
Concury: A Fast and Light-weight Software Cloud
Load Balancer

Shouqian Shi
sshi27@ucsc.edu

University of California, Santa
Cruz

Ye Yu∗

Google
Minghao Xie

University of California, Santa
Cruz

Xin Li∗

Google
Xiaozhou Li
Celer Network

Ying Zhang
Facebook

Chen Qian
qian@ucsc.edu

University of California, Santa
Cruz

ABSTRACT

A load balancer (LB) is a vital network function for cloud
services to balance the load amongst resources. Stateful soft-
ware LBs that run on commodity servers provide flexibility,
cost-efficiency, and packet consistency. However, current
designs have two main limitations: 1) states are stored as
digests, which may cause packet inconsistency due to di-
gest collisions; 2) the data plane needs to update for every
new connection, and frequent updates hurt throughput and
packet consistency. In this work, we present a new software
stateful LB called Concury, which is the first solution to
solve these problems. The key innovation of Concury is a
new method to maintain large network states with frequent
connection arrivals, which is succinct in memory cost, con-
sistent under network changes, and incurs low update cost.
The evaluation results show that the Concury algorithm pro-
vides 4x throughput and consumes less memory compared
to other LB algorithms, while providing weighted load bal-
ancing and false-hit freedom, for both real and synthetic
data center traffic. We implement Concury and evaluate it

∗Ye Yu and Xin Li worked on this project during their PhD studies at Uni-

versity of Kentucky and UC Santa Cruz respectively.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SoCC ’20, October 19ś21, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8137-6/20/10. . . $15.00

https://doi.org/10.1145/3419111.3421279

in two real networks. It achieves 67.2 Gbps single-thread
throughput on a cheap desktop computer in 100GbE.

CCS CONCEPTS

·Networks→Middle boxes / network appliances;Cloud
computing.

KEYWORDS

Load balancing; Software Load balancer; Cloud Computing;
Data Center; Mobile Edge Computing

ACM Reference Format:

Shouqian Shi, Ye Yu, Minghao Xie, Xin Li, Xiaozhou Li, Ying Zhang,

and Chen Qian. 2020. Concury: A Fast and Light-weight Software

Cloud Load Balancer. In ACM Symposium on Cloud Computing

(SoCC ’20), October 19ś21, 2020, Virtual Event, USA. ACM, New York,

NY, USA, 14 pages. https://doi.org/10.1145/3419111.3421279

1 INTRODUCTION

The load balancer (LB) is a fundamental network function
of a data center that provides Internet services. To accom-
modate the high demand for popular service at scale, such
as a search engine, email, photo sharing/storage, or message
posting and interactions, a data center maintains multiple
backend servers, each carrying a direct IP (DIP). For a partic-
ular service, clients send their requests to a publicly visible IP
address, called the virtual IP (VIP). Each VIP is mapped to a
pool of DIPs. An LB uses different DIPs to replace the VIP on
the service requests and balances the load across the servers,
so that no server gets overloaded to disrupt the service. An
LB usually operates on or above layer 4.

Conventional hardware-based LBs [8, 10, 11] have limita-
tions on scalability, availability, flexibility, and cost-efficiency
[23]. Hence, major web services such as Google [23], Mi-
crosoft [32], and Facebook [7, 22] have started to rely on

179

https://doi.org/10.1145/3419111.3421279
https://doi.org/10.1145/3419111.3421279

SoCC ’20, October 19ś21, 2020, Virtual Event, USA Shouqian Shi, Ye Yu, Minghao Xie, Xin Li, Xiaozhou Li, Ying Zhang, and Chen Qian

stateful software LBs, which scale by using a distributed data
plane that runs on commodity servers, providing high avail-
ability, flexibility, and cost-efficiency. A packet being stateful
means that it belongs to a connection, and the prior packets
of the connection have been forwarded to a DIP. Otherwise,
the packet is stateless. The key functions of a stateful LB
include the following. 1) For a stateless packet, which can be
sent to an arbitrary DIP supporting its VIP, the LB algorithm
should act as a weighted randomizer based on the current
capacities of the backend servers. 2) For a stateful packet, the
LB forwards it to the particular DIP that received the prior
packets, preserving packet consistency.
The major challenge of a stateful LB algorithm is to pre-

serve packet consistency under network dynamics, including
new connection arrivals and DIP changes due to server fail-
ures or updates. Most existing LB algorithms use hash tables
to store connection states as the data plane solution [23, 32].
These stateful LBs experience large memory cost of storing
packet states or low capacity of packet processing. They re-
quire a large number of commodity servers to scale out, e.g.,
up to 3.5% - 10% of the data center size as reported by Mi-
crosoft [25] and Google [23]. Hence, some LBs use digests of
connections (e.g., hash values of the 5-tuples of connection)
rather than full connection states (such as 5-tuples) to reduce
memory costs and improve throughput [23]. This design has
two major weaknesses: 1) using long digests may still require
a large amount of memory while using short digests causes
violation of packet consistency due to digest collisions; 2) a
massive number of new connections cause highly frequent
data plane updates ś a modern cluster may easily experi-
ence thousands of new connections per second [28] ś which
significantly hurts the packet processing throughput and
possibly violates packet consistency. Existing methods rely-
ing on fast and concurrent reads and writes to hash tables
[24, 26] cannot be easily applied to LB algorithms, because
they only work with full state keys rather than digests. Re-
cent work uses ASICs on programmable switches for fast
table lookups [28], but further increases the infrastructure
cost.
We propose the first stateful LB algorithm that resolves

the current limitations, called Concury. 1 Its key innovation
and contribution is a novel approach of maintaining large-

scale network states with a massive amount of newly arrived

connections, which is succinct in memory cost, consistent
under network changes, and incurs extremely infrequent
data plane updates. This approach could possibly be applied
to many stateful network functions, such as NAT and LTE
Evolved Packet Core, but this paper only focuses on LBs.

1The name Concury is from Concordia, the Roman goddess of balance and

harmony, and Mercury, the Roman god of messages/communication and

travelers, known for his great speed.

Compared to existing stateful LBs [7, 23, 25, 28, 32],

Concury provides two main advantages. 1) We realize
that the current limitations of software LBs are from the
algorithmic designs for state maintenance and lookups: hash
tables storing digests. To reduce memory cost, current LBs
store the digests of states rather than the whole state iden-
tifier (e.g., > 100bits for a 5-tuple) [23, 28]. The drawbacks
include 1) false table hits due to digest collisions [28], and
2) table explosion due to the difficulty of removing a di-
gest. Concury uses a data structure to represent all packet
states in a succinct manner (just two small arrays), by uti-
lizing the theoretical foundation of minimal perfect hashing
[18, 20, 21, 27, 39]. Concury is designed in such a way that it
finds the specific destinations for stateful packets and simul-

taneously acts as a weighted randomizer for stateless packets
with small memory cost and packet consistency. However, ap-
plying the theoretical Othello Hashing is not straightforward.
There are several system building challenges to overcome:
supporting efficient and fast lookup, managing connections
under limited resources, and no false hits. 2) Data plane up-
dates on existing LBs happen for every incoming connection.
Concury includes the coordination between the data and
control planes such that Concury does not need to update its

lookup tables for every incoming connection. Instead, the Con-
cury data plane is updated once every backend server change
(DIP change), which happens much less frequently than new
state arrivals. State maintenance and updates in Concury are
much simpler than existing solutions, which allow Concury
to maintain high lookup throughput and consistency.
In addition, Concury can be used for complex Internet

applications and the emerging edge cloud [33, 34, 37, 38].
1) It fits the condition of an edge cloud that typically has
constrained resources ś an edge LB may only be hosted by
one server and could be co-located with other services on
the server [34, 38, 41]. 2) Traditional cloud LBs consider a
state for every TCP connection. In modern cloud or edge,
states may be for multi-connection and at the device-level
or process-level [34, 38, 41], i.e., the packets belonging to
a single device should be sent to the same DIP. For exam-
ple, a user device may keep offloading its video data to an
edge server, let the server processes the data, and later re-
quest the analytical results from the server [34]. This whole
process consists of multiple TCP flows and pseudo-flows
with UDP, all of which should be sent to a consistent DIP.
Unlike previous designs, the nature of Concury can easily
support multi-connection states. 3) Modern cloud and edge
servers might have heterogeneous capacities in computation,
storage, and bandwidth [34, 38]. Concury reacts quickly to
the weight changes due to failures or load dynamics of the
servers.

We make several key intellectual contributions:

180

Concury: A Fast and Light-weight Software Cloud Load Balancer SoCC ’20, October 19ś21, 2020, Virtual Event, USA

(1) Theworkflow of Concury is designed to achievememory-
efficiency, high throughput, load balancing, consis-
tency, and false hit freedom.

(2) We propose a newmethod to maintain the dynamic set
of states in the control plane and can instantly produce
new lookup structures to update the data plane, under
DIP pool changes.

(3) We add the functions of weighted randomizer and
massive connection state maintenance to LBs.

(4) We implement Concury using DPDK [2] to shows its
high performance in two real networks. We also
build a P4 prototype to show its compatibility to pro-
grammable switches. The source code can be accessed
here [14] and our results can be re-produced.

Concury achieves the highest packet processing through-
put reported in literature (67.2 Gbps with single thread on a
cheap desktop computer (<$800 not including the 100GbE
NIC)) and low memory cost with 0 false hit, compared to
existing stateful LBs. We consider Concury a major improve-
ment because it achieves the best of three worlds: perfor-
mance, cost-efficiency, and consistency (correctness). It fits
new applications and systems. It also includes an ideal so-
lution to dynamic state maintenance that is useful for other
network functions.

The balance of this paper is organized as follows. Section 2
presents the related work. We formally model the LB algo-
rithm in Section 3. Section 4 introduces some background
algorithms. We present the detailed design of Concury in
Section 5. The system implementation and evaluation results
are shown in Section 6. We conclude this work in Section 7.
This work does not raise any ethical issues.

2 RELATEDWORK

An LB is an important component of a data center net-
work, which distributes incoming traffic to different backend
servers or other network functions [7, 23, 25, 32, 36]. Tradi-
tional hardware load balancers are expensive and not flexible.
Hence, many large cloud services choose to use software
load balancers [7, 12, 23, 25, 32]. In addition, LBs are also
important for edge data centers [17, 34, 35, 41], which allow
heterogeneous devices on the path to the remote cloud to
offer storage and computing resources.

Stateful load balancers. Ananta [32] is a software state-
ful LB in a three-level architecture, which includes data cen-
ter routers that run ECMP, a number of softwaremultiplexers
(SMuxes) on commodity servers, and a host agent on each
backend server. However, each Ananta instance provides
very slow packet processing speed as shown in [25]. Duet
[25] makes use of forwarding and ECMP tables on commod-
ity switches to store VIP-DIP mappings. Under frequent DIP
pool changes, Duet may be not able to maintain PCC [28].

Maglev [23] is Google’s distributed software load balancer
running on commodity servers. The core algorithm of Ma-
glev is to use a hash table to store connections as digests for
load balancing and a new consistent hashing algorithm for
resilience to DIP pool changes. SilkRoad [28] implements
LB functions on state-of-the-art programmable switching
ASICs, which requires more than 50MB SRAM. It supports
high-volume traffic with low latency and preserves consis-
tency. Deploying SilkRoad introduces extra hardware cost
śeach SilkRoad switch costs 6.5K USD, and multiple switches
are needed for every cluster. In addition, both Maglev and
SilkRoad may include false hits during connection lookups,
due to the usage of digests rather than the complete state
information. False hits cause two main problems. 1) A packet
may be forwarded to a DIP that does not provide the cor-
rect service of its VIP and then fails. 2) Multiple states may
share a digest in the table. It is difficult to decide when to
delete a digest. Deleting the digest of a finished state might
terminate an active state, if their digests collide. Hence the
table size may explode over time, or some active states may
be terminated. The typical data structure that can be used
to maintain states in the above methods is Cuckoo Hashing
[31]. Bonomi et al. proposed to use Approximate Concurrent
State Machines (ACSMs) to maintain dynamic network states
[19], but this method cannot be used for LBs. We compare
Concury with existing stateful LBs in Table 1, where the ex-
perimental values are based on the DIP-V 16M-state network
in 6.2.

Stateless load balancers. Beamer [30] and Faild [17] are
recently proposed stateless LBs. Their forwarding logics do
not store connection state but use a simple mapping algo-
rithm (static or consistent hashing). They write a new field
to every packet header to carry its DIP. The end servers need
to examine every packet header to ensure that the packet
is consistent with the state on this server. If not, the server
performs overlay re-routing to the correct DIP. This method
requires a kernel modification on the network stack of every
server to add extra network processing. The computation
andmemory overheads are thus transferred to the server side
and on a per-packet basis. Overlay re-routing might not be
a significant problem when states are short-term. However,
for multi-connection states that are long-term, stateless LBs
may cause re-routing of most stateful packets, because after
a duration the mapping would become very different. Com-
pared to these methods, Concury only requires each server to
run a lightweight state-tracking program in the application-
layer, which does not change the network stack. Performance
comparison of stateful and stateless LBs would be apple-to-
orange because overhead occurs in different places. We do
not intend to declare a clear victory between stateful and
stateless LBs. The purpose of this work is to improve the

181

SoCC ’20, October 19ś21, 2020, Virtual Event, USA Shouqian Shi, Ye Yu, Minghao Xie, Xin Li, Xiaozhou Li, Ying Zhang, and Chen Qian

LB Algorithm
Lookup

(Mpps)

Memory

(MB)

Weighted

LB

False

hits
Packet type

Extra

hardware

Update

interrupt

ECMP + hash table (Ananta [32]) low high unclear No any type No frequent

Hash table w/ digest (Maglev [23]) 14.63 18.63 Yes exist TCP only No frequent

Multi HTs w/ digest (SilkRoad [28]) 16.11 4.36 No exist TCP only ASIC frequent

Concury (this work) 66.28 3.84 Yes No any type No infrequent

Table 1: Comparisons among stateful LB algorithms with example results. The numerical values are from the

microbenchmark using 1M concurrent connections. More results can be found in ğ 6.

Packet with

VIP

1. LB data plane

Determines a DIP as the

destination for each packet

2. LB control plane

3. updates

Packet with

DIP

servers

with

different

DIPs

Maintains the state and

computes the data plane

Figure 1: General model of a stateful LB

stateful LB design and leave the choice between stateful and
stateless LBs to network operators.

3 SYSTEM MODELS AND OBJECTIVES

A service provided by a cloud/edge data center is identified
by a publicly visible IP address, called virtual IP (VIP). The
clients send their service requests to the VIP. An LB balances
the load across the cloud/edge servers, so that no server gets
overloaded and disrupts the service. Each backend server is
identified by a direct IP (DIP). Hence, the core function of
an LB is to map the VIP on a packet header to a DIP, based
on the header information of the packet (e.g., its 5-tuple or
other state identifiers). Each VIP is associated with its DIP
pool, which includes the DIPs of the servers that provide the
service identified by the VIP. The DIP pool of a VIP may vary
depending on the service size and the environment (cloud or
edge). If a server maintains the state of a packet, the packet
must be sent to the DIP of the server. A state could be an
ongoing connection or multi-connection.
Achieving all requirements of an LB stated in ğ 1 is chal-

lenging. Simple stateless algorithms (such as ‘consistent’
hashing) provide no guarantee of consistency. It is because
the distribution algorithm needs to change when there is a
DIP pool or weight change, and then stateful packets may
be mapped to another server.
Recent stateful LB designs [23, 28] need to store connec-

tion state and ensure that all packets matching a state are
consistently mapped to the same DIP. We summarize a gen-
eral model of stateful LBs (as shown in Fig. 1), analyze the
components of this model, and point out the design objec-
tives.

1. LB data plane (LB-DP). The LB-DP processes packets
and finds a DIP for each packet carrying a VIP. The DIP
should be selected from the DIP pool behind the VIP, repre-
senting the set of servers providing the service of this VIP.
The core algorithm should provide two functions: i) find the
corresponding server (DIP) for each stateful packet, and ii)
assign an available server (DIP) based on given weights for
each stateless packet. The design objectives of the LB-DP is
to achieve high packet processing throughput and efficiency

of memory cost, because high-speed memory is a precious
resource on both commodity servers (cache) and hardware
switches (ASICs). In addition, the LB-DP should balance the

stateless packets based on the weights reflecting the current
capacity of each server, which may be heterogeneous and
dynamic. For example, if a server is serving many large-size
connections, it has to receive fewer new states than others in
the near future. So we identify the ‘weight’ as an important
input to the LB, and we expect that an LB acts as a weighted
randomizer for new states.

2. LB control plane (LB-CP). The LB-CP receives the
state changes from the servers, including new state estab-
lishments and state removals. Many existing designs use a
TCP SYN packet as the indicator of a new state and allow
LB-DP to notify the LB-CP directly [23, 28]. However, it does
not work for UDP or multi-connection states. The design
objectives of the LB-CP is to efficiently maintain all state of
the incoming packets and quickly construct the new LB-DP
to reflect packet consistency once an LB-DP update is needed.
Ensuring that all packets of a connection are delivered to the
same server is critical for LBs, because recovering a broken
connection usually takes a long time and significantly hurts
the user experience. In the edge or cloud where a unified data
management layer is absent, packets from different flows of
a single device should be sent to the same server. Achieving
the device-level consistency could avoid overlay re-routing
for many emerging applications such as media offloading.

3. Update. The LB-CP will notify LB-DP to make neces-
sary changes under certain network dynamics, such as DIP
pool and weight changes. The design objective of the update
process is to reduce the frequency of updating because it will
interrupt packet processing on the LB-DP.

182

Concury: A Fast and Light-weight Software Cloud Load Balancer SoCC ’20, October 19ś21, 2020, Virtual Event, USA

𝒖𝟎
𝒘𝟎

𝒖𝟏
𝒘𝟏

𝒖𝟐
𝒘𝟐

𝒖𝟑
𝒘𝟑

𝒖𝟓
𝒘𝟓

𝒖𝟔
𝒘𝟔

𝒖𝟕
𝒘𝟕

𝒖𝟒
𝒘𝟒

1101

11 10 01

00

10

𝑘 value ℎ 𝑘 ℎ 𝑘𝑘1 01 6 5𝑘2 10 1 0𝑘3 11 1 2𝑘4 00 1 3𝑘5 10 4 2

𝑘1Bloomier
construction 𝑘2 𝑘3 𝑘4 𝑘5

Figure 2: Construction of a Bloomier filter

Although Concury needs the servers to send state notifi-
cation, the servers do not need to maintain any state just like
prior stateful LBs. In other designs, server-to-LB messages
are necessary for weighted load balance [25].

4 BACKGROUND ALGORITHMS

We propose to use the data structures and algorithms of
minimal perfect hashing [18, 20, 21, 27, 39] for the Concury
LB. One well-known perfect hashing based data structure is
the Bloomier filters [20, 21]. The recently proposed Othello
Hashing [39, 40] makes use of Bloomier filters to support
forwarding information bases in programmable networks,
including a variant of Bloomier filters as its data plane, a
construction program in its control plane, as the interac-
tion protocols of the two planes. Othello finds a setting of
Bloomier filters to achieve good time/space trade-off for dy-
namic network environments. Though it was not designed
for LBs, Othello qualifies as a great fit for LBs based on three
reasons: 1) the lookup of Othello data plane is super fast
and memory efficient; 2) the lookup is collision free, though
no full key is stored in the data plane; 3) we designed an
asynchronized update algorithm between the control plane
to data plane, while keeping the PCC and weighted load
balancing for all the time. We illustrate the first two points
in this section, and the third poitn is detailed in ğ 5.
A Bloomier filter is not used as a filter, but a mapping for

a set of key-value pairs. Let S be the set of keys and n = |S |.
The lookup of each key returns an l-bit mapped to the key.

Bloomier filter construction in the Othello control

plane. We use an example in Fig. 2 to show the Bloomier
filter of a set of five key-value pairs. Each of the keys k1
to k5 has a corresponding l-bit value. Two arrays A and
B are built with ma and mb elements respectively, where
ma = n,mb = 1.33n. Each element of the arrays is an l-bit
value. In this example, l = 2, and assumem =ma =mb = 8
for better illustration. For every value i inAwe place a vertex
ui , and for every value j in B we place a vertex w j . Two
hash functions ha and hb are used to compute the integer
hash values in [0,m − 1] for all keys. Then, for each key,
we place an edge between the two vertices that correspond
to its hash values. For example, ha(k1) = 6 and hb (k1) = 5,
so an edge is placed to connect u6 and w5. For a key k and
its corresponding value v , the requirement of Bloomier is

𝐴
𝐵

1101

11 10 01

00

10

(a) Look up a key known during

construction: Specified Result

ℎ𝑎 𝑘1

ℎ𝑏 𝑘1
11⊕10 =01 𝐴

𝐵
1101

11 10 01

00

10

(b) Look up a key unknown during

construction: Deterministic Random

ℎ𝑎 𝑘6

ℎ𝑏 𝑘6
00⊕?=?

Figure 3: Lookups of Bloomier filter

that the two connected elements A[ha(k)] ⊕ B[hb (k)] = v ,
where ⊕ is the bit-wise exclusive or (XOR). For key k1 in
this example, u6 ⊕ w5 = 012 = 1. Vertexes colored gray
represents łnot carež elements. Note that after placing the
edges for all keys, the bipartite graph, called graphG, needs
to be acyclic. It is proved that if G is acyclic, it is trivial to
find a valid element assignment such that the values of all
keys are satisfied [39]. If a cycle is found, the construction
needs to find another pair of hash functions to re-buildG. It
is proved that during the construction ofn keys, the expected
total number of re-hashings is < 1.51 when n ⩽ 0.75m [39].
The expected time cost to constructG of n keys is O(n), the
time to delete or change a key is O(1), and the time to add a
key is amortized O(1). The design can be trivially extended
to l > 2.

Bloomier filter lookups in the Othello data plane.

The Othello lookup structure is simply a Bloomier filter con-
taining the two bitmaps A and B, as shown in Fig. 3 (a). To
look up the value of k1, we only need to compute ha and
hb , which are mapped to position 6 of A and position 5 of
B (starting from 0). Then we compute the bit-wise XOR of
the two bits and get the value 012. Hence the lookup result
is τ (k) = a[ha(k)] ⊕ b[hb (k)].
The lookups are memory-efficient and fast. 1) The data

plane only needs to maintain the two arrays. The keys them-
selves are not stored in the arrays. Hence the space cost is
small (2m/n per key). 2) Each lookup costs just two memory
access operations to read one element from each of A and
B. It fits the programmable network architecture: the data
plane only needs to store the lookup structure, two arrays,
while the control plane stores the key-value pairs and the
acyclic bipartite graph G. When there is any change, the
control plane updates the two arrays and lets the data plane
to accept the new ones. When a Bloomier filter performs a
lookup of a key that does not exist during construction, it
returns an arbitrary value. For example in Fig. 3(b), k6 < S
and its result may be an arbitrary value. We will utilize this
property to construct a weighted randomizer.
It should be noted that updates may require re-hashing,

which, although happens in low probability (O(1/n)), still
takes O(n) time and may introduce a notable latency to the
control plane response time. Hence we propose an advanced

183

SoCC ’20, October 19ś21, 2020, Virtual Event, USA Shouqian Shi, Ye Yu, Minghao Xie, Xin Li, Xiaozhou Li, Ying Zhang, and Chen Qian

VIP index of the
packet: i

VIP Array
Stores the
mapping of VIP
index to BAS
address

BAS-1

memory address of
the BAS of VIP v

i

BAS- i
…5-tuple of

the packet

BAS-2
l-bit
Dcode

DIP Array… 2D Array DA:
DA[i][Dcode]=DIP

Control Plane

updates

Figure 4: Workflow of Concury data plane

data structure called OthelloMap that always maintains an
up-to-date lookup structure in the control plane to limit the
response time to microsecond level, as explained in ğ 5.4.

5 DESIGN OF CONCURY

5.1 System overview

Notations. Let M be the number of VIPs in the network.
Each VIP vi is assigned an index i and its DIP pool contains
ti DIPs. The number of states of VIP vi is ni .

Concury follows the DPmodel introduced in ğ 3, including
both the data plane and control plane. The input of the Con-
cury data plane (Concury-DP) is a packet whose destination
address is a VIP, and the output is the same packet whose
destination has been replaced by a DIP. At each backend
server (identified by a DIP), there is a lightweight application-
layer program that tracks the current states at this server,
which has been used for existing data center LBs [25]. The
state tracking program will report the Concury control plane
(Concury-CP) about new and terminated states. Concury-
CP will update Concury-DP only when the DIP pool of a
VIP changes, i.e., server failure/addition and server weight
change. The update only applies to a small part of Concury-
DP. The design objectives have been discussed in ğ 3.

Challenges of designing Concury.One key innovation
of Concury is to abandon the conventional łlookup-then-
distributež workflow of prior LB designs and adopt a new ap-
proach that achieves ‘lookup’ and ‘distribute’ simultaneously.
However, Bloomier and Othello were not originally designed
for LBs. The challenges of applying Bloomier includes: 1)
how to adjust Bloomier for both active state lookups and
weighted randomizer; 2) how to design the data plane to
minimize memory cost and maximize throughput; 3) how to
resolve the false hits problem without modifying the server
network stack; and 4) how to relax the requirement of up-
dating for every new state in the data plane.

5.2 Concury data plane

Concury uses Bloomier filters as both a lookup structure to
represent the state-to-DIP mapping and a weighted random-
izer. As introduced in ğ 4, a Bloomier filter is built based on

a set S of keys. In Concury, each key is the identifier of a
state, i.e., 5-tuple. The value corresponding to a key is a DIP
code (Dcode), which will be eventually converted to a DIP
ś the address of a backend server that holds the state. Note
that a Bloomier filter provides the state-to-DIP mapping but
does not actually store the keys. Hence the memory cost is
significantly reduced.

There are two possible approaches to construct the state-
to-DIP lookup structure of Concury. 1) All VIPs share a single
lookup structure. 2) Each VIP has an individual Bloomier
filter as the lookup structure, called a Bloomier array set
(BAS), which stores only the state-to-DIP mapping of this
particular VIP. This requiresM BASes. We use this approach
rather than a single and unified BAS because, 1) Upon change
of a VIP’s DIP pool, it is only necessary to update the Dcodes
this VIP. The others are kept still. 2) Separating different VIPs
further ensures a packet is not forwarded to a DIP in another
VIP’s pool. 3) Experimental results show that separate lookup
structures provide 5% faster lookup speed than a unified one.

Note that maintaining per-VIP structures can also be used
by other stateful LBs such as Maglev [23] to avoid the cross-
VIP problem. However, it still cannot resolve the digest-
deletion problem stated in ğ 2. Concury is unique because it
can deal with both types of problems.
The workflow of Concury data plane is shown in Fig. 4,

which includes three main steps. The lookup operation is
simple and fast, including just four read operations and the
hash computation.

Step 1.When Concury receives a packet, it first gets the
VIP index i using the VIP vi in the packet header, by either a
table lookup or calculation. Since VIPs are determined by the
edge/cloud operator, one can simply assign all VIPs with a
single prefix, e.g., a 22-bit prefix, then the last 10 bits of a VIP
can be used as the VIP index, supporting 1K VIPs. Concury
maintains a VIP array that stores the memory addresses of
different BASes, using a static array whose index is the VIP
index. The result of Step 1 is the memory address of the BAS
of VIP vi . The array is small and static.
Step 2. Using the memory address from Step 1, Concury

finds the BAS for VIP vi , denoted as BAS-i . BAS-i only in-
cludes the two arrays A and B to support the calculation of
the lookup result τ (k) = A[ha(t)] ⊕ B[hb (t)], where t is the
4-tuple of k , without the destination IP address compared
to the 5-tuple. The result is an l-bit value called DIP code,
denoted asDcode . Each DIP code will be mapped to an actual
DIP in Step 3, and it is a many-to-one mapping. Two different
DIP codes may be mapped to a single DIP.

Step 3. This step finds the actual DIP using the l-bitDcode .
Concury maintains a 2D array called DIP array, denoted by
DA. The element DA[i][Dcode] is the DIP of the Dcode for
VIPvi . This 2D array is independent of the number of current
states and does not cost much memory. Assume there are

184

Concury: A Fast and Light-weight Software Cloud Load Balancer SoCC ’20, October 19ś21, 2020, Virtual Event, USA

512 VIPs and l = 12. The memory cost is about 2MB. Note
DA[i][Dcode] for any l-bit value of Dcode is a valid DIP of
the VIPvi . To further reduce the memory cost,DA[i][Dcode]
can be a DIP index that can be transferred to an DIP with
one more static table lookup.

Data plane complexity analysis and comparison.

1) Time cost. Concury-DP is very simple and fast. Each
lookup is in O(1), including at most 6 read operations from
static arrays, 2 hash computations (32 bits for each), and an
XOR computation. This cost is smaller than Cuckoo+digest,
a commonly used LB table design [23, 28], which needs more
read operations and hash computations for both stateful and
stateless packets.

2) Space cost. Let n be the number of total states, ld be
the length of Dcode, and lv be the length of the DIP index
in the DIP table. The total memory cost of Concury-DP is
2.33ldn + 64m + 2

ld lvm + 48 · 2
lv bits, which is much smaller

than that of Cuckoo+digest in practical setups.

5.3 Weighted load balancing

Reason for usingDIP code.Onemay notice that to process
the first packet of a new state, Concury gets Dcode and then
translates it to the DIP, rather than directly putting the DIPs
as the lookup results of a BAS. Our method reduces the
storage cost because a DIP is 32-bit long, while a DIP code
can be much shorter, e.g, 10 bits. The total number of distinct
DIP codes, 2ld , can be larger than the number of DIPs, e.g.,
by more than an order of magnitude, in order to provide the
granularity for a weighted randomizer. The Dcode to DIP

mapping is determined by how the LB wants to assign the
weights among DIPs of this VIP. For example, if Dcode has
4 bits and there are 4 DIPs and all DIPs have equal weights,
then we may map Dcode in [0000, 0011] to DIP1, Dcode in
[0100, 0111] to DIP2, Dcode in [1000, 1011] to DIP3, and
Dcode in [1100, 1111] to DIP4. We may consider Dcode as a
ball and each DIP as a bin.

How to achieveweighted load balancing.Wefirst show
that for an unknown state, the probability that a BAS will
return a particular Dcode is uniformly distributed among all
possible values of Dcode .
For a new state c , the lookup result of a BAS is Dcode =

τ (c) = A[ha(c)] ⊕ B[hb (c)], where A[ha(c)] and B[hb (c)] are
both l-bit values. Assume that A[ha(c)] (B[hb (c)]) has equal
probability to be any element in array A (array B), which
is true if ha and hb are uniform hashes. Each element in A

or B can be either ‘determined’ or ‘free’. A determined el-
ement corresponds to a white vertex as in the example of
Fig. 2, whose value should be fixed during the construction
to provide correct lookups for current states. A ‘free’ ele-
ment corresponds to a gray vertex and its value is ‘not care’.
We assign uniformly random values for every free element.

As a result, if A[ha(c)] and B[hb (c)] are both determined,
Dcode is determined. If one of A[ha(c)] and B[hb (c)] is free,
then Dcode is random. We know that A and B both have
m elements and there arem2 possible pairs of A[ha(c)] and
B[hb (c)]. Among them, only n pairs produce determined val-
ues of Dcode and the portion is n/m2

< 1/n. Hence, only a
small portion of the results are determined, and the others
can be considered uniformly random.

We use empirical results to validate this uniformity. Fig. 5
shows one typical example. We let the value length l = 10.
Hence, there are 1024 possible Dcodes. We enumerate all
possible combinations of indexes of A and B and compute
the resulting Dcodes. The hash functions used in Concury is
CRC32. We observe that using Concury, the combinations
(stateless packets) are very evenly distributed to different
Dcodes, with min, 10%, mean, 90%, and max values to be
925, 980, 1024, 1066, and 1120 respectively. Results of other
experiments are similar.
We compare Concury with MD5 and SHA256. Although

MD5 and SHA256 are not strictly uniform, they are consid-
ered sufficiently uniform in practice. We show that Concury
is comparable to them in uniformity and is sufficiently good
to use in practical systems. We conduct two well-known sta-
tistical tests, the chi-squared test and Kolmogorov-Smirnov
test, to compare Concury, MD5, and SHA256 with the uni-
form distribution. As shown in Fig. 6 and 7, each of them fails
around or less than 10% of the tests, because they are not
strictly uniform. Concury is no worse than either MD5 or
SHA256, especially when ld > 11 (Dcode count > 2048). In
our implementation, we set ld = 12. We will further evaluate
the load distribution to DIPs in ğ 6.4.

Based on the uniform Dcode distribution, we may use the
Dcode-DIP mapping to implement a weighted randomizer.
The number of Dcode should be larger than the number of
DIPs by a certain scale, e.g. >8x. Then, the weight of a DIP
is reflected by the number of entries in the table DA. For
example, if DIP d1 has weight 1.0, and DA holds 100 entries
pointing to d1, then for DIP d2 with weight 2.0, DA should
hold 200 entries pointing to d2. If d2 is near full, which is
unlikely, then the weight of d2 should be lowered to reflect
its current remaining capacity, and new connections go to d2
with a smaller probability. This weight change will incur a
full synchronization between the control plane and the data
plane of Concury, which is detailed in ğ 5.5.

5.4 Concury control plane

The tasks of the Concury control plane (Concury-CP) are
two-fold: 1) tracking existing states; and 2) generating new
data plane structures, mainly the new BASes, when a data
plane update is required. A naïve solution is to use a hash
table to store a set of state-DIP pairs. When an update is

185

SoCC ’20, October 19ś21, 2020, Virtual Event, USA Shouqian Shi, Ye Yu, Minghao Xie, Xin Li, Xiaozhou Li, Ying Zhang, and Chen Qian

0 256 512 768 1024

Dcode index

0

1000

2000

3000

4000

5000

P
a
c
k
e
t

c
o
u
n
t

Figure 5: Stateless packet

distribution by Dcode

1024 2048 4096 8192

Number of Dcode

0

10

20

30

40

50

F
ai

lu
re

 R
at

e
(%

)

Concury SHA-256 MD5

Figure 6: Chi-squared

test

1024 2048 4096 8192

Number of Dcode

0

10

20

30

40

50

F
ai

lu
re

 R
at

e
(%

)

Concury SHA-256 MD5

Figure 7: Kolmogorov-

Smirnov test

8K 16K 32K 64K 128K
Num of states of the VIP

0

10

20

30

40

50

D
P

co
ns

tr
uc

ti
on

 ti
m

e
(m

s)

OthelloMap

w/o OthelloMap

Figure 8: Response time

of Concury-DP construc-

tion

𝒖𝟎
𝒗𝟎

𝒖𝟏
𝒗𝟏

𝒖𝟐
𝒗𝟐

𝒖𝟑
𝒗𝟑

𝒖𝟓
𝒗𝟓

𝒖𝟔
𝒗𝟔

𝒖𝟕
𝒗𝟕

𝒖𝟒
𝒗𝟒

𝐴
𝐵

111010

011 000 001

100

111

𝑐1

Lookup 𝜏(𝑘)-th
element

𝑐2 𝑐3

𝑐4 𝑐5

index state DIP

0 𝑐1 DIP1

1 𝑐2 DIP1

2 𝑐3 DIP3

3 𝑐4 DIP2

4 𝑐5 DIP1

Update Othello for

element add/delete

Array C to store

state-DIP mappings
Othello O to get the

index of element in C

Figure 9: Lookup/update of an OthelloMap

needed, the new BAS is constructed from the set. Our in-
novative idea is to design a new data structure called the
OthelloMap that maintains both the state-DIP pairs and the
BASes for all current states. Note if the network includesM
VIPs, the control plane hasM OthelloMaps. The purpose of
using OthelloMap is to quickly generate a new Concury-DP
when a network dynamic happens.

Components of an OthelloMap. As shown in Fig. 9, an
OthelloMap of VIP v includes two parts. 1) An array C of
size n, where n is the number of current states of VIPv . Each
element ofC stores a state-DIP pair. 2) A BASO constructed
using the set of current states. The lookup result of O , using
the state identifier (ID) c , is the index i such that C[i] stores
the state-DIP pair of c . Note the length of i is no smaller than
⌈log2 n⌉ bits.
Set query to OthelloMap. The set query is a basic func-

tion of OthelloMap. The input is a possible state ID c ′, and
the output is either the corresponding DIP or ‘not exist’. To
conduct a set query, the OthelloMap performs a lookup to
the BASO using c ′ and get a value i . If the state exists,C[i] in-
cludes the DIP. Otherwise, the connection stored inC[i] does
not match c ′. Hence, it can return ‘not exist’. This process
takes O(1) time.

Addition/deletion to OthelloMap. To add a state-DIP
pair ⟨c,DIP⟩, to the OthelloMap, we first apply a set query of
c . If c exists,C[i] is revised to ⟨c,DIP⟩. If c does not exist, we
store ⟨c,DIP⟩ to C[n + 1]. Then we add ⟨c,n + 1⟩ to BAS O .
This process takes amortizedO(1) time. To delete a state-DIP
pair ⟨c,DIP⟩ from the OthelloMap, we apply a set query of
c . If c does not exist, we do nothing. Otherwise, c and its DIP
are stored in C[j]. We delete them from C[j] and move the

element in C[n], say ⟨c ′,DIP ′⟩, to C[j]. Then we revise the
value corresponding to c ′ in BASO from n to j . This process
takes O(1) time.

Memory cost analysis of Concury-CP. Let li be the
length of the index i and lk be the length of each state-
DIP pair information. The memory cost of Concury-CP is
2.33lin + (lk + ld)n + 64m + 2

ld lvm + 48 · 2
lv , where 2.33lin

is the overhead of the BAS O , (lk + ld)n is the overhead of
the array C , and the remaining is for the VIP array and DIP
array that need to be updated to the data plane.

Performance gain using OthelloMap.We compare the
time to construct a new DP with and without OthelloMap.
The results are shown in Fig. 8. OthelloMap significantly

reduces the response time in the control plane during Concury

updates by over 50%.
Interaction ofConcury-CP andHostAgents.Concury-

CP receives state arrival/termination reports fromHost Agents
running on different DIP servers. Upon receiving a report,
Concury-CP performs corresponding addition/deletion op-
erations to the corresponding OthelloMap.
We discuss Task 2 of Concury-CP, i.e., how Concury-CP

generates new data plane structures for network updates in
the next subsection.

5.5 Reactive control/data plane update

Concury-CP does not have to update the Concury-DP on re-
ceiving state arrival/termination reports. Instead, it only up-
dates the Concury-DP when there is a DIP-pool change. It is
because only under a DIP-pool change, the current Concury-
DPmay violate consistency. Recall that Concury-DP includes
the VIP array, the BASes for all VIPs, and the DIP array. For
the change on a DIP pool of VIP vi , only the BAS related
to vi and the i-th dimension of the DIP array needs to be
updated, which are a relatively small portion of the entire
Concury-DP. All other parts can be kept still.
Updating the DIP array is based on the load balancing

method introduced in ğ 5.3, which is fast. To generate the
updated BAS of vi , denoted by Oi , we need to include all
current states and remove terminated ones. The BAS of the
OthelloMap ofvi , denoted byO

′
i , includes all states. The only

186

Concury: A Fast and Light-weight Software Cloud Load Balancer SoCC ’20, October 19ś21, 2020, Virtual Event, USA

difference between Oi and O
′
i is their lookup values (Dcode

versus OthelloMap index). Recall that the main computation
complexity of BAS construction is to compute the acyclic
bipartite graph G to include the set of keys. Once G is de-
termined, assigning the values of the keys can be done by
starting from either end of the component, with complexity
bounded by a one-time pass of the values. Therefore we sim-
ply re-use the G from the OthelloMap and assign the Dcode
values, which takes a short and bounded time. In the end,
Concury-CP sends the updated structures to Concury-DP
using a programmable network API.
Upon receiving the update message, Concury-DP only

needs tomodify the arrays related to one particular VIP. Since
the memory spaces of all VIPs are independent, the modified
memory size is very small (less than 1MB in most cases).
The packets to other VIPs can be concurrently processed
while updating the data plane. In addition, we design the
concurrent control method that locks 1024 bits at the same
time for updating and only blocks packet lookups that need
to access the 1024 bits. Due to space limitations, we skip the
details.

Update complexity. The time/space complexity of data
plane update is inO(ldni), where ni is the number of connec-
tions of VIP vi and ld is the length of Dcode. Note Concury
updates happen infrequently, once per DIP change, and only
apply to the part of data plane structures of one VIP.

5.6 Consistency guarantee under dynamics

An LB experiences three types of dynamics: 1) state ar-
rival/termination; 2) DIP pool changes; 3) VIP changes. It
is important that packet consistency is still preserved dur-
ing network dynamics. For state arrival and termination,
Concury-DP has no change. In this case every packet to a
VIP i will have three possibilities for the BAS lookup.

1) The state ID of the packet, k , is known by Concury-CP
during the construction of BAS-i , and the value of looking
up k is Dcode which can be mapped to the DIP holding this
state. Then the lookup result τ (k) = Dcode and the packet
will be forwarded to the correct DIP.

2) The state ID k is unknown by Concury-CP during
the construction, and the packet is the first one of a new
state. Then according to the property of BAS, τ (k) is an arbi-
trary l-bit Dcode . According to the property of the table DA,
DA[i][Dcode] always stores a valid DIP for VIP vi . Hence
the packet will be forwarded to a valid DIP D.
3) The state ID k is unknown by Concury-CP during the

construction, and the packet is not the first one of a new
state. Hence the first packet was processed after the latest
construction and update, which was forwarded to a DIP
D. Since the data plane has not been updated since then,

Concury still returns D as the DIP of this packet, which
preserves consistency.

Concury does not cause false hits either. Using the three-
level lookup structure, for any new TCP packet or UDP
packet, the corresponding BAS will return a Dcode that will
be mapped to a valid DIP.

When a DIP pool change happens, the Dcode to DIP map-
ping needs to be adjusted. Again using the example in Sec-
tion 5.2, we may map Dcode in [0000, 0011] to DIP1, Dcode
in [0100, 0111] to DIP2, Dcode in [1000, 1011] to DIP3, and
Dcode in [1100, 1111] to DIP4. The state c is mapped to 0100
and hosted on DIP2. Suppose DIP4 fails, and the mapping is
adjusted as: Dcode in [0000, 0100] to DIP1, Dcode in [0101,
1001] to DIP2, Dcode in [1010, 1111] to DIP3. Then the corre-
sponding values in DA should be adjusted, e.g., DA[i][0100]
should be changed to DIP1 from DIP2. Also, packets of the
state c should stick to DIP2, and hence we change its Dcode
to 0101 and revised the BAS accordingly. In this way, packet
consistency is preserved.

VIP changes are very infrequent and can be handled easily.
It requires only adding an element to the VIP array and
adding/deleting corresponding BAS and one dimension of
the DIP array. No packet consistency is involved.

Concury achieves packet consistency without requiring up-

dating for every new state. It only updates when there is DIP

change. This is a unique feature of Concury compared to other

stateful LBs to achieve processing and update efficiency.

There is a possible consistency violation when a packet
of a new state arrives during a Concury update. This is a
common problem for all software LB designs.We let Concury
buffer all stateless packets during updates. Note compared
to other methods that update on a per-connection basis,
Concury updates on a per-DIP-change basis, hence such a
problem happens very infrequently.

6 IMPLEMENTATION AND EVALUATION

6.1 Evaluation methodology

We conduct three types of evaluations: 1) algorithm micro-
benchmark; 2) Concury prototype using DPDK [2] deployed
in two real networks (100GbE lab network and CloudLab [1]),
and 3) a P4 prototype running on Mininet [16]. Our code is
publicly available with an anonymous link [14]. The

results can be reproduced. The purpose of the algorithm
micro-benchmark is to compare the algorithms of Concury
over existing solutions thoroughly. The purpose of evalu-
ating software LB with DPDK is to show the actual perfor-
mance of Concury running in real networks. The purpose
of the P4 evaluation is to show that Concury can also be
deployed to programmable switches.
We compare Concury with two recent stateful LB algo-

rithms: 1) Hash table with digest, used in Maglev [23]; and

187

SoCC ’20, October 19ś21, 2020, Virtual Event, USA Shouqian Shi, Ye Yu, Minghao Xie, Xin Li, Xiaozhou Li, Ying Zhang, and Chen Qian

1K 4K 16
K

64
K

25
6K 1M

Number of states

1

10

M
em

o
ry

 (
M

B
)

Maglev

Concury

SilkRoad

Figure 10: Memory cost

for DIP-E and Small net-

work

1K 4K 16
K

64
K

25
6K 1M

Number of states

1

10

M
em

o
ry

 (
M

B
)

Maglev

Concury

SilkRoad

Figure 11: Memory cost

for DIP-V and Small net-

work

1K 4K 16
K

64
K

25
6K 1M 4M 16

M

Number of states

10

100

M
em

o
ry

 (
M

B
)

Maglev

Concury

SilkRoad

Figure 12: Memory cost

for DIP-E and Large net-

work

1K 4K 16
K

64
K

25
6K 1M 4M 16

M

Number of states

10

100

M
em

o
ry

 (
M

B
)

Maglev

Concury

SilkRoad

Figure 13: Memory cost

for DIP-V and Large net-

work

2) Multi hash tables with digest, used in SilkRoad [28]. Note
SilkRoadwas designed for special hardware, i.e., programmable
switch ASICs with > 50MBmemory. Hence, the performance
shown in [28] is different. Since Maglev and SilkRoad are not
open-source, we implement their LB algorithms in our best

effort to improve their performance and ensure consistency, but
we are not able to re-build identical system prototypes of
Maglev and SilkRoad as some of their technique details are
not fully presented [23, 28]. In addition, we also separate the
hash table of Maglev in a per-VIP basis śa fix to reduce po-
tential digest collisions but not fully resolving it. We evaluate
the performance metrics, including memory cost, processing
throughput, and load balancing. For all experiments, we ver-
ify that packets of a single state are always sent to a single
DIP. Concury causes neither packet consistency violation nor
false hits, hence we do not spend space to show them further.
We do not compare Concury with stateless LBs [17, 30], such
as Beamer [30]. It is because the main overhead of stateful
and stateless LBs are at different places: network function
side vs. server side. Also, stateless LBs require to change the
server stack, whose cost is difficult to measure. Hence it is
hard to conduct a toe-to-toe comparison.

We use CRC32-C [6] for robust and faster hash results in
Concury. Recall that the construction of BASes may need suf-
ficient different hash functions. We generate these hash func-
tions using the following approach. Let H be a CRC32 hash-
ing and seed be a 32-bit integer. We let ha(k) = H (k, seeda)

and hb (k) = H (k, seedb). Thus, ha and hb are uniquely de-
termined by seeda and seedb , respectively.
We use the real traffic trace from the Facebook data

center networks [9] for experiments. Since the packets in
the trace only carry the DIPs, we assign them to 128 VIPs.
We also generate synthetic traffic for production runs and
dynamic experiments over a duration of time. We generate
two settings of the synthetic traffic: 1) DIP-E. All VIPs have
the same number of DIPs, and they have the same number
of concurrent states at any time. 2) DIP-V. VIPs have varied
numbers of DIPs, and the numbers of concurrent states also
vary with the numbers of DIPs. The number of VIPs may be
128 or 256.We also consider two types of networks: The Small

network models an edge, and the Large network models a
cloud. In the Small network, each VIP has 32 DIPs for DIP-E
and 8 to 64 DIPs for DIP-V (32 on average). In the Large
network, each VIP has 128 DIPs for DIP-E and 32 to 256
DIPs for DIP-V (128 on average). We vary the number of
states from 1K to 16M for Large and 1K to 1M for Small,
which covers the range of practical networks. According
to actual measurement [28], the 99th percentile number of
concurrent connections in the PoP cluster of a large web
service provider is smaller than 10M. Other types of clusters
and edge networks have fewer active states, varying from a
few thousands to 10M.

For most experiments, we conduct production runs for at
least 20 times and take the average. The variations are little
and difficult to show in the figures.

6.2 LB algorithm evaluation

Algorithm implementation details.Wehave implemented
the complete functions of both Concury-DP and Concury-
CP on a commodity desktop server with Intel i7-6700 CPU,
3.4GHZ, 8 MB L3 Cache shared by 8 logical cores, and 16 GB
memory (2133MHz DDR4). Different components of Con-
cury interact as in Fig. 4. In addition, we need to provide a
series of packets from different states and let Concury pro-
cess them. One straightforward approach is to feed the LB
with an existing traffic trace. However, the time for trans-
mitting the data from the physical memory to the cache is
too long compared to the packet processing time on Con-
cury. Hence, we use a linear feedback shift register (LFSR)
to generate the states (identified by the 5-tuple) of every
packet. The generated states are uniformly distributed over
all possible 5-tuples, which is the worst case for load bal-
ancing performance for the lack of time locality. One LFSR
generates about 200M states (5-tuples) per second on our
server. In addition, we provide event-based simulation using
real traffic data to study the processing delay on Concury.
Note that LFSR gives no favor to Concury because the states
are generated in a round-robin scenario, which provides the
minimum cache hit ratio. We use 1883 lines of C++ code in
total for this prototype.

188

Concury: A Fast and Light-weight Software Cloud Load Balancer SoCC ’20, October 19ś21, 2020, Virtual Event, USA

1K 4K 16
K

64
K

25
6K 1M

Number of states

0

50

100

150

T
h
ro

u
g
h
p
u
t

(M
p
p
s)

Concury

Multi HT - digest

Hash table - digest

Figure 14: Throughput

for DIP-E and Small net-

work

1K 4K 16
K

64
K

25
6K 1M

Number of states

0

50

100

150

T
h
ro

u
g
h
p
u
t

(M
p
p
s)

Concury

Multi HT - digest

Hash table - digest

Figure 15: Throughput

for DIP-V and Small net-

work

1K 4K 16
K

64
K

25
6K 1M 4M 16

M

Number of states

0

50

100

T
h
ro

u
g
h
p
u
t

(M
p
p
s)

Concury

Multi HT - digest

Hash table - digest

Figure 16: Throughput

for DIP-E and Large net-

work

1K 4K 16
K

64
K

25
6K 1M 4M 16

M

Number of states

0

50

100

T
h
ro

u
g
h
p
u
t

(M
p
p
s)

Concury

Multi HT - digest

Hash table - digest

Figure 17: Throughput

for DIP-V and Large net-

work

1K 4K 16
K

64
K

25
6K 1M 4M 16

M

Number of states

0

100

200

300

400

T
h
ro

u
g
h
p
u
t

(M
p
p
s)

4 Threads

2 Threads

1 Thread

Figure 18: Throughput

for multi-thread

1024 4096 16384 65536 262144

Number of new states per second

0

10

20

30

40

50

60

T
h
ro

u
g
h
p
u
t

(M
p
p
s)

Concury

Multi HT - digest

Hash table - digest

Figure 19: Throughput

during data plane updates

Memory efficiency. Fig. 10 and 11 show thememory cost
of the LB algorithms of Concury, Maglev, and SilkRoad in
Small networks for the DIP-E and DIP-V setups respectively.
The memory cost of Concury is less than 1MB for <256K
states and 4MB for 1M states. The memory is only 20%-30%
of that of Maglev, when the number of states is >64K. It is
very close to that of SilkRoad. We also show the memory
cost results in Large networks in Fig. 12 and 13. Concury has
similar advantages compared to Maglev. When there are 8M
concurrent states, both Concury and SilkRoad use < 38MB.
The memory cost for the DIP-E and DIP-V setups are sim-
ilar. Concury is very efficient in terms of memory cost: it
can be implemented on hardware switches with limited pro-
grammable ASICs or commodity servers that have limited
caches. Both Maglev and SilkRoad use digests, which intro-
duce false hits. Concury provides false-hit freedom using
similar or less memory.

Processing throughput. The processing throughput of
an LB algorithm characterizes its capacity.With higher through-
put, the network needs to deploy fewer instances of the LB,
and the infrastructure cost is reduced. Fig. 14 and 15 show
the throughput of the LB algorithms of Concury, Maglev, and
SilkRoad in Small networks, using a single thread on a com-
modity desktop, for the DIP-E and DIP-V setups respectively.
The metric is in millions of packets per second (Mpps). Note
SilkRoad was designed for programmable switch ASICs. We
implement the algorithm used in SilkRoad, named ‘Multi-
level Hash Tables with Digest’ (Multi HT-digest), on com-
modity servers, and compared it to Concury. Similarly, we
also implement the algorithm used in Maglev, named ‘Hash

Table with Digest’. Concury achieves > 65Mpps when the
number of concurrent states is < 1M and shows > 2x ad-
vantage compared to Hash Table with Digest and Multi HT-
digest. For Large network results shown in Fig. 16 and 17,
when the number of states is > 1M , the throughput reduces
because the memory size is larger than the CPU cache size.
However, Concury still maintains the > 2x advantage in
throughput. The main reason resulting in the throughput
advantage of Concury is that the data plane of Concury re-
quires simpler operations than others. In addition, Fig. 18
shows the throughput of Concury scales well with the num-
ber of threads: it reaches > 250Mpps with < 1M states. The
threads share the same memory space and do not compete
for cache space. To validate that the performance is not CPU-
dependent, we perform the same experiments on a work-
station with Intel Xeon CPU E2-2687W. In all experiments,
Concury shows higher throughput than others. The results
are not shown due to space limitations.

Cost of data plane update.Data plane updates consume
CPU time. Hence, on a single thread, if data plane updates
are complex, the throughput will evidently downgrade. Ex-
isting LBs have no concurrent read/write designs [23, 28].
We conduct the following set of experiments to evaluate the
impact of updates to Concury-DIP performance. We set the
number of concurrent states to 1M and let new states join
the network. The arrival rate ranges from 1K per second
to 256K per second, reflecting the arrival rate in real net-
works. The DIP pools also change once per 10 seconds. The
throughput during updates is shown in Fig. 19. The through-
put of Hash table-digest (in Maglev) and Multi HT-digest (in
Silkroad) clearly downgrade (to <10Mpps) compared to the
results shown in the static experiments in Fig. 17. Concury
experiences downgrading too (to 42Mpps), but the impact
is limited. Hence, the data plane update cost of Concury is
small compared to other methods.

Response time and scalability of Control plane up-

date. We show the performance of Concury-CP in two as-
pects: 1) Response time of a DIP/weight change; and 2) Up-
date time for new states.When aDIP/weight change happens,
both the control and data planes need to be updated to reflect

189

SoCC ’20, October 19ś21, 2020, Virtual Event, USA Shouqian Shi, Ye Yu, Minghao Xie, Xin Li, Xiaozhou Li, Ying Zhang, and Chen Qian

1K 4K 16
K

64
K

25
6K 1M 4M 16

M

Number of states

0.1

1

10

100

1000

10000

T
im

e
(m

s)

Concury

SilkRoad

Maglev

Figure 20: Time to in-

sert new states to control

plane

16K 64K 256K 1M 4M 16M
Number of connections

0
10
20
30
40
50
60
70

T
hr

ou
gh

pu
t (

G
bp

s)

Simple forwarding

2 threads

1 thread

Figure 21: Throughput

on DPDK

0 10 20 30 40 50 60 70 80 90100
Latency (us)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Figure 22: CDF of pro-

cessing latency on DPDK

16K 64K 256K 1M 4M 16M

Number of connections

0

5

10

15

20

25

30

T
h

ro
u

g
h

p
u

t
(M

p
p

s)

2 Threads

1 Thread

Figure 23: Throughput

on DPDK in CloudLab

the change. Concury-DP provides a tremendous advantage
in response time by leveraging OthelloMap as shown in Fig. 8.
We find that when there are 8K to 128K states for one VIP
(1M to 16M in total), the Concury-CP response time is only
2-12ms. On the other hand, Maglev requires very complex
updates because it uses digests rather than the entire keys
in the hash table. We further show the time cost of inserting
new states to the control plane in Fig. 20. Note both the x and
y axes are in logarithmic scale, and all three curves increase
linearly with the number of the new states. For 16M new
states, it only takes Concury a few seconds to complete all
updates. Hence, Concury-DP is sufficiently fast and scalable
to complete updates.

6.3 Evaluation of Concury in real networks

Implementation details.We implement Concury as a soft-
ware LB using Intel Data Plane Development Kit (DPDK)
[2] in two real networks: 1) a lab 100GbE built by Mellanox
MCX516A-CDAT NICs and 2) CloudLab [1]. DPDK is a series
of libraries for fast user-space packet processing [2]. DPDK is
useful for bypassing the complex networking stack in Linux
kernel and it has utility functions for huge-page memory
allocation and lockless FIFO, etc. We modified the code of
Concury-DP and link it with DPDK libraries.

6.3.1 100GbE in the lab. To build a lab 100GbE, we connect
two commodity servers (called Node 1 and Node 2) back-to-
back to construct the evaluation platform of Concury. Each
of the two nodes is equipped with a Dual-port Mellanox
MCX516A-CDAT NIC, which provides 2x100Gbps duplex
bandwidth. There are 16 lanes of PCIe V3.0, which only
support a bandwidth of duplex 120Gbps between the NIC
and the CPU. Each node has an Intel i7-6700 8-core CPU
at 3.40GHz and costs <$800 and each NIC costs $800. The
Ethernet connection is 2x100Gbps.
Logically, Node 1 works as both a series of clients and a

number of backend servers (DIPs) in the cloud, and Node
2 works as the software LB. Node 1 uses the DPDK offi-
cial packet generator Pktgen-DPDK [5] to generate random
packets and sends them to Node 2. The 5 tuple of the gen-
erated packets are uniformly randomly distributed, which

exhibits the least locality in memory access and shows the
lower bound performance of Concury. Concury is deployed
on Node 2 and forwards each packet back to Node 1 after
determining and rewriting the DIP of the packet. Node 1
then checks the packet consistency to DIPs and records the
receiving bandwidth as the throughput of the whole system.
In the real network, the results show that the Concury

software LB achieves 100% packet consistency and the load
balancing results are identical to those in ğ 6.2.
Fig. 21 shows the throughput of Concury for DIP-V traf-

fic, measured in Gbps, where every packet is 256 bytes long,
same to the experiments of Maglev [23]. We first evaluate the
maximum capacity of the platform by a simple forwarder that
reads the 5-tuple of each packet and transmits it to the incom-
ing port without looking up any FIB or table. The maximum

capacity is 72.02 Gbps.2 We evaluate up to 16M concurrent
connections in the LB as shown in Fig. 21. On a single thread,
Concury can process 67.20 Gbps (93% of the maximum capac-
ity).We do not find a better single-thread software LB

throughput in the literature. Using 2 threads, Concury
improves little towards the maximum capacity, and the bot-
tleneck is thus not on the Concury LB algorithm. We expect
a much higher throughput of multi-thread Concury if it is
deployed on servers with more powerful NICs and memory
buses. Fig. 22 shows the CDF of the algorithm processing
latency of Concury. The latency is on a 24-packet batch basis.
We collect the latency information by recording the time
before fetching a batch of the packets and after sending out
all packets in the batch. > 99% batches finish less than 7 us.

6.3.2 CloudLab. CloudLab [1] is a research infrastructure to
host cloud computing experiments. Different kinds of com-
modity servers are available from its 7 clusters. We use two
nodes c220g2-011307 (Node 1) and c220g2-011311 (Node 2)
in CloudLab to construct the evaluation platform of Concury
software LB prototype. Each of the two nodes is equipped
with one Dual-port Intel X520 2x10Gbps NIC, with 8 lanes of

272.02 Gbps equals to 35.16 Mpps. We find it is common that the maximum

transmission capacity is less than the NIC bandwidth. For example, Maglev

[23] deployed by Google shows that its maximum capacity on a 10GbE NIC

is 12 Mpps (=6.14 Gbps).

190

Concury: A Fast and Light-weight Software Cloud Load Balancer SoCC ’20, October 19ś21, 2020, Virtual Event, USA

LB data plane
software switch in P4

Control plane

Conn generator
libtins packet
sniffing

Incoming
packets

Packet receiver
promiscuous
mode

Packets to
DIPs

RPC API

Conn arrival/termin.,
DIP/weight changesDIP/weight changes

Updates

Figure 24: P4 prototype on Mininet

0 20 40 60 80 100 120
DIP Index

0.0
0.5
1.0
1.5
2.0
2.5
3.0

N
or

m
al

iz
ed

 D
IP

 lo
ad

1e4

Figure 25: Normalized

DIP load by P4 (real

traffic)

0 20 40 60 80 100 120
DIP Index

0.0
0.5
1.0
1.5
2.0
2.5
3.0

N
or

m
al

iz
ed

 D
IP

 lo
ad

1e4

Figure 26: Normalized

DIP load by P4 (synthetic

traffic)

PCIe V3.0 connections between the CPU and the NIC. The
switches between the two nodes support OpenFlow [29] and
are claimed to provide full bandwidth. Fig. 23 show that the
Concury in CloudLab also achieves 100% packet consistency.
On a single thread, Concury can process and forward at
least 17.63 Mpps (62.5% of the maximum capacity). Using 2
threads, Concury can achieve the maximum network capac-
ity of the node. As a comparison, hash table based method
cannot achieve the network capacity by 2 threads.

6.4 Evaluation on P4 prototype

We also build a P4 prototype of Concury, in which the data
plane includes around 400 lines of P4 code. The prototype is
based on the simple switch behavioral model [3] of the P416
language [4]. To manage data plane tables, we add a middle
layer between the data plane and control plane with C++
Thrift remote procedure call (RPC) API provided by library
PI [13].

We use Mininet [16] to implement the experimental plat-
form to run Concury, which includes a P4 switch as the
Concury LB, a Concury control plane program, a host to
generate packets from clients, and a host representing 16K
logical DIPs, as shown in Fig. 24. The receiving host uses the
promiscuous mode to accept packets with different DIPs. We
use libtins network packet sniffing library [15] to generate
and send packets. To allow the control plane to communicate
with the data plane through RPC, we add the NAT support
to the prototype; hence the host can access TCP ports of the

physical machine. We use the P4 prototype to evaluate the
load balancing of Concury using both real and synthetic traf-
fic. Given that Concury shows significant improvement over
SilkRoad on software LB as shown in ğ 6.2 and Concury-DP
is no more complex than that of SilkRoad, we expect Con-
cury’s throughput on a hardware switch may be no worse
than that of SilkRoad. The results of load balancing should
be consistent on both Mininet and hardware switches.

In this set of experiments, every VIP has 128 DIPs and DIPs
have different weights, which reflect their resource capaci-
ties, to receive new connections. We use each connection to
represent a state. We define a metric L, called the normalized
DIP load, as L = ci/wi where ci is the number of connections
forwarded to DIPi and wi is the weight of DIPi . We show
the normalized DIP load inside one VIP in Fig. 25 and 26 for
real and synthetic traffic respectively. We find that the loads
for DIPs are evenly distributed. Two DIPs showing 0 are with
weight 0. The results of the other VIPs are very similar.

6.5 Summary of evaluation

As stated in ğ 3, the design objectives include the high packet
processing throughput, efficiency of memory cost, weighted
load balancing, quick construction, and packet consistency.
Concury performs well in all aspects. Compared to prior
solutions, Concury shows the advantages in all these aspects
and is only weaker in inserting new states as shown in Fig. 20.
The insertion speed is still sufficiently good for large cloud
networks. In addition, Concury is a portable solution and
does not rely on any specific platform.

7 CONCLUSION

We design and implement a new software stateful LB called
Concury, which achieves weighted balancing of incoming
traffic, maintaining consistency, high throughput, memory
efficiency, and false hit freedom. It satisfies the requirements
of a load balancer for cloud and edge data centers. Concury
represents connection states without storing the actual state
information and incurs low update cost. We implement Con-
cury on both software and P4 prototypes and evaluate it in
two real networks. Evaluation results show that Concury
provides higher packet processing throughput by >2x and
lower memory cost compared to existing stateful LB algo-
rithms. In real network experiments, Concury achieves the
highest packet processing throughput reported in literature.
Our future work will be extending Concury to mobile client
environments.

8 ACKNOWLEDGEMENT

S. Shi, Y. Yu, X. Li, and C. Qian were partially supported by
NSF Grants 1701681, 1717948, and 1932447.

191

SoCC ’20, October 19ś21, 2020, Virtual Event, USA Shouqian Shi, Ye Yu, Minghao Xie, Xin Li, Xiaozhou Li, Ying Zhang, and Chen Qian

REFERENCES
[1] [n.d.]. CloudLab. https://www.cloudlab.us/.

[2] [n.d.]. Intel DPDK: Data Plane Development Kit. https : / /

www.dpdk.org.

[3] [n.d.]. P4 Behavioral Model. https://goo.gl/vzBLE4.

[4] [n.d.]. P416 language. https://goo.gl/wp6no2.

[5] [n.d.]. Pktgen-DPDK. https://github.com/pktgen/Pktgen-DPDK.

[6] 2007. Intel SSE4 Programming Reference. https://goo.gl/J4HkVo.

[7] 2014. Making Facebook’s software infrastructure more energy efficient

with Autoscale. https://goo.gl/692u64.

[8] 2017. A10. https://www.a10networks.com/.

[9] 2017. Data Sharing on traffic pattern inside Facebook’s datacenter

network. https://research.fb.com/data-sharing-on-traffic-pattern-

inside-facebooks-datacenter-network/.

[10] 2017. Loadbalancer.org Inc. https://www.loadbalancer.org/.

[11] 2017. Netscaler, Citrix Systems Inc. https://goo.gl/STMuUY.

[12] 2017. Nginx. https://www.nginx.com/.

[13] 2017. PI Library. https://goo.gl/8Np9HQ.

[14] 2019. Anonymous Source Code of the Concury Prototype. https:

//www.dropbox.com/s/ruou2l340uu1f4u/concury%20code.zip.

[15] 2019. Libtins network packet sniffing and crafting library. https:

//goo.gl/36qokt.

[16] 2019. Mininet. http://www.mininet.org/.

[17] João Taveira Araújo, Lorenzo Saino, Lennert Buytenhek, and Raul

Landa. 2018. Balancing on the Edge: Transport Affinity without Net-

work State. In Proc. of USENIX NSDI.

[18] Djamal Belazzougui, Paolo Boldi, Rasmus Pagh, and Sebastiano Vigna.

2009. Monotone minimal perfect hashing: searching a sorted table

with O (1) accesses. In Proc. of ACM SODA.

[19] Flavio Bonomi, Michael Mitzenmacher, Rina Panigrahy, Sushil Singh,

and George Varghese. 2006. Beyond Bloom Filters: From Approximate

Membership Checks to Approximate State Machines. In Proc. of ACM

SIGCOMM.

[20] Denis Charles and Kumar Chellapilla. 2008. Bloomier Filters: A Second

Look. In Proc. of ESA.

[21] Bernard Chazelle, Joe Kilian, Ronitt Rubinfeld, and Ayellet Tal. 2004.

The Bloomier Filter: An Efficient Data Structure for Static Support

Lookup Tables. In Proc. of ACM SODA. 30ś39.

[22] David Chou et al. 2019. Taiji: Managing Global User Traffic for Large-

Scale Internet Services at the Edge. In Proc. of ACM SOSP.

[23] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman

Kononov, Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wen-

tao Shang, and Jinnah Dylan Hosein. 2016. Maglev: A Fast and Reliable

Software Network Load Balancer. In Proc. of USENIX NSDI.

[24] Bin Fan, Dave Andersen, and Michael Kaminsky. 2013. MemC3: Com-

pact and Concurrent MemCache with Dumber Caching and Smarter

Hashing. In Proc. of USENIX NSDI.

[25] Rohan Gandhi, Hongqiang Harry Liu, Y. Charlie Hu, Guohan Lu, Ji-

tendra Padhye, Lihua Yuan, and Ming Zhang. 2014. Duet: Cloud scale

load balancing with hardware and software. Proc. of ACM SIGCOMM.

[26] Xiaozhou Li, Dave Andersen, Michael Kaminsky, and Michael J. Freed-

man. 2014. Algorithmic improvements for fast concurrent cuckoo

hashing. In Proc. of ACM EuroSys.

[27] Bohdan S. Majewski, Nicholas C. Wormald, George Havas, and Zbig-

niew J. Czech. 1996. A Family of Perfect Hashing Methods. Comput. J.

(1996).

[28] Rui Mao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan

Yu. 2017. SilkRoad: Making Stateful Layer-4 Load Balancing Fast and

Cheap Using Switching ASICs. In Proc. of ACM SIGCOMM.

[29] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,

Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.

2008. OpenFlow: Enabling Innovation in CampusNetworks. SIGCOMM

Comput. Commun. Rev. (2008).

[30] Vladimir Olteanu, Alexandru Agache, Andrei Voinescu, and Costin

Raiciu. 2018. Stateless Datacenter Load-balancing with Beamer. In

Proc. of USENIX NSDI.

[31] Rasmus Pagh and Flemming Friche Rodler. 2004. Cuckoo Hashing.

Journal of Algorithms (2004).

[32] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin Murthy, Albert

Greenberg, David A. Maltz, Randy Kern, Hemant Kumar, Marios Zikos,

Hongyu Wu, Changhoon Kim, and Naveen Karri. 2013. Ananta: Cloud

Scale Load Balancing. Proc. of ACM SIGCOMM.

[33] B. Schlinker et al. 2017. Engineering Egress with Edge Fabric: Steering

Oceans of Content to the World. In Proc. of ACM SIGCOMM.

[34] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. 2016.

Edge computing: Vision and challenges. IEEE Internet of Things Journal

3, 5 (2016).

[35] Luis M. Vaquero and Luis Rodero-Merino. 2014. Finding your Way

in the Fog: Towards a Comprehensive Definition of Fog Computing.

ACM SIGCOMM CCR (2014).

[36] R. Wang, D. Butnariu, and J. Rexford. 2011. Openflow-Based Server

Load Balancing Gone Wild. Proc. of ACM Hot-ICE.

[37] Kok-Kiong Yap et al. 2017. Taking the Edge off with Espresso: Scale,

Reliability and Programmability for Global Internet Peering. In Proc.

of ACM SIGCOMM.

[38] Shanhe Yi, Zijiang Hao, Zhengrui Qin, and Qun Li. 2015. Fog Comput-

ing: Platform and Applications. In Proc. of IEEE HotWeb.

[39] Ye Yu, Djamal Belazzougui, Chen Qian, and Qin Zhang. 2017. Othello

Hashing for Scalable and Fast Name Switching. In Proc. of IEEE ICNP.

[40] Ye Yu, Djamal Belazzougui, Chen Qian, and Qin Zhang. 2018. Memory-

efficient and Ultra-fast Network Lookup and Forwarding using Othello

Hashing. IEEE/ACM Transactions on Networking (2018).

[41] Ye Yu, Xin Li, and Chen Qian. 2017. SDLB: A Scalable and Dynamic

Software Load Balancer for Fog and Mobile Edge Computing. In Proc.

of ACM SIGCOMM Workshop on Mobile Edge Computing (MECCOM).

192

https://www.cloudlab.us/
https://www.dpdk.org
https://www.dpdk.org
https://goo.gl/vzBLE4
https://goo.gl/wp6no2
https://github.com/pktgen/Pktgen-DPDK
https://goo.gl/J4HkVo
https://goo.gl/692u64
https://www.a10networks.com/
https://research.fb.com/data-sharing-on-traffic-pattern-inside-facebooks-datacenter-network/
https://research.fb.com/data-sharing-on-traffic-pattern-inside-facebooks-datacenter-network/
https://www.loadbalancer.org/
https://goo.gl/STMuUY
https://www.nginx.com/
https://goo.gl/8Np9HQ
https://www.dropbox.com/s/ruou2l340uu1f4u/concury%20code.zip
https://www.dropbox.com/s/ruou2l340uu1f4u/concury%20code.zip
https://goo.gl/36qokt
https://goo.gl/36qokt
http://www.mininet.org/

	Abstract
	1 Introduction
	2 Related Work
	3 System Models and Objectives
	4 Background Algorithms
	5 Design of Concury
	5.1 System overview
	5.2 Concury data plane
	5.3 Weighted load balancing
	5.4 Concury control plane
	5.5 Reactive control/data plane update
	5.6 Consistency guarantee under dynamics

	6 Implementation and Evaluation
	6.1 Evaluation methodology
	6.2 LB algorithm evaluation
	6.3 Evaluation of Concury in real networks
	6.4 Evaluation on P4 prototype
	6.5 Summary of evaluation

	7 Conclusion
	8 Acknowledgement
	References

