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Abstract—Edge computing is a new paradigm in which the
computing and storage resources are placed at the edge of
the Internet. Data placement and retrieval are fundamental
services of edge computing when a network of edge servers
collaboratively provide data storage. These services require short-
latency and low-overhead implementation in network devices and
load balance on edge servers. However existing methods such as
distributed hash tables (DHTs) are not able to achieve efficient
data placement and retrieval services in the edge computing
environment. This paper presents GRED, an efficient data
placement and retrieval service for edge computing, which is
efficient in not only the load balance but also routing path lengths
and forwarding table sizes. GRED utilizes the software defined
networking paradigm to support a virtual-space based DHT with
only one overlay hop. We implement GRED in a P4 prototype.
Experimental results show that GRED uses <30% routing path
lengths and achieves better load balance among edge servers
compared to using Chord, a well-known DHT solution.

I. INTRODUCTION

A recent trend is to offload computing and storage to
the network edges so as to enable computation-intensive
and latency-critical applications. This technology, called Edge
Computing, has been proposed to shift computing and storage
capacities from the remote Cloud to the network edge in
close proximity to mobile devices, sensors, and end users [1].
Edge computing promises the dramatic reduction in network
latency and traffic volume, tackling the key challenges for
materializing 5G vision. Meanwhile, the edge of the Internet
is also an optimal site for aggregating, analyzing and distilling
bandwidth-hungry sensor data from devices such as video
cameras and the appropriate platform for critical IoT services
and applications [2]. Terms such as ‘cloudlets’, ‘micro data
centers’, and ‘fog computing’ have been used in the literature
to refer to similar edge-located services [3] [4].

Edge nodes can perform computing offloading, data storage,
caching and processing for edge users, where edge nodes
consist of one or multiple edge servers. Unlike cloud data-
centers, edge nodes are usually geographically distributed and
have heterogeneous computation and storage capacities [1].
Always offloading the data and computation of a user at the
closest edge node may not be a valid solution because 1) the
user may be mobile and 2) one edge node may have limited
resource. Hence we consider a large number of edge nodes in
an interconnected edge network that collaboratively serve the
resource pool of storage and computation offloading for users.

A core operation in edge computing is to support the
efficient data placement and retrieval when multiple edge
nodes work together. In this work, we define ”data placement”
as the process of delivering a given data item to an edge node
for storage and ”data retrieval” as the process of finding the
storage node of a given data item and requesting the node to
deliver the data to a user. Hence they are essentially overlay
services with network-layer implementation.

However, the data placement and retrieval services in edge
computing face at least two challenges. First, these services
should have short-latency and low-overhead implementation
on the user side and network routers/switches. For example,
it is impractical to maintain a complete index of all data-to-
location mappings at an edge device or inside a router. Second,
achieving load balance among edge nodes is very important,
which requires that no server should be overloaded when there
is the available resource on other servers. The limited and
heterogeneous computation and storage capacities of different
edge nodes further complicate the problem.

To solve these problems, we propose short-latency and
low-overhead data placement and retrieval services for edge
computing, called Greedy Routing for Edge Data (GRED).
GRED include two innovative ideas. First, GRED supports a
DHT of edge nodes with only one overlay hop. Second, GRED
utilizes the Software Defined Networking (SDN) paradigm [5]
to implement efficient routing support of the one-hop DHT
on programmable switches1. In particular, the SDN controller
maintains a virtual space. Switches and data items are mapped
to different positions in the space according to their IDs. The
data will be stored in an edge server connected to the switch
whose position is nearest to the data position in the virtual
space.

GRED is efficient in terms of both routing path lengths
and forwarding table sizes. Each data placement/retrieval
request in GRED only needs one overlay hop. In detail, in the
control plane of GRED, we design a virtual space construction
algorithm to assign the switches to the points in the virtual
space, such that the Euclidean distance between two switches
is proportional to their network distance. It has been shown
that under this circumstance, the routing stretch of the network
can be optimized [6]. Furthermore, to achieve the load balance

1Hereafter we use “switches” to denote network forwarding devices for the
compatibility to the SDN conetxt, although they can be routers.



among edge nodes, we further optimize the switches’ positions
considering that the data is stored in the network based on their
postions in the virtual space.

Meanwhile, to minimize the forwarding table size, the data
plane of GRED does not need a new flow entry for every
placement/retrieval request. Instead, the data plane performs
greedy forwarding based on the next-hop switch’s position
determined by greedy forwarding, which is implemented in P4
[7], a programmable data plane development tool. Hence the
forwarding table size is independent of the network size and
the number of flows in the network. We conducted extensive
experiments, using both P4 implementation and simulations,
to evaluate the performance of GRED. Theoretical analysis
shows the correctness and efficiency of GRED. Experimental
results show that GRED uses <30% routing cost and achieves
better load balance among edge nodes compared to using
Chord [8], a well-known DHT.

The rest of this paper is organized as follows. In section
II, we introduce the background and motivation of this paper.
Section III presents the system overview. In Section IV, we
describe the virtual position construction in the control plane,
which is the base of GRED. Section V details the mechanism
of GRED placement and retrieval. We discuss the network
dynamic and the data copies in the network in Section VI.
In Section VII we evaluate the performance of GRED. We
introduce the related work in Section VIII and conclude this
paper in Section IX.

II. BACKGROUND AND MOTIVATION

A. Motivation

This work focuses on the core function in edge computing:
data placement and retrieval, which provide efficient support
for a large number of upper-layer applications. First, these
services should have the efficient implementation on the user
side and network routers/switches. The efficiency discussed in
this work aims at both network efficiency such as short routing
path lengths that imply short latency and low bandwidth
cost, and forwarding efficiency such as small table size that
achieves low infrastructure cost. The second challenge is the
load balance when a large amount of data are stored in
those edge servers. Load balance requires that no edge server
should be overloaded when there is the available resource on
other servers. The limited and heterogeneous computation and
storage capacities of different edge nodes further complicate
the problem.

To enable the data placement and retrieval services, we
recall that there has been some related work in peer-to-peer
(P2P) networks. However, existing approaches in P2P can not
meet the low-latency routing requirement in edge computing.
In those systems, a data object is associated with a key and
each node in the system is responsible for storing a certain
range of keys. For example, Chord [8] is a widely used DHT
solution for the data storage and lookup in P2P networks. As
shown in Fig. 1, an edge network consists of 12 edge nodes
where each edge node has a unique identifier. The data with the
key 12 is stored in node 15 based on the storage principle in
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Fig. 1. Finger tables and key locations in DHT-based storage system.

Chord [8]. When a user accessing node 24 needs to retrieve the
data with the key 12 located in the interval [8, 24), the lookup
request is first sent to node 11 based on the finger table of node
24. Note that the finger table indicates the successor node to
find a data. Then, node 11 will continue to forward the lookup
request to node 15 based on its finger table. In this case, the
path length of the lookup request is 11, which is significantly
longer than the shortest path between node 24 and node 15
with only 5 physical hops.

In the DHT-based storage systems, the overlay routing takes
up to O(log n) overlay hops for n nodes and each overlay hop
may include multiple network-layer hops. The main reason is
the mismatch between the overlay network and the physical
network. That is, the path length for locating a data item
is heavily longer than the shortest path. Furthermore, such
mismatch causes a high routing stretch, which results in the
long response delay. In addition, the load balance in Chord
[8] is not perfect. Although Chord can achieve a better load
balance by adding more virtual nodes to each real node, it
also increases the routing table space usage and makes the
system more complicated. Therefore, in this paper, we look
for a better design with low routing stretch and better load
balance for data placement and retrieval in edge computing.

B. Guaranteed delivery on a DT Graph

In our design, each switch does a greedy forwarding. To
achieve the guaranteed delivery, a virtual Delaunay Triangu-
lation (DT) graph is maintained in the control plane of the
netowrk. Note that greedy routing on an arbitrary graph is
prone to the risk of being trapped at a local optimum, i.e.,
routing stops at a non-destination node that is closer to the
destination than any of its neighbors. However, on a DT, it
is guaranteed that greedy routing always succeeds to find the
node closest to destination p. For a given set P of discrete
points (called nodes) in a plane is a triangulation DT (P ) such
that no point in P is inside the circumcircle of any triangle
in DT (P ). If two nodes share a DT edge, they are called
DT neighbors. One important property of DT is that greedy
routing to a destination location p on a DT graph always stops
at a node that is closest to p among all nodes [9].

Note the main difficulty of maintaining a DT graph in a
network of edge nodes is that two DT neighbors may not
be connected by a physical link. Hence they cannot directly
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(a) A physical connectivity graph.
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(b) A multi-hop DT graph.

Fig. 2. An illustration of a physical network and the multi-hop DT

forward messages between them. For an arbitrary layer-2
network, the MDT [10] protocol was designed for nodes to
construct a distributed multi-hop DT graph. As shown in Fig.
2(b), there is a DT graph of 10 nodes in a 2D Euclidean space,
and the physical connectivity of those 10 nodes is shown
in Fig. 2(a). In Fig. 2(b), Nodes 5 and 1 are both physical
neighbors and DT neighbors. However, DT neighbors, nodes
1 and 2, are not connected directly. Hence in a multi-hop DT
graph, node 1 transfers packets to node 2 by the multi-hop path
{1, 5, 2} in Fig. 2(a). Therefore, node 2 is called the multi-
hop DT neighbor of node 1. For a set of nodes that maintain
a correct multi-hop DT, given a destination p, it is proved that
MDT-greedy forwarding always succeeds to find a node that
is closest to p, for nodes located in a Euclidean space (2D,
3D, or a higher dimension) [10].

III. SYSTEM OVERVIEW

The GRED protocol specifies how to place a data item and
to retrieve it from the edge servers given a data identifier.
We design the GRED protocol while utilizing the advantage
of software-defined networking [5], which centralizes the
network intelligence in the network controller. The switches in
the data plane only forward packets according to the installed
rules derived from the controller. When we apply the principle
of SDN to the edge computing, the network is called a
Software-Defined Edge Network (SDEN). As shown in Fig.
3, we define the general hierarchical architecture of an SDEN,
which consists of the control plane, the switch plane, the edge
plane and the user plane. The user plane includes the mobile
users and various edge devices, such as autonomous vehicles
and IoT devices. In SDEN, the users access the network by
wireless Access Points (APs). Those APs and edge servers are
connected to network switches and constitute the edge plane.
The switches provide data communication services among
edge servers based on the forwarding entries derived from the
controller in the control plane.

The GRED protocol mainly consists of the functions in the
control plane and the switch plane.

Control plane associates each switch to a point in the
virtual space and computes a DT graph of all points. It then
inserts related forwarding entries into switches based on their
DT neighbors in the virtual space. It is worth noting that
the control plane proactively distributes forwarding rules to
switches to perform greedy forwarding based on the destina-
tion position rather than per-flow information. The mechanism
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Fig. 3. General architecture of software-defined edge network.

can efficiently reduce the load of the control plane and the size
of forwarding tables, because the switches can forward data
requests based on the pre-installed rules without the interaction
of the control plane.

Switch plane consists of switches and transfer links. The
switch greedily forwards a data request to the correct server
based on the installed rules. More precisely, the switch first
achieves the data position in the virtual space by hashing the
data identifier. Then the switch finds a DT neighbor that is
closest to the data position and forwards the packet to it, by
either a direct link or a multi-hop path.

When placing a data item to an edge server, the hash value
H(d) of the data identifier d is firstly calculated. In this paper,
we adopt the hash function, SHA-256 [11], which outputs
a 32-byte binary value. Furthermore, the hash value H(d)
is reduced to the scope of the 2D virtual space, which is
constructed by the control plane. We only use the last 8 bytes
of H(d) and convert them to two 4-byte binary numbers, x
and y. We limit that the coordinate value ranges from 0 to
1 in each dimension. Then, the position of a data in 2D is
( x
232−1 ,

y
232−1 ). The position can be stored in decimal format,

using 4 bytes per dimension. Hereafter, for any data identifier,
d, we use H(d) to represent its position. Last, the data is
greedily forwarded to the switch whose position is the nearest
to the data position in the virtual space, and further, the switch
determines a unique edge server to store the data.

The GRED protocol greedily forwards the data request
based on the data position and the switches’ positions in the
virtual space. Determining the positions of switches is the key
to achieve the advantages of GRED. It is because bad virtual
positions will result in long routing path and bad load balance
among edge servers. Therefore, we first detail the procedure
of the virtual position construction in the next section.

IV. VIRTUAL POSITION CONSTRUCTION

The control plane of GRED first determines the positions of
all switches in a virtual 2D Euclidean space, then constructs a
multi-hop DT based on those virtual positions. After that, the
control plane inserts the forwarding entries into the switches.
Then, switches performs greedy forwarding based on those
forwarding entries.



(a) A generic voronoi diagram. (b) A centroidal voronoi diagram.

Fig. 4. The voronoi tessellation of 10 points.

A. Calculating the positions of switches

To ensure the low routing stretch of greedy routing, it
is required that the Euclidean distance of two switches in
the virtual space is proportional to their network distance,
which is called greedy network embedding [6]. Note that the
network topology and state can be obtained in the control
plane by collecting switch, port, link, and host information
[5][12]. Then, the control plane can compute the shortest
path matrix between switches. However, the key challenge is
how to achieve the coordinate matrix of n points where the
shortest path lengths between n switches can be indirectly
reflected by the distances between points in the virtual space.
In other words, we need to solve the problem of finding
a point configuration that represents a given scalar-product
matrix [13].

To achieve this goal, the M-position algorithm is designed
to calculate the switches’ positions in the virtual space. The
shortest path matrix L=[lij ], where lij is the length of the
shortest path between the ith and jth switches, is first cal-
culated. The M-position algorithm utilizes the fact that the
coordinate matrix can be derived by eigenvalue decomposition
from B=QQ′ where the matrix B can be computed from the
distance matrix L. Then, the matrix Q can be uniquely deter-
mined by the matrix B. Therefore, the M-position algorithm
first constructs the scalar product matrix B by multiplying the
squared ditance matrix L(2) with the matrix J=I− 1

nA. That
is B=− 1

2JL
(2)J , where n is the number of switches, and A is

the squared matrix with all elements are 1. This procedure is
called double centering [14]. Then, the m largest eigenvalues
λ1, λ2, ..., λm and corresponding eigenvectors e1, e2, ..., em
of the matrix B is determined, where m is the number of
dimensions. Last, the coordinates of the switches Q=EmΛ

1/2
m

are achieved, where Em is the matrix of m eigenvectors and
Λm is the diagonal matrix of m eigenvalues of the matrix B,
respectively. After that, each switch will be assigned a point
in the virtual space from the coordinate matrix Q.

B. Refining the positions of switches

One potential problem is that the M-position algorithm
determines the positions of switches without considering the
load balance among edge nodes. Fig. 4(a) shows a Voronoi
Diagram [15] of 10 crosses where each cross is associated
with a Voronoi cell. In each cell, the distance from a point

Algorithm 1 Refine the coordinates of switches in the virtual
space while achieving the load balance.
Require: The coordinates of the switches Q achieved in Section

IV-A.
Ensure: The updated coordinates of the switches Q∗.

1: Set Q∗←Q; set ji=1 for i=1, . . . , n where qi∈Q;
2: Obtain a random sample W of 1000 points from the virtual

space Ω that is constructed by the control plane with uniform
probability;

3: For each point w∈W , find the qi that is closest to w; denote the
index of that qi by i∗;

4: Set qi∗← ji∗qi∗+w

ji∗+1
and ji∗←ji∗+1; this new qi∗ , along with

the unchanged qi, i̸=i∗, form the new set of points Q∗. Note
that ji−1 equals the number of times that the point qi has been
updated.

5: If this new set of points meets some convergence criterion,
terminate; otherwise, go back to step 2.

to the corresponding cross in the same region is not greater
than its distance to the other crosses in the diagram. Recall
that a data item is stored at an edge server connected to the
switch whose position is nearest to the data position in the
virtual space. Assume that the switches are located in those
crosses in Fig. 4(a). Then, when data items are mapped into
the whole space evenly, it is obvious that there would be load
imbalance among those switches because these Voronoi cells
have different sizes. To achieve the load balance among those
switches, it is necessary to further refine the coordinates of
switches so that each Voronoi cell has the equal size.

In Fig. 4(a) the crosses are the Voronoi sites and the
circles are the centroids of the corresponding Voronoi regions.
Note that the sites and the centroids do not coincide in Fig.
4(a). However, Fig. 4(b) shows a 10-point Centroidal Voronoi
Tesselation (CVT) [16], which can be viewed as an optimal
partition corresponding to an optimal distribution of sites.
That is, the crosses are the sites for the Voronoi tessellation
and the centroids of the Voronoi regions. Further, we hope
that the coordinates of switches are also the centroids of the
corresponding Voronoi regions. After that, we can achieve the
proper load balance when those data items are mapped into
the virtual space evenly.

Inspired by the CVT, we design the C-regulation method,
as shown in Algorithm 1, to further refine the positions of
switches obtained by the M-position algorithm in Section
IV-A. Given the number of sites n, a CVT is a minimizer
(or a local minimizer) of the CVT energy, defined to be the
square of the distance between each point in the region and its
nearest site. Let Ω be a metric space with distance function ϕ.
Assume that there are n sites, and (qk)1≤k≤n be a site in the
space Ω. If ϕ(r, P )=inf{ϕ(r, p)|p∈P} denotes the distance
between the point r and the subset P , then we define a region
Rk associated with the site qk as follows.

Rk={r∈Ω|ϕ(r, qk)≤ϕ(r, qj), j = 1, . . . , n, j ̸=k} (1)

That is, the region Rk is the set of all points in Ω whose
distance to qk is not greater than their distance to the other sites
qj , where j is any index different from k. Accordingly, these



regions are called Voronoi cells, and the diagram is a general
Voronoi diagram. Furthermore, given a density function ρ(·)
defined on Ω, the formulation of the CVT energy is as follows:

F ((qi, Ri), i=1, . . . , n)=
n∑

i=1

∫
r∈Ri

ρ(r)|r − qi|2dr (2)

The C-regulation algorithm is a sampling technique, which
supplies a discrete estimate of this CVT energy. Each time
this C-regualtion iteration is carried out, an attempt is made
to modify the coordinates of switches in such a way that they
are closer and closer to being the centroids of the Voronoi
cells they generate. The iteration will terminate when the
CVT energy is lower than a given threshold. We set that
the number of sample points is 1000 in each iteration, and
that can be more. Note that the C-regulation method could
require fewer iterations when more points are sampled in
each iteration. However, more sample points would incur more
computing time in each iteration. In addition, the number of
iterations can also be set as the termination condition. During
a iteration of the C-regulation method, it should generally be
the case that the CVT energy decreases from step to step.
Furthermore, the impact of the number of iterations on the load
balance is evaluated in Section VII-E3. When the C-regulation
method terminates, we can achieve the updated coordinates
of switches, which are indicated by the set of points Q∗ in
Algorithm 1.

C. Multi-hop DT construction

To achieve the guaranteed delivery, the control plane con-
structs a multi-hop DT in the virtual space. As shown in Fig.
2(b), that is a multi-hop DT graph of 10 points. Furthermore,
greedy routing in a multi-hop DT provides the property
of guaranteed delivery [10], which is based on a rigorous
theoretical foundation. For a given set of nodes in a 2D space,
a triangulation is to construct edges between pairs of nodes
such that the edges form a non-overlapping set of triangles that
cover the convex hull of the nodes. A DT in a 2D space is
usually defined as a triangulation such that the circumcircle of
each triangle does not include any node other than the vertexes
of the triangle.

After obtaining the switches’ positions in a set of points Q∗,
a randomized incremental algorithm is designed to construct
the DT DT (Q∗) in the 2D virtual space [17]. We first add an
appropriate triangle boundingbox to contain P . The points in
P are inserted in random order, and a DT corresponding to
the current point set is maintained and updated throughout the
whole process. Last, we remove the boundingbox and relative
triangles which cotains any vertex of the boudingbox triangle.
Meanwhile, it is necessary to ensure that the union of all
simplices in the triangulation is the convex hull of those points.
Furthermore, greedy routing on a DT graph can achieve the
guaranteed delivery [9]. That is, given a destination location
p, the data packets always stop at a node that is closest to p
among all nodes.

Considering the case of inserting vi, DT (v1, v2, . . . , vi−1)
formed by inserting all previous points v1, v2, . . . , vi−1 is al-

ready a DT. The change caused by inserting vi is adjusted and
DT (v1, v2, . . . , vi−1) ∪ vi is made a new DT (v1, v2, . . . , vi).
The adjustment process is as follows. First, we determine
which triangle (or edge) vi falls on, and then connect vi with
the three vertices of the triangle to form three triangles (or
connect the vertices of two triangles of the common edge to
form four triangles). Since the newly generated edges and
the original edges may not be Delaunay edges, a flipping
[18] is conducted to make them all Delaunay edges to get
DT (v1, v2, . . . , vi). Take DT (A,B,C,D) for example, we
change the common edge <B,D> to the common edge
<A,C> to produce two triangles that do meet the Delau-
nay condition when two original triangles do not meet the
Delaunay condition [18]. This operation is called a flipping.

However, a key challenge is to ensure that each switch
can transfer data packets to its DT neighbors note that a
DT neighbor of a switch may not be the physical neighbor
of the switch. Therefore, to achieve the guaranteed delivery,
each switch maintains two kinds of flow entries in the GRED
protocol, one makes it can forward requests to its physical
neighbors, and another makes it forward requests to its multi-
hop DT neighbors. Note that the switches that are not directly
connected to some edge servers will not participate in the
construction of the DT. Those switches are just used as
the intermediate nodes to transfer data to the multi-hop DT
neighbors. For a node u, each entry in its forwarding table Fu

is a 4-tuple as follows.
<sour, pred, succ, dest>,

which is a sequence of nodes with sour and dest being the
source and destination nodes of a path, and pred and succ
being node u’s predecessor and successor nodes in the path.
Fu is used to forward packets to multi-hop DT neighbors. For
a specific tuple t, we use t.sour, t.pred, t.succ, and t.dest to
denote the corresponding nodes in the tuple t. Although greedy
routing does not always find a shortest route, the quality of
the greedy route is often very good. The length of an optimal
route between a pair of nodes on a DT is within a constant
time of the direct distance [19].

V. DATA PLACEMENT AND RETRIEVAL USING GRED

In this section, we detail how the GRED is designed to
support data placement and retrieval services.

A. Placing data in the edge network

In GRED, the switches are associated with their coordinates
in the virtual space, which is maintained by the control plane.
A switch knows its own coordinates, its physical neighbors’
coordinates, and the coordinates of its DT neighbors. The
Euclidean distance between any two switches can be calculated
from their coordinates where the network-wide distance has
been embedded in Section IV-A. The key idea of GRED
forwarding at a switch, say u, is conceptually simple: For a
data with ID d. The place to store the data is position H(d),
which will be converted to the coordinate in the virtual space,
as shown in Section III. u forwards the packet to the DT-
neighbor switch closest to H(d). If the neighbor is a physical



Algorithm 2 GRED(u, d) forwarding at switch u.
1: For each physical neighbor v, Rv←ED(v, d), Euclidean dis-

tance between v and d;
2: For each DT neighbor ṽ, Rṽ←ED(ṽ, d);
3: Let v∗ be the neighbor where Rv∗=min{Rv, Rṽ};
4: if Rv∗<ED(u, d) then
5: Send the packet to v∗ directly or by the multi-hop path;
6: else
7: Switch u is closest to d, and determines a unique edge server

to place the data;
8: end if

neighbor, the packet is directly forwarded; else, the packet is
forwarded via a virtual link, to a DT neighbor closest to H(d).
If there is no neighbor of u closer to H(d) than u itself, it is
proved that u is the switch closest to H(d) [19]. When the data
arrives at the switch closest to H(d), the switch determines a
unique edge server to place the data. The detailed algorithm
is presented in Algorithm 2.

Transfer in a virtual link. Consider a switch u that has
received a data d to forward. Switch u stores it with the
format: d=<d.dest, d.sour, d.relay, d.data> in a local data
structure. When d.relay ̸=null, data d is traversing a virtual
link. Note that d.dest is the end switch of the virtual link,
d.sour is the source switch, d.relay is the relay switch, and
d.data is the payload of the data. When switch u receives a
packet that is being forwarded in a virtual link, the packet
is processed as follows. When u=d.dest, switch u is the
endpoint of the virtual link, and continues to forward the
data based on Algorithm 2. When u=d.relay, switch u first
finds tuple t from the forwarding table Fu with t.dest=d.dest
where Fu is defined in Section IV-C. Then, switch u revises
d.relay=t.succ based on the matched tuple t. The last step
in switch u is to transmit the data to d.relay. Based on this
setting, messages can be forwarded to a DT neighbor of a
switch. However, it is worth noting that a global minimum
may not be unique, for those data mapped to a Voronoi edge
in Fig. 4(b). The tie can be broken by ranking the x coordinate,
then y coordinate.

B. Determining the placement server

Based on the above analysis, GRED can ensure that a data
item can be forwarded to a unique switch, whose position is
closest to the position of the data. Furthermore, the switch

TABLE I
THE FLOW ENTRY IN SWITCH 1 BEFORE UPDATING.

Match Action
1 d.dest=h3.address Output: port p3

TABLE II
THE FLOW ENTRY IN SWITCH 1 AFTER UPDATING.

Match Action
1 d.dest=h3.address Set: d.dest=h6.address;

Output: port p5

h1

p5
p3p1 p1 p2

p4
p3

h3 h4 h5 h6

switch 1 switch 2 

p2
p4 p5

h2

Fig. 5. Data item that should be placed in server h3 is placed in server h6
when server h3 would be overloaded.

determines a unique server to place the data. Assume that
switch u is closest to the data position in the virtual space,
and switch u is directly interconnected with s edge servers.
In GRED protocol, switch u maintains a serial number for
each edge server from 0 to s−1. Then, switch u transmits the
data with the identifier d to the server whose serial number is
[H(d) mod s] where we still use a uniform hash function [11].
Furthermore, the method to determine the server can efficient
balance the load among those edge servers since the hash
function can map the expected inputs as evenly as possible
over its output range.

The range extension. Consider that edge servers could be
heterogeneous. Some edge servers with low storage capacity
would be overloaded when switches connect to different
numbers of edge servers with heterogeneous capacity. To solve
this problem, We further extend the management range of the
switches. The management range of a switch is determined
by the edge servers that the switch can place data. In prior
discussion, the management range is one-hop. That is, the data
whose position is closest to a switch position would be placed
in the edge server directly connected to the corresponding
switch. Furthermore, GRED allows that a switch can manage
servers with more than one hop. When the upper layer
application finds that an edge server would be overloaded, the
corresponding switch sends an extending request to the control
plane, which can be achieved in the context of SDN [5].
Accordingly, the control plane assigns the edge server with the
most remaining capacity from the physical neighbor switches
to take over the corresponding storage load. To enable this, the
control plane needs to update the corresponding forwarding
entries into the related switches.

As shown in Fig. 5, when the server h3 that connected to
switch 1 would be overloaded, the switch 1 sends an extending
request to the control plane. Then, the control plane assigns
server h6 to take over the load of server h3 where the edge
server h6 is connected to switch 2. Before that, for switch 1,
the data that should be placed in server h3 would be forwarded
to port p3 based on the flow entry in Table I. However, the data
is forwarded to port p5 after that the control plane replaces
the forwarding entry in Table I with the flow entry in Table II.
Table II shows that switch 1 first sets the destination address
of the data as the address of server h6, and then forwards the
data to port p5, when the destination address of the data is the
address of server h3. Meanwhile, switch 2 also receives the
corresponding forwarding entry, which indicates to forward
the related data to its edge server h6. Furthermore, when



some edge servers in switch 2’s range would be overloaded,
switch 2 will also send an extending request to the control
plane. Therefore, the range extension can efficiently avoid the
overload of edge servers and share the resources of multiple
edge servers.

In addition, consider that the data placement in edge servers
is not everlasting. That is, the overloaded edge server could
become underloaded again since some data could be invalid or
migrated to the Cloud. In this case, the edge server will first
retrieve the data, which should be placed in the edge server,
but is placed in other edge servers. When all the corresponding
data has been retrieved, the corresponding extended forward-
ing entries will also be deleted from the related switch.

C. Data retrieval using GRED

So far, we have introduced the procedure of data placement.
The data retrieval using GRED is similar to the data placement.
The retrieval is also to use the data identifier, and each switch
greedily forwards the retrieval request to the switch whose
position is closest to the data position in the virtual space.
Furthermore, the switch uses the same method shown in
Section V-B to determine the edge server for responding to
the retrieval request. However, the key challenge is how to
determine the edge server that has stored a data when the
correponding switch has extended its management range.

As shown in Fig. 5, the data that should be placed in server
h3 that is connected to switch 1 is forwarded to server h6
connected to switch 2 when switch 1 extends its management
range. In this case, when we retrieve a data that is directed to
the edge server h3 based on the value of [H(d) mod s], we
could not determine that the data has been placed in server
h3 connected to switch 1 or server h6 connected to switch 2.
Therefore, to efficiently retrieve a data, the retrieval request
is forwarded to the two edge servers at the same time, and
the edge server that has stored the data will respond to the
retrieval request. Note that a tag is used in the packet header
to indicate a placement/retrieval request. After that, we can
ensure to efficiently locate a data that has been placed in the
edge network when a data retrieval request is received.

VI. DISCUSSION

The network dynamic. Consider that some edge nodes
could be added into the edge network. Meanwhile, some
failures of switches or edge nodes could result in that some
edge nodes leave from the edge network. Therefore, the GRED
is required to accommodate the network dynamic. Recall that
we utilize an incremental method to construct the DT graph in
the control plane in Section IV-C. When an edge node is added
in the edge network, some edges will be added in the DT graph
to connect the new edge node and its neighbors, which have
existed in the DT graph. It is worth noting that the new edge
node has no effect on the other edge nodes. It only affects its
neighbors. First, the control plane will add the corresponding
forwarding entries into the new edge nodes and its neighbors.
Then, those data in the neighboring edge nodes of the new
edge node will be calculated again. If those data is closest to
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Fig. 6. Prototype with 1 controller, 6 P4 switches and 12 servers.

the new edge node, they will be forwarded to the new edge
node. Furthermore, when an edge node leaves from the edge
network, the related edges between it and its neighbors will be
deleted, and then some new edges will be added between those
neighbors to form a new DT graph. After that, those related
data will be stored in those neighbors based on their positions
in the virtual space, which has been described in Section V-A.

Data copies. The data copies are fundamental for the fault
tolerance. Meanwhile, multiple data copies can also help to
achieve better performance. Therefore, it is necessary for the
GRED to support multiple data copies in the edge network.
Recall that we store a data item in the edge network by hashing
its ID. Furthermore, when there exists multiple data copies, it
is required to add a serial number for each data copy. Then,
the ID and the serial number are concatenated to form a new
string. By hashing the new string, we can achieve the position
of the corresponding data copy in the virtual space. After
that, the data copy can be stored in the edge network based
on the scheme in Section V-A. An advantage of the GRED
is that it is easy to determine which copy is cloeset to the
access point. Consider that we have embedded the network-
wide distance between switches into the Euclidean distance
between the related two points in the virtual space in Section
IV-A. Therefore, we can know which copy is closest to the
access point by calculating their distances to the access point
in the virtual space after embedding the network distance in
Section IV-A.

VII. PERFORMANCE EVALUATION

In this section, we first introduce the implementation and
evaluation of the GRED on a small-size testbed. Then, we
conduct large-scale simulations to evaluate the performance
of the GRED.

A. Implementation using P4

We have implemented a prototype of GRED, including
all switch data plane and control plane features described in
Section III, where the switch data plane is written in P4 [7],
and the function in the control plane is written in Java. The P4
compiler generates Thrift APIs for the controller to insert the
forwarding entries into the switches. The P4 switch supports
a programmable parser to allow new headers to be defined.
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Fig. 7. The performance of the GRED protocol under different settings.

Meanwhile, multiple match+action stages [7] are designed in
series to achieve the neighboring switch whose position is
closest to the position of the data. The P4 switch calculates
the distance from a neighbor to the data in the virtual space
in a match+action stage. The topology of our prototype is
shown in Fig. 6. Our testbed consists of 1 controller and
6 P4 switches, where each switch connects to 2 servers.
We use those servers to generate data requests including the
data placement/retrieval requests. Furthermore, we evaluate the
routing stretch and the load balance of the GRED protocol
on our prototype. We implemented two variants of the GRED
protocol including the GRED-NoCVT protocol and the GRED
protocol on our testbed, where the GRED protocol sets the
number of iterations is 50 for the C-regulation method shown
in Section IV-B. GRED-NoCVT indicates the positions of
switches are only generated by the M-position algorithm in
Section IV-A, and not refined by the C-regulation method.

We first evaluate the performance of the GRED protocol
based on our testbed. Fig 7(a) shows that the average routing
stretches of GRED-NoCVT and GRED are close to 1, which
is the optimal value of the routing stretch. However, Fig 7(b)
shows that GRED achieves significantly better load balance
than GRED-NoCVT due to the lower max/avg value, which
is used to quantify the load balance of a networked storage
system. The value of max is the number of data items received
by the most loaded edge server, and the value of avg means
the average load of all edge servers. The optimal value of
max/avg is 1, which indicates perfect load balancing.

Furthermore, we test the average response delay of the
GRED protocol where we have placed some data items in
our testbed and then generated some data retrieval requests.
Fig 8 shows that the average response delay of those retrieval
requests. We can find that the average response delays of the
two GRED variants are similar, and the average response delay
has a modest change when we send the different number of
retrieval requests. The routing stretch would affect the average
response delay. Recall that the two GRED variants all have low
routing stretches in Fig 7(a). Therefore, we can find that the
response delay is low in Fig 8. That is, the GRED protocol can
quickly respond to those retrieval requests in edge computing.
However, it is worth noting that the network size is small
since our testbed just consists of 6 P4 switches and 12 edge
servers. So, we further conduct massive simulations to evaluate
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Fig. 8. The response delay under different number of retrieval requests.

the performance of the GRED protocol including the routing
stretch and the load balance in the next section.

B. The setting of large-scale simulations

In simulations, unless otherwise specified, we use BRITE
[20] with the Waxman model to generate synthetic topologies
at the switch level where each switch connects to 10 edge
servers. Switches could connect to different numbers of edge
servers or servers with different capacity. Then, we compare
the GRED protocol with the Chord [8] protocol, which can
locate data in a peer-to-peer network. The GRED protocol
includes two variants: GRED and GRED-NoCVT (without
CVT). We use two performance metrics to evaluate the per-
formance of GRED as follows.

• Routing stretch. The routing stretch value is defined to
be the ratio of the hop count in the selected route to the
hop count in the shortest route between a pair of source
and destination nodes.

• Load balance. The max/avg metric quantifies the load
balance, defined as the ratio of the number of data items
received by the most loaded edge server (max) to the
average load of all edge servers (avg).

We evaluate the routing stretch of GRED by varying the
number of switches and the minimal degree of switches for
interconnection. In each setting of the network, we randomly
generate 100 data items to be placed in the network and
randomly select an access point for each data. Each point in
Fig. 9 is the average of 100 routing stretches where each error
bar is constructed using a 90% confidence interval of the mean.
Furthermore, we evaluate the load balance of GRED varying
the number of switches and the amount of data. Meanwhile,
we evaluate the impact of the number of iterations of the C-
regulation method on the load balance of GRED.

C. Routing stretch

1) Varying network size: We first evaluate the impact of
the network size on the routing stretch. Fig. 9(a) shows the
routing stretches of Chord, GRED, and GRED-NoCVT. In Fig.
9(a), GRED and GRED-NoCVT achieve significantly lower
routing stretches than Chord. It is because that the Chord takes
O(log n) overlay hops to retrieve the data while the GRED
costs only one overlay hop to get the data. The average routing
stretch of Chord is higher than 3.5 under any network size in
our experiments. However, the average routing stretches of
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Fig. 9. Routing stretch comparison.

GRED and GRED-NoCVT are all lower than 1.5. It means
that GRED uses <30% routing path lengths compared to
using Chord. It is worth noting that shorter routing path
indicates less bandwidth consumption and lower latency to
place/retrieve data. Meanwhile, we can see that GRED has a
little higher routing stretch than GRED-NoCVT in some cases.
It is because the C-regulation method has influence on the
distances between switches, which can be preserved as well
as possible after using the M-position algorithm in Section
IV-A.

2) Varying the minimum degree of switches: We evaluate
the impact of the minimal degree of switches for interconnec-
tion on the routing stretch. The network employs 100 switches
and 1000 edge servers, and the minimal degree of switches
for interconnection varies from 3 to 10. Fig. 9(b) shows that
GRED and GRED-NoCVT achieve obviously lower routing
stretches than the Chord protocol. In Fig. 9(b), we can see that
the degree of switches for interconnection has a modest impact
on the routing stretch for the same protocol. Meanwhile, Fig.
9(b) shows that the routing stretch slightly decreases as the
increase of the minimal degree of switches. When the switches
provide more ports for interconnection, greedy routing has a
higher possibility to find the shortest path.

3) Range extension: When an edge server will be over-
loaded, the corresponding switch needs to extend its manage-
ment range. That is, the switch forwards data to the edge server
connected to the neighboring switch. Range extension may
increase the routing stretch. We compare the routing stretch
achieved by GRED and the extended-GRED protocol where
the number of iterations is 50 for the C-regulation method.
The extended-GRED denotes the data would be placed in the
edge server connected to the neighbor switch of the destination
switch. We placed 100 data items to achieve the average
routing stretch under each setting of the network size. Fig.
9(c) shows that the extended-GRED protocol achieves slightly
higher routing stretch than GRED. However, the routing
stretch of the extended-GRED is still significantly lower than
Chord.

D. The number of forwarding table entries

In this section, we show the number of forwarding table
entries per switch for the GRED protocol under different
network sizes. In Figure 10, each point indicates the average
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Fig. 10. The number of forwarding table entries.

number of forwarding table entries over all switches, where the
error bar is constructed using a 90% confidence interval of the
mean. We can see that the increase of the average number of
forwarding entries is modest as the increase of the network size
from Figure 10. That is, the GRED protocol only needs a few
forwarding entries to achieve the data placement and retrieval
services. GRED has the obvious advantage in scalability since
the number of forwarding table entries is independent of the
network size and the number of flows in the edge network.

E. Load balance

1) Varying the network Size: We first evaluate the impact of
the network size on the load balance under different protocols
where the number of edge servers varies from 200 to 1000.
Fig. 11(a) shows that GRED (T=10) and GRED (T=50), T
is the number of iterations, achieve significantly better load
balance than Chord due to the lower value of max/avg. In
Fig. 11(a), the value of max/avg goes up as the increase of
the network size in Chord. However, we observe very little
increase for GRED (T=10) and GRED (T=50) in Fig. 11(a).
Fig. 11(a) shows that GRED (T=50) achieves better load
balance than GRED (T=10), which means that the GRED
protocol can achieve better load balance by increasing the
number of iterations.

2) Varying the amount of data: We vary the amount of
the placed data from 100,000 to 1,000,000 where 1000 edge
servers are deployed in the network. Fig. 11(b) shows that
GRED (T=50) achieves the best load balance among the three
protocols. We can see that the Chord protocol has the worst
load balance because the value of max/avg is higher that 6.
Meanwhile, we can also see that the value of max/avg for



200 300 400 500 600 700 800 900 1000
The number of edge servers in the network

1
2
3
4
5
6
7
8
9

Lo
ad

 b
al

an
ce

 (m
ax
/a
vg
)

Chord
GRED(T=10)
GRED(T=50)

(a) The impact of the network size.

200000 400000 600000 800000 1000000
The number of data items

2

3

4

5

6

7

Lo
ad
 b
al
an
ce
 (m

ax
/a
vg

)

Chord
GRED(T=10)
GRED(T=50)

(b) The impact of the number of data items.

20 40 60 80 100
The number of iterations

2

3

4

5

6

7

Lo
ad

 b
al

an
ce

 (m
ax

/a
vg
)

Chord
GRED-NoCVT
GRED

(c) The impact of the number of iterations.

Fig. 11. Comparison of load balance.

GRED (T=10) is lower than 2.5, and further the value of
GRED (T=50) is lower than 2. Note that the value of max/avg
is lower and better, and the optimal value for load balance is
1. Therefore, the GRED protocol can achieve the proper load
balance among edge servers.

3) Varying the number of iterations: In this section, we
test the impact of the number of iterations T on the load
balance. Note that the number of iterations T for the C-
regulation method will affect the positions of switches in
the virtual space, and further affect the load balance of the
GRED protocol. The setting of the network is the same as the
setting in Section VII-E2, and we placed 100,000 data items in
the network. Note that the Chord and the GRED-NoCVT are
independent of T . Therefore, Fig. 11(c) shows that T has no
influence on Chord and GRED-NoCVT. Furthermore, we can
see that the value of max/avg decreases as the increase of T for
the GRED protocol in Fig.11(c). That means that the GRED
protocol can achieve better load balance when T increases.
Meanwhile, Fig. 11(c) shows that GRED-NoCVT can also
achieve better load balance than Chord even if GRED-NoCVT
did not use the C-regulation method to refine the positions of
switches. Furthermore, we can see that the value of max/avg
is lower than 2 when T is more than 20 in Fig. 11(c). We
also find that the value of max/avg stops to decrease when T
is more than 70 in Fig. 11(c). It means that the C-regulation
method has found the optimal positions of switches in the
virtual space to achieve the proper load balance when T=70.
After that, the increase of T has little improvement on the
load balance of GRED.

VIII. RELATED WORK

A. Edge computing

In edge computing, edge servers perform computing of-
floading, data storage, caching and processing, as well as
distribute request and delivery service [1]. Mobility is an in-
trinsic trait of many mobile applications. In those applications,
the edge servers could exploit the movement and trajectory
of edge users to improve the efficiency of handling users
computation requests. Some mobility models were proposed
[21][22], which characterize the mobility by a sequence of
networks that users can connect to and a two-dimensional
location-time workflow, respectively.

The burdens on an edge server can be lightened via peer-
to-peer cooperative edge servers [23]. Resource sharing via
the cooperation of edge servers can not only improve the
resource utilization, but also provide more resources for edge
users to enhance their user experience. The resource sharing
framework was originally proposed in reference [24], which
includes components such as resource allocation, revenue
management and service provider cooperation. The framework
was extended in [25], which considered both the local and
remote resource sharing. Server cooperation can significantly
improve the computation efficiency and resource utilization at
edge servers.

B. Greedy routing with guaranteed delivery
Greedy geographic routing protocols have been designed for

wireless sensor and ad hoc networks. GFG [26] and GPSR
[27] use face routing to move packets out of local minimum.
Furthermore, GHT [28] is designed for data-centric storage
in a distributed sensing network. However, the GHT uses the
GPSR [27] as the underlying routing system, which requires
the network topology to be a planar graph in 2D to avoid
routing failures. Lam and Qian proposed the MDT protocol
[10], for any connectivity graph of nodes with arbitrary
coordinates in a d-dimensional Euclidean space (d≥2). Virtual
coordinate schemes have been studied for greedy routing when
node location information is unavailable [6]. In this paper, we
utilize the properties of MDT, which provides the guaranteed
delivery.

IX. CONCLUSION

Edge computing needs to provide the data placement and
retrieval services for many emerging applications such as
IoT. However, it remains an open problem. A key challenge
to enable this is to efficiently locate the data in the edge
network. GRED solves this challenging problem by offering
a powerful primitive: given a data identifier, it determines the
edge server responsible for the data placement and retrieval,
and does so efficiently. Attractive features of GRED include
its routing simplicity, provable correctness, low routing stretch,
and proper load balance. Our theoretical analysis, simulations,
and experimental results confirm that the effectiveness and
efficiency of GRED. We believe that GRED will be a valuable
component for edge computing considering the user mobility
and the cooperation among edge servers.
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