Figure 7.) Since

executing line 4 in the GDV pseudocode strictly reduces a

packet’s distance to its destination in the virtual space, it

is straightforward to prove that GDV provides guaranteed

delivery because MDT-greedy provides guaranteed delivery.

GDV can use any routing metric that DV uses, such as,

hop count, latency, ETX, ETT, energy consumption, and

propagation distance, etc. Both GDV and DV require a metric

m that is positive and additive. The metric, however, may be

asymmetric, namely, it is not required that m(u, v) = m(v, u)
for two physical neighbors, u and v.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. , NO. , MON YEAR 7

Network 1 Network 2
1

1.3

1.6

1.9

2.2

2.5

R
o

u
ti
n

g
 s

tr
e

tc
h

MDT on physical locations
GDV on VPoD (2D)
GDV on VPoD (3D)

Fig. 8. Routing performance of GDV and MDT-greedy on GreenOrbs

The following example illustrates GDV’s requirement of ad-

ditivity and non-requirement of symmetry. In MDT protocols,

when node a sends a Neighbor Set Request message to node

b along the path a-x-y-b, the message’s routing cost field is

initialized to zero at node a. Then node x adds c(x, a) to the

field. Later, node y adds c(y, x) to the field. Finally, node b
adds c(b, y) to the field. The cumulative value provides node b,
the destination of the message, its routing cost back to node a.

Subsequently, node b sends a Neighbor Set Reply message to

a along the reverse path and node a obtains from the message

its routing cost to b. Note that the costs of b-a and a-b paths

may be different.

When a routing metric captures more network and link

characteristics (such as, link quality by ETX [4] and both link

quality and capacity by ETT [7]) the metric can be used to

provide higher throughput for shortest-path routing. GDV is

a greedy routing protocol designed to take advantage of such

routing metrics. We found that even when hop count is used as

the routing metric, GDV has better routing stretch performance

than prior geographic routing protocols. This is because the

distance in virtual space is better than the geographic distance

in physical space for predicting routing cost in hop count.

Note that a location service is necessary for the sender

to know the destination coordinates before executing GDV

routing. We have designed a location lookup service for GDV,

presented in another paper [21]. The data packet header of

GDV requires space to store the coordinates and node ID of

the destination. GDV uses 4 bytes per dimension for storing

destination coordinates and 2 bytes for its ID. Hence for a 3D

virtual space, the packet header requires 14 bytes. It is known

that the EEE 802.15.4-compliant CC2420 radio used by many

sensor nodes supports packets up to 127 bytes [34]. Hence

there is sufficient remaining space to store data.

VI. EVALUATION ON WIRELESS NETWORKS

A. Methodology

We evaluate the performance of GDV for both real

GreenOrbs network topologies and synthetic wireless topolo-

gies generated by a packet-level discrete-event simulator [26].

In Section VII we will evaluate its performance on wireline

network topologies. Queuing delays are not simulated because

we do not evaluate performance metrics that depend on

congestion, e.g., end-to-end throughput and latency. Instead,

random message delivery times from one node to another are

sampled from a uniform distribution over a specified time

interval [10ms, 20ms].
Performance criteria. GDV works for any routing metric

that is positive and additive. For this paper, we used two

common metrics in our experiments, namely, hop count and

ETX. When using hop count as the metric, we evaluate the

routing stretch of each protocol. The routing stretch value

between a pair of source and destination nodes is defined to

be the ratio of the hop count in the selected route to the hop

count in the shortest route in the connectivity graph. When

using ETX as the metric, we evaluate the average number of

transmissions used to deliver a packet from a source node

to a destination node. The routing stretch and number of

transmissions shown in the figures are the average values

over all source-destination pairs in the network. Using hop

count as the metric, we compare GDV with MDT-greedy.

Using ETX as the metric, we compare GDV with NADV

[14]. To give an advantage to NADV and MDT-greedy in the

comparisons, we used accurate node locations for NADV and

MDT-greedy in our experiments. We also compare GDV with

PSVC [34], a recently proposed virtual coordinate system for

wireless networks. Similar to most virtual coordinate protocols

for wireless networks [3], [8], [16], [18], [24], [25], [29], [30],

[33], PSVC only deals with hop count and cannot embed link

costs into network distances.

MDT-greedy is used as the representative of geographic

routing protocols because it has been shown [12] to provide the

lowest routing stretch, for nodes with accurate or inaccurate

coordinates, when compared to several well-known geographic

protocols, i.e., GPSR running on GG, RNG, and CLDP graphs

[2], [10], [11] and GDSTR [15].

We measure the storage cost of a routing protocol by

counting the number of distinct nodes a node needs to know

(and store) to perform forwarding, and computing the average

value over all nodes. This represents the storage cost of a

node’s minimum required knowledge of other nodes. It has

been validated that the overall storage cost for forwarding is

linearly proportional to the number of distinct nodes stored

[12]. This metric, unlike counting bytes, requires no imple-

mentation assumptions which may cause bias when different

routing protocols are compared.

Creating general connectivity graphs and ETX values.

We used the link-layer simulator developed by the authors of

[26] to create connectivity graphs and link costs (ETX values).

Initially, N nodes are randomly placed in a 2D space. The

packet reception rate (PRR) between two nodes is computed as

a function of the distance, node density, and other parameters

including path loss exponent, shadowing standard deviation,

modulation and encoding schemes, output power, noise floor,

preamble and frame lengths, and randomness. We used the

default values for all parameters [26]. If the packet reception

rate between two nodes is greater than 0.1, a physical link is

placed between the two nodes in the connectivity graph. This

threshold is set to 0.33 in experiments for sparse networks.

The ETX value of the link (in each direction) is the inverse

of the PRR value.

For some experiments, we also randomly placed some large

obstacles in the 2D space. Nodes are not placed in space

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. , NO. , MON YEAR 8

0 5 10 15 20 25
1

1.2

1.4

1.6

1.8

2

Adjustment period number

R
o
u
ti
n
g
 s

tr
e
tc

h

MDT on actual locations

GDV on VPoD (∆
u
 = 2 sec)

GDV on VPoD (∆
u
 = 10 sec)

GDV on VPoD (adaptive ∆
u
)

0 5 10 15 20 25
4

6

8

10

12

Adjustment period number

A
v
e
.
n
o
.
o
f
tr

a
n
s
.
p
e
r

d
e
liv

e
ry NADV on actual locations

GDV on VPoD (∆
u
 = 2 sec)

GDV on VPoD (∆
u
 = 10 sec)

GDV on VPoD (adaptive ∆
u
)

Fig. 9. Routing performance for different values of the adjustment interval: (a) metric is hop count, (b) metric is ETX.

1 3 5 7 9 11 13 15
0

0.2

0.4

0.6

0.8

1

Dimension number

N
o
rm

a
liz

e
d
 s

in
g
u
la

r
v
a
lu

e N = 200

N = 600

N = 1000

1 3 5 7 9 11 13 15
0

0.2

0.4

0.6

0.8

1

Dimension number
N

o
rm

a
liz

e
d
 s

in
g
u
la

r
v
a
lu

e N = 200

N = 600

N = 1000

Fig. 10. Normalized singular values for different network sizes: (a) metric is hop count, (b) metric is ETX.

occupied by obstacles. Also if the line between two nodes

intersects any obstacle, there is no physical link between the

nodes.

B. GreenOrbs results

We first compare GDV with MDT-greedy for the two

GreenOrbs networks whose average node degrees are 9.2

and 8.9. MDT-greedy uses physical locations of sensor nodes

obtained by GPS. GDV uses no location information. In Figure

8, the routing stretch of MDT-greedy on physical locations

is 1.6802 for Network1. The routing stretch is improved by

GDV to 1.3965 on VPoD in 2D, and to 1.2847 on VPoD

in 3D. For Network2 the routing stretch of MDT-greedy on

physical locations is 1.5534. The routing stretch is improved

by GDV to 1.4291 on VPoD in 2D, and to 1.2520 on VPoD in

3D. Note that GDV in 3D provides better routing stretch than

GDV in 2D. We will discuss the choice of dimensionality in

more detail in Section VI-D. In this set of experiments, VPoD

stops after 20 J periods and 20 A periods.

C. Adaptive adjustment interval

We conducted many experiments for different values of

adjustment interval. We show representative results for a

synthetic 200-node network in Figure 9. Nodes are in a

100m×100m 2D physical space. The average number of phys-

ical neighbors per node is 14.5. VPoD assigns node positions

in a 3D virtual space. Routing performance versus adjustment

period number (which represents time) is presented for hop

count used as the metric in Figure 9(a) and for ETX used as

the metric in Figure 9(b). The duration of an adjustment period

is Ta = 20 seconds. Note that when the adjustment interval

is a small value (2 seconds), nodes can find their approximate

positions after two periods. However, the routing performance

keeps oscillating after that. On the other hand, using a large

adjustment interval (10 seconds) slows down the convergence.

Adaptive interval is the best strategy. Using adaptive interval,

the convergence is as fast as using a small interval and the

quality of virtual positions after convergence is similar to that

from using a large interval. We used adaptive interval for all

other experiments to be presented in this paper.

D. Choice of Dimensionality

We use Principal Component Analysis (PCA) to determine

whether a low-dimensional space can be used to effectively

model routing costs of multi-hop networks. We then use it

to find an appropriate dimensionality to use and we present

experimental results to validate the PCA results.

PCA relies on Singular Value Decomposition (SVD). The

input of SVD is an N × N matrix M , where each element

mij is the routing cost from node i to node j. SVD factors M
into the product of three matrices: M = U ·S ·V T , where S is

a diagonal matrix with nonnegative elements si. The diagonal

elements are called singular values of M , which are ordered

non-increasingly.

From M = U · S · V T , we have mij =
N∑

k=1

skuikvjk . If

singular values s1, ..., sd are much larger than the rest, we may

approximate mij by mij ≈
d∑

k=1

skuikvjk . This means that the

routing cost matrix M can be embedded in a d-dimensional

Euclidean space with low errors.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. , NO. , MON YEAR 9

0 5 10 15 20 25
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Adjustment period number

R
o
u
ti
n
g
 s

tr
e
tc

h

MDT on actual locations

GDV on VPoD (2D)

GDV on VPoD (3D)

GDV on VPoD (4D)

0 5 10 15 20 25
4

6

8

10

12

Adjustment period number

A
v
e
.
n
o
.
o
f
tr

a
n
s
.
p
e
r

d
e
liv

e
ry NADV on actual locations

GDV on VPoD (2D)

GDV on VPoD (3D)

GDV on VPoD (4D)

Fig. 11. Routing performance for 2D, 3D, and 4D: (a) metric is hop count, (b) metric is ETX.

Figure 10 shows our experimental results for networks of

200, 600 and 1000 nodes. Each data point represents the

average result from 20 different networks. The routing costs in

the input matrix are measured in hop count for experiments in

Figure 10(a), and in ETX for experiments in Figure 10(b). The

singular values shown are normalized. The first three singular

values are much larger than the remaining ones. Also as the

network size increases, the third singular value increases in

magnitude, which implies that the third dimension is more

important for a larger network size.

We have performed many experiments for different net-

works embedded in 2D, 3D, and 4D virtual spaces. Figure 11

shows representative results of routing performance for 2D, 3D

and 4D, using the same 200-node network for experiments in

Figure 9. After 10 adjustment periods, the routing performance

of GDV is better than MDT-greedy and NADV for all three

virtual spaces. For 4D, the routing performance is close to the

converged value after just one or two adjustment periods. 2D

requires many more adjustment periods to converge. Note that

the converged values of 4D are not much better than those

of 3D. This observation is consistent with the PCA results in

Figure 10.

From the PCA and experimental results, 2D or 3D are good

choices. This is because both the storage and communication

costs of VPoD in 4D are significantly higher than those in 2D

or 3D (to be shown in Section VI-I).

E. Impact of tuning parameter

The tuning parameter cc controls the size of movement in

position updates. We tried different values of cc using the

same network used for experiments shown in Figure 9. A

3D virtual space is used for VPoD. Figure 12 shows that

a smaller value (cc = 0.02) causes slower convergence in

the first few adjustment periods but its convergence is still

quite fast and accurate. When a large value (cc = 0.3)

is used, the convergence is fast at the beginning, but there

are oscillations in the ETX experiments (see Figure 12(b)).

VPoD with cc = 0.3 still finds good virtual positions after

20 adjustment periods. Empirically, VPoD is quite robust to

different values of cc because VPoD uses two other adaptive

values to control adjustments, i.e., confidence and adjustment

interval. We used cc = 0.1 for all other experiments presented

in this paper.

F. Impact of obstacles

The physical space of practical wireless networks may

include large obstacles that block wireless transmissions. Thus

we also evaluated GDV for networks with obstacles. In these

experiments, each obstacle is a 10m×10m square. We varied

the number of obstacles from 0 to 10 in the 100m×100m

physical space for 200-node networks. The average node

degree is reduced. The results are shown in Figure 13. Each

data point is the average value of 20 simulation runs for

20 different networks. For comparison, we also show the

optimal values of shortest path routing using ETX as the

metric in Figure 13(b). In the same figure, the average number

of transmissions of NADV increases by 71.1% from 7.44

(0 obstacle) to 12.73 (10 obstacles), while that of GDV on

VPoD (3D) increases by 23.7% from 5.31 (0 obstacle) to 6.57

(10 obstacles). Note that the routing performance of GDV on

VPoD is fairly close to that of optimal routing.

G. Routing performance for sparse networks

We also evaluated GDV on another set of sparse networks,

in which the average degree is 8 and two nodes are considered

neighbors if the PRR is over 0.33. As shown in Figure 14,

GDV in 2D, 3D, and 4D still has better routing performance

compared to MDT. Compared to Figure 11, the routing im-

provement of GDV becomes more significant because greedy

routing using physical locations may encounter more local

minima and thus perform poorly on sparse networks.

H. Comparison with Vivaldi and PSVC

We compare the routing performance of GDV on VPoD

with Vivaldi [6] and PSVC [34]. In Figure 15, we measure the

average routing stretch (for the hop count metric) and average

number of transmissions per delivery (for the ETX metric)

to compare GDV on VPoD, GDV on Vivaldi, and PSVC.

Figure 15(a) shows that GDV on VPoD outperforms GDV

on Vivaldi by a very large margin. MDT on actual locations

and PSVC have similar routing stretch; both of them are close

to GDV on VPoD (2D) after convergence. GDV on VPoD

(3D) can achieve slightly lower routing stretch than PSVC.

However, when ETX is used as the metric (Figure 15(b)),

since PSVC has no ability to incorporate link costs, GDV on

VPoD is significantly better than PSVC in the average number

of transmissions per delivery.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. , NO. , MON YEAR 10

0 5 10 15 20 25
1

1.2

1.4

1.6

1.8

2

Adjustment period number

R
o
u
ti
n
g
 S

tr
e
tc

h

MDT on actual locations

GDV on VPoD (c
c
 = 0.02)

GDV on VPoD (c
c
 = 0.1)

GDV on VPoD (c
c
 = 0.3)

0 5 10 15 20 25
4

6

8

10

12

Adjustment period number

A
v
e
.
n
o
.
o
f
tr

a
n
s
.
p
e
r

d
e
liv

e
ry NADV on actual locations

GDV on VPoD (c
c
 = 0.02)

GDV on VPoD (c
c
 = 0.1)

GDV on VPoD (c
c
 = 0.3)

Fig. 12. Routing performance for different values of tuning parameter cc: (a) metric is hop count, (b) metric is ETX.

0 2 4 6 8 10
1.1

1.3

1.5

1.7

No. of obstacles

R
o
u
ti
n
g
 s

tr
e
tc

h

MDT on actual locations

GDV on VPoD (2D)

GDV on VPoD (3D)

0 2 4 6 8 10
0

5

10

15

20

No. of obstacles
A

v
e
.
n
o
.
o
f
tr

a
n
s
.
p
e
r

d
e
liv

e
ry NADV on actual locations

GDV on VPoD (2D)

GDV on VPoD (3D)

Optimal

Fig. 13. Routing performance vs. number of obstacles: (a) metric is hop count, (b) metric is ETX.

0 5 10 15 20 25
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Adjustment period number

R
o
u
ti
n
g
 s

tr
e
tc

h

MDT on actual locations

GDV on VPoD (2D)

GDV on VPoD (3D)

GDV on VPoD (4D)

0 5 10 15 20 25
4

6

8

10

12

14

Adjustment period number

A
v
e

.
n

o
.

o
f

tr
a

n
s
.

p
e

r
d

e
liv

e
ry

NADV on actual locations

GDV on VPoD (2D)

GDV on VPoD (3D)

GDV on VPoD (4D)

Fig. 14. Routing performance for sparse networks (average degree is 8): (a) metric is hop count, (b) metric is ETX.

I. Storage and communication costs

A multi-hop DT requires extra storage for multi-hop DT

neighbors. The amount of extra storage varies during the

course of the VPoD construction. At the beginning, most

DT neighbors are not physical neighbors because the initial

positions are fairly arbitrary. When VPoD has converged,

the physical and DT neighbor sets have a large overlap. We

evaluated both storage and communication costs using the

same 200-node network for experiments in Figure 9. Figure

16(a) shows storage cost over time. The two curves of GDV

on VPoD start from high values and then drop after two

adjustment periods. The storage cost of VPoD in 2D after

convergence is very close to those of MDT-greedy and NADV

on actual locations. Vivaldi requires much higher storage cost

than VPoD. The storage cost of PSVC lies between those

of VPoD in 2D and 3D. NADV requires each node to store

physical neighbors only and has the lowest storage cost.

The average number of control messages sent per node in

each adjustment period for constructing virtual positions is

shown in Figure 16(b) for VPoD and Vivaldi. The message

cost of VPoD includes both the multi-hop DT construction

and adjustment update messages. The routing metric is hop

count. (Results for the ETX metric are similar and not shown.)

VPoD in 2D has the lowest message cost. After convergence,

the message costs of VPoD in 2D and 3D are about 20

and 60 messages, respectively, per join-and-adjustment pe-

riod. Two-hop Vivaldi requires many more messages. We

do not show message costs for MDT-greedy and NADV on

actual locations as well as PSVC. Given location information,

MDT-greedy and NADV use one-time constructions with low

message costs. But they require localization methods which

have message and other costs to provide accurate location

information. PSVC uses a one-time construction of coordinates

and the average number of messages sent per node was 1735,

which is higher than the cumulative number of messages used

by VPoD at period 15 (543 messages per node for 2D and

1240 messages per node for 3D). Note that VPoD typically

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. , NO. , MON YEAR 11

0 5 10 15 20 25
1

2

4

8

16

Adjustment period number

R
o
u
ti
n
g
 s

tr
e
tc

h

GDV on Vivaldi (3D)

MDT on actual locations

GDV on VPoD (2D)

PSVC

GDV on VPoD (3D)

0 5 10 15 20 25
4

8

16

32

Adjustment period number

A
v
e
.
n
o
.
o
f
tr

a
n
s
.
p
e
r

d
e
liv

e
ry

GDV on Vivaldi (3D)

MDT on actual locations

PSVC

GDV on VPoD (2D)

GDV on VPoD (3D)

Fig. 15. Routing performance compared with Vivaldi and PSVC: (a) metric is hop count, (b) metric is ETX.

0 5 10 15 20 25
0

40

80

120

160

Adjustment period number

A
v
e
.
n
o
.
o
f
n
o
d
e
s
 s

to
re

d
 p

e
r

n
o
d
e

GDV on Vivaldi

GDV on VPoD (3D)

PSVC

GDV on VPoD (2D)

MDT on actual locations

NADV on actual locations

0 5 10 15 20 25
0

100

200

300

400

500

Adjustment period number

A
v
e
.
n
o
.
o
f
m

s
g
s
 s

e
n
t
p
e
r

n
o
d
e

Vivaldi

VPoD (3D)

VPoD (2D)

Fig. 16. (a) Storage cost and (b) control message cost in an adjustment period.

100 200 300 400 500 600 700 800 900 1000
1

1.2

1.4

1.6

No. of nodes

R
o
u
ti
n
g
 s

tr
e
tc

h

MDT on actual locations

GDV on VPoD(2D)

PSVC

GDV on VPoD(3D)

100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

No. of nodes

A
v
e
.
n
o
.
o
f
tr

a
n
s
.
p
e
r

d
e
liv

e
ry

NADV on actual locations

PSVC

GDV on VPoD (2D)

GDV on VPoD (3D)

Optimal

Fig. 17. Routing performance versus N : (a) metric is hop count, (b) metric is ETX.

converges in 15 adjustment periods.

J. Varying the number of nodes

We evaluate the performance of GDV for network size (N)

from 100 to 1000 nodes. For 200-node experiments, the size

of the physical space is 100m×100m. For a smaller (or larger)

number of nodes, the size of the physical space is scaled down

(or up) proportionally such that the average number of physical

neighbors per node is kept at 14.5. No obstacles are placed.

Each data point shown is the average value of 20 simulation

runs for 20 different networks. In these experiments, VPoD

stops after 15 adjustment periods.

Figure 17(a) shows routing stretch versus N . GDV on VPoD

performs better than MDT-greedy on actual locations. PSVC’s

routing stretch is close to GDV on VPoD (2D), lower than

MDT-greedy on actual locations, and higher than GDV on

VPoD (3D). The routing stretch values of GDV, PSVC and

MDT-greedy remain low as N increases.

Figure 17(b) shows that the average number of transmis-

sions increases with N for all protocols (including optimal

routing). NADV increases a lot more than GDV. For N =1000,

the average number of transmissions of GDV is only half

of that of NADV. Since PSVC cannot incorporate link cost

in virtual coordinates, it’s routing performance using ETX is

similar to NADV and much worse than GDV.

Figure 18(a) shows storage cost versus N . NADV has

the lowest cost, followed in order by MDT-greedy, GDV on

VPoD (2D), PSVC, and GDV on VPoD (3D). The storage

costs for all protocols remain low as N increases.

Figure 18(b) shows the routing success rates of different

protocols. GDV, PSVC, and MDT-greedy all provide guar-

anteed delivery (the routing success rate was 100% in every

experiment). The routing success rate of NADV is below 100%

and decreases with N because NADV’s recovery method from

local minima does not work well for general connectivity

graphs used in the experiments.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. , NO. , MON YEAR 12

100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

No. of nodes

A
v
e
.
n
o
.
o
f
n
o
d
e
s
 s

to
re

d
 p

e
r

n
o
d
e

GDV on VPoD(3D)

PSVC

GDV on VPoD(2D)

MDT on actual locations

NADV on actual locations

100 200 300 400 500 600 700 800 900 1000
0.9

0.92

0.94

0.96

0.98

1

No. of nodes

R
o
u
ti
n
g
 s

u
c
c
e
s
s
 r

a
te

GDV on VPoD/MDT/PSVC

NADV on actual locations

Fig. 18. (a) Storage cost and (b) routing success rate, versus N

0 5 10 15 20 25
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Adjustment period number

R
o

u
ti
n

g
 s

tr
e

tc
h

GDV on VPoD (2D)

GDV on VPoD (3D)

GDV on VPoD (4D)

0 5 10 15 20 25
0

100

200

300

Adjustment period number

A
v
e
.
n
o
.
o
f
m

s
g
s
 s

e
n
t
p
e
r

n
o
d
e

VPoD (3D)

VPoD (2D)

0 5 10 15 20 25
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Adjustment period number

R
o

u
ti
n

g
 s

tr
e

tc
h

GDV on VPoD (2D)

GDV on VPoD (3D)

GDV on VPoD (4D)

Fig. 19. Routing performance under churn: (a) routing stretch, (b) control message cost, (c) routing stretch under continuous churn.

K. Resilience to dynamic topology changes

GDV and VPoD are highly resilient to dynamic network

topology changes (churn) because they use MDT protocols

which are highly resilient. For the same 200-node network

used for the experiments in Figure 11, we introduced node

churn at the beginning of the 11th join period. At the same

time, 150 nodes (out of 200 nodes) failed and 150 new

nodes joined. Each failed node became silent. Each new node

chose its position in the virtual space to be the center of the

positions of its physical neighbors that have a position error

less than 1. Figure 19(a) shows the routing performance of

GDV using VPoD in 2D, 3D, and 4D. Note that the routing

stretch becomes worse immediately after churn. However, it

quickly converges to a low value after several adjustment

periods (just 2-3 periods for 3D). The routing stretch after

20 periods in total is as good as the performance shown in

Figure 11 for experiments with a static topology. We also

show the control message cost to maintain VPoD during the

churn in Figure 19(b). Similarly, the message cost increases

during churn and also quickly converges to the normal value.

In another set of experiments shown in Figure 19(c), churn

happens continuously from the 10th period to 20th period.

From 10th to 15th period the churn rate is 15 nodes per minute

and from 15th to 20th period the churn rate is 30 nodes per

minute. Results show that continuous churn has no significant

impact on the routing stretch of GDV.

These and similar results from other churn experiments

show that GDV and VPoD are very resilient to dynamic

topology changes.

VII. EVALUATION ON WIRELINE NETWORKS

GDV has minimal assumptions: a connected graph and

bidirectional links. Hence GDV can also be applied to wireline

networks for intra-domain or layer-2 routing. In this section

we evaluate the performance of GDV using real and synthetic

wireline network topologies. For wireline experiments, mes-

sage delivery times from one node to another are sampled

from a uniform distribution over the interval [50µs, 150µs].

We studied three router-level topologies of three ASes

collected by the Rocketfuel project [28]. We observed that

a real router-level topology usually contains some nodes that

have only one or two neighbors, e.g., edge routers. Maintaining

a multi-hop DT for a network including these nodes is very

inefficient. This is because most DT neighbors of these nodes

are multi-hop neighbors, incurring both high communication

and storage cost. Furthermore, these nodes do not have enough

physical neighbors for position adjustment. To address these

problems, we designed two optimization techniques, pruning

and two-hop neighbor support, to improve the performance of

GDV and VPoD on network topologies with many low-degree

nodes (any node with degree ≤ 3 in our experiments). When

a node discovers that it is a low-degree node, it initiates the

optimization techniques by sending protocol messages to its

physical neighbors.

These optimization techniques can also be used by low-

degree nodes in wireless networks. We ran our protocol suite

including these optimization techniques on wireless topologies

in Section VI. We observed no improvement in GDV and

VPoD performance, which is expected, because the number

of low-degree nodes in these wireless topologies is zero or

insignificant.

Pruning: A node with one physical neighbor does not need

to participate in the multi-hop DT, because it has only one

link to other nodes. Before starting VPoD, each of these nodes

sends a PRUNED message to its parent, i.e., its only physical

neighbor. The PRUNED message indicates that the sender

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. , NO. , MON YEAR 13

1 3 5 7 9 11 13 15
0

0.2

0.4

0.6

0.8

1

Dimension number

N
o
rm

a
liz

e
d
 s

in
g
u
la

r
v
a
lu

e AS1755

AS3967

AS6461

Fig. 20. Normalized singular values for Rocketfuel topologies

0 5 10 15 20 25
1

2

4

8

16

32

Adjustment period number

R
o
u
ti
n
g
 s

tr
e
tc

h

GDV on VPoD (2D)

GDV on VPoD (3D)

GDV on VPoD w/ prune & 2hop (2D)

GDV on VPoD w/ prune & 2hop (3D)

Fig. 21. Routing stretch on AS1755 topology

100 200 300 400 500 600 700 800 900 1000
1

1.2

1.4

1.6

1.8

No. of nodes

R
o
u
ti
n
g
 s

tr
e
tc

h

GDV on VPoD(2D)

GDV on VPoD(3D)

100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

No. of nodes
A

v
e
.
n
o
.
o
f
n
o
d
e
s
 s

to
re

d
 p

e
r

n
o
d
e

GDV on VPoD(3D)

GDV on VPoD(2D)

Num of physical neighbors

Fig. 22. (a) Routing stretch and (b) storage cost, versus N (Brite topologies)

declines to participate in the multi-hop DT, and will simply

use the parent’s position as its own position for receiving data

messages. When a node finds that there is only one physical

neighbor that is not pruned, it also sends a PRUNED message

to the physical neighbor. In this way, any tree sub-graph

attached to the remaining network topology will be pruned,

and only the root participates in the multi-hop DT. Every node

in the tree uses the root’s virtual position. A data message

whose destination is in the tree will be routed to the root and

then forwarded. The node-to-node connectivity is guaranteed

after pruning because nodes in the tree-like sub-graphs are

still reachable. Pruning scales to large networks because it is

performed in a local area.

Two-hop neighbor support: For nodes that do not have

enough physical neighbors (≤ 3 in the current design) to

perform position adjustment, they will select four random two-

hop neighbors and include them in their physical neighbor

sets. For each two-hop neighbor w stored by node u, the “link

cost” c(u,w) is assigned to be min
v∈Pu

⋂
Pw

c(u, v)+c(v, w). The

succ field in the corresponding tuple is the physical neighbor

that minimizes c(u, v) + c(v, w). A two-hop neighbor can

be considered the same as a physical neighbor in protocol

execution.

We show in Figure 20 the normalized singular values of

the routing cost matrices, after pruning, of AS1755, AS3967

and AS6461. The first two or three singular values are much

larger than the remaining ones for all three topologies. From

the results, VPoD in low dimensions (2D-4D) is good for

Rocketfuel topologies.

Figure 21 shows the GDV routing stretch on the AS1755

network in 2D and 3D, with and without pruning and two-hop

neighbor support. The original GDV on VPoD has relatively

high routing stretch. The converged routing stretch values are

about 2.5 and 1.8 for 2D and 3D, respectively. The reason

might be that some nodes with few physical neighbors are not

able to determine their proper positions. However, pruning and

two-hop neighbor support significantly improve the routing

stretch. After applying these schemes, the converged values

are 1.27 and 1.15 for 2D and 3D respectively. Experiments on

AS3967 and AS6461 topologies show similar results.

We then conduct experiments on synthetic router-level

topologies generated by the BRITE internet topology generator

[19] to evaluate the performance of GDV for networks with

different values of N . Each data point shown is the average

value of 10 simulation runs for 10 different networks. In

these experiments, VPoD stops after 15 adjustment periods.

Figure 22(a) shows routing stretch versus N , and Figure 22(b)

shows storage cost versus N . Similar to the results of GDV

on wireless topologies, the routing stretch and storage cost

remain low as N increases, for both 2D and 3D.

VIII. CONCLUSION

GDV is the first greedy routing protocol designed to opti-

mize end-to-end path costs using any additive routing metric,

such as, latency, ETX, and ETT which capture network and

link characteristics. GDV provides guaranteed delivery and

much better routing performance than existing geographic

routing protocols which use accurate location information.

As a greedy routing protocol, GDV’s storage cost per node

remains low as network size increases.

GDV uses virtual positions of nodes provided by a new

virtual positioning protocol, VPoD, which assumes that each

node can measure its routing costs to directly-connected

neighbors only. GDV and VPoD are designed for both wireline

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. , NO. , MON YEAR 14

and wireless layer-2 networks without location information.

Therefore, no localization protocol is needed. Unlike prior

virtual positioning systems designed for hosts with Internet

routing support (e.g., Vivaldi and GNP), VPoD does not re-

quire routing cost measurements to distant nodes or landmarks.

VPoD is also communication efficient because it does not

use flooding. GDV and VPoD are highly resilient to network

topology changes.

REFERENCES

[1] H. Abu-Libdeh, P. Costa, A. Rowstron, G. O’Shea, and A. Donnelly.
Symbiotic routing in future data centers. In Proc. of ACM SIGCOMM,
2010.

[2] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with
Guaranteed Delivery in Ad Hoc Wireless Networks. In Proc. of the

International Workshop on Discrete Algorithms and Methods for Mobile

Computing and Communications (DIALM), 1999.
[3] A. Caruso, S. Chessa, S. De, and R. Urpi. GPS Free Coordinate

Assignment and Routing in Wireless Sensor Networks. In Proceedings

of IEEE INFOCOM, pages 150–160, 2005.
[4] D. S. J. D. Couto, D. Aguayo, J. Bicket, and R. Morris. A High-

Throughput Path Metric for Multi-Hop Wireless Routing. In Proceedings

of ACM MobiCom, 2003.
[5] W. Cui and C. Qian. Difs: Distributed flow scheduling for adaptive

routing in hierarchical data center networks. In Proc. of ACM/IEEE

ANCS, 2014.
[6] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A Decentralized

Network Coordinate System. In Proceedings ACM SIGCOMM, 2004.
[7] R. Draves, J. Padhye, and B. Zill. Routing in Multi-radio, Multi-hop

Wireless Mesh Networks. In Proceedings of ACM Mobicom, 2004.
[8] R. Fonseca, S. Ratnasamy, J. Zhao, C. T. Ee, D. Culler, S. Shenker, and

I. Stoica. Beacon-Vector Routing: Scalable Point-to-Point Routing in
Wireless Sensor Networks. In Proc. of NSDI, 2005.

[9] S. Fortune. Voronoi diagrams and Delaunay triangulations. In J. E.
Goodman and J. O’Rourke, editors, Handbook of Discrete and Compu-
tational Geometry. CRC Press, second edition, 2004.

[10] B. Karp and H. Kung. Greedy Perimeter Stateless Routing for Wireless
Networks. In Proceedings of ACM Mobicom, 2000.

[11] Y.-J. Kim, R. Govindan, B. Karp, and S. Shenker. Geographic Routing
Made Practical. In Proceedings of USENIX NSDI, 2005.

[12] S. S. Lam and C. Qian. Geographic Routing in d-dimensional Spaces
with Guaranteed Delivery and Low Stretch. In Proceedings of ACM

SIGMETRICS, June 2011; extended version in IEEE/ACM Transactions

on Networking, Vol. 21, No. 2, April 2013.
[13] D.-Y. Lee and S. S. Lam. Protocol design for dynamic Delaunay

triangulation. Technical Report TR-06-48, The Univ. of Texas at Austin,
Dept. of Computer Science, December 2006 (an abbreviated version in
Proceedings IEEE ICDCS, June 2007).

[14] S. Lee, B. Bhattacharjee, and S. Banerjee. Efficient Geographic Routing
in Multihop Wireless Networks. In Proceedings of ACM MobiHoc, 2005.

[15] B. Leong, B. Liskov, and R. Morris. Geographic Routing without
Planarization. In Proceedings of USENIX NSDI, 2006.

[16] B. Leong, B. Liskov, and R. Morris. Greedy Virtual Coordinates for
Geographic Routing. In Proceedings of IEEE ICNP, 2007.

[17] Y. Liu et al. Does Wireless Sensor Network Scale? A Measurement
Study on GreenOrbs. In Proceedings of IEEE Infocom, 2011.

[18] Y. Liu, L. M. Ni, and M. Li. A Geography-free Routing Protocol for
Wireless Sensor Networks. In Proceedings of HPSR, 2005.

[19] A. Medina, A. Lakhina, I. Matta, , and J. Byers. BRITE: An Approach to
Universal Topology Generation. In International Workshop on Modeling,

Analysis and Simulation of Computer and Telecom Systems, 2001.
[20] T. S. E. Ng and H. Zhang. Predicting Internet network distance with

coordinates-based approaches. In Proceedings of INFOCOM, 2002.
[21] C. Qian and S. S. Lam. A Scalable and Resilient Layer-2 Network

with Ethernet Compatibility. Accepted for publication by IEEE /ACM
Transactions on Networking.

[22] C. Qian and S. S. Lam. Greedy distance vector routing. In Proc. of

IEEE ICDCS, 2011.
[23] C. Qian and S. S. Lam. ROME: Routing On Metropolitan-scale Ethernet.

In Proceedings of IEEE ICNP, 2012.
[24] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and I. Stoica.

Geographic Routing without Location Information. In Proceedings of

ACM Mobicom, 2003.

[25] R. Sarkar, X. Yin, J. Gao, F. Luo, and X. Gu. Greedy routing with
guaranteed delivery using ricci flows. In Proceedings of IPSN, 2009.

[26] K. Seada, M. Zuniga, A. Helmy, and B. Krishnamachari. Energy-
efficient forwarding strategies for geographic routing in lossy wireless
sensor networks. In Proceedings of ACM SenSys, 2004.

[27] J.-Y. Shin, B. Wong, and E. G. Sirer. Small-world datacenters. In Proc.

of ACM SOCC, 2011.
[28] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP Topologies

with Rocketfuel. In Proceedings of ACM SIGCOMM, 2002.
[29] M.-J. Tsai, H.-Y. Yang, B.-H. Liu, and W.-Q. Huang. Virtual-Coordinate-

Based Delivery-Guaranteed Routing Protocol in Wireless Sensor Net-
works. IEEE/ACM TRANSACTIONS ON NETWORKING, 17, 2009.

[30] D. Tschopp, S. Diggavi, M. Grossglauser, and J. Widmer. Robust geo-
routing on embeddings of dynamic wireless networks. In Proceedings

of IEEE INFOCOM, 2007.
[31] D. Xu, M. Chiang, and J. Rexford. Link-state routing with hop-by-

hop forwarding can achieve optimal traffic engineering. IEEE/ACM

Transactions on Networking, 2011.
[32] Y. Yu and C. Qian. Space shuffle: A scalable, flexible, and high-

bandwidth data center network. In Proc. of IEEE ICNP, 2014.
[33] Y. Zhao, Y. Chen, B. Li, and Q. Zhang. Hop ID: A Virtual Coordinate

based Routing for Sparse Mobile Ad Hoc Networks. IEEE Transaction
on Mobile Computing, 2007.

[34] J. Zhou, Y. Chen, B. Leong, and B. Feng. Practical Virtual Coordinates
for Large Wireless Sensor Networks. In Proceedings of IEEE ICNP,
2010.

Chen Qian (M’08) is an Assistant Professor at
the Department of Computer Science, University of
Kentucky. He received the B.Sc. degree from Nan-
jing University in 2006, the M.Phil. degree from the
Hong Kong University of Science and Technology
in 2008, and the Ph.D. degree from the University
of Texas at Austin in 2013, all in Computer Sci-
ence. His research interests include network protocol
design, software defined networking, network func-
tions virtualization, data-center networks, mobile
computing, and security. He has published more than

30 research papers in a number of conferences and journals including ACM

SIGMETRICS, IEEE ICNP, IEEE ICDCS, IEEE INFOCOM, IEEE PerCom,
IEEE/ACM Transactions on Networking, and IEEE Transactions on Parallel

and Distributed Systems. He is a member of IEEE and ACM.

Simon S. Lam (F’85) received the B.S.E.E. degree
with Distinction from Washington State University,
Pullman, in 1969, and the M.S. and Ph.D. degrees in
engineering from the University of California, Los
Angeles, in 1970 and 1974, respectively. From 1971
to 1974, he was a Postgraduate Research Engineer
with the ARPA Network Measurement Center at
UCLA, where he worked on satellite and radio
packet switching networks. From 1974 to 1977, he
was a Research Staff Member with the IBM T. J.
Watson Research Center, Yorktown Heights, NY.

Since 1977, he has been on the faculty of the University of Texas at Austin,
where he is Professor and Regents Chair in computer science, and served as
Department Chair from 1992 to 1994.

He served as Editor-in-Chief of IEEE/ACM Transactions on Network-

ing from 1995 to 1999. He served on the editorial boards of IEEE/ACM

Transactions on Networking, IEEE Transactions on Software Engineering,
IEEE Transactions on Communications, Proceedings of the IEEE, Computer

Networks, and Performance Evaluation. He co-founded the ACM SIGCOMM
conference in 1983 and the IEEE International Conference on Network
Protocols in 1993.

Professor Lam is a Member of the National Academy of Engineering and a
Fellow of ACM. He received the 2004 ACM SIGCOMM Award for lifetime
contribution to the field of communication networks, the 2004 ACM Software
System Award for inventing secure sockets and prototyping the first secure
sockets layer (named Secure Network Programming), the 2004 W. Wallace
McDowell Award from the IEEE Computer Society, as well as the 1975
Leonard G. Abraham Prize and the 2001 William R. Bennett Prize from the
IEEE Communications Society.

	Introduction
	Related Work
	Background
	Network distance embedding
	MDT routing support for VPoD

	Virtual Position Construction
	Main ideas of VPoD
	MDT extensions to support VPoD
	Adjustment algorithm
	Adaptive adjustment interval

	GDV Routing
	Evaluation on Wireless Networks
	Methodology
	GreenOrbs results
	Adaptive adjustment interval
	Choice of Dimensionality
	Impact of tuning parameter
	Impact of obstacles
	Routing performance for sparse networks
	Comparison with Vivaldi and PSVC
	Storage and communication costs
	Varying the number of nodes
	Resilience to dynamic topology changes

	Evaluation on Wireline Networks
	Conclusion
	References
	Biographies
	Chen Qian
	Simon S. Lam

