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Abstract—There have been increasing interests in exploring the
sensing capabilities of RFID to enable numerous IoT applications,
including object localization, trajectory tracking, and human
behavior sensing. However, most existing methods rely on the
signal measurement either in a low multipath environment, which
is unlikely to exist in many practical situations, or with special
devices, which increase the operating cost.

This paper investigates the possibility of measuring ‘multi-
path-free’ signal information in multipath-prevalent environ-
ments simply using a commodity RFID reader. The proposed
solution, Clean Physical Information Extraction (CPIX), is uni-
versal, accurate, and compatible to standard protocols and
devices. CPIX improves RFID sensing quality with near zero
cost – it requires no extra device. We implement CPIX and study
two major RFID sensing applications: tag localization and human
behavior sensing. CPIX reduces the localization error by 30% to
50% and achieves the MOST accurate localization by commodity
readers compared to existing work. It also significantly improves
the quality of human behaviour sensing.

Index Terms—RFID, Sensing, Multipath, Localization

I. INTRODUCTION

As a cost- and energy-efficient solution for the Internet of

Things (IoT), Radio Frequency IDentification (RFID) tech-

nology has been widely used to connect tagged objects in

ubiquitous applications, such as retailing, warehouse, trans-

portation, and manufactures [13], [16]–[19]. Besides its basic

tag-identification function, there has been a growing interest

in recent research to discover the sensing capability of RFID

tags that reflects the spatial-temporal information of the tags

in the physical world [4], [36], [39]. Typical applications of

RFID sensing include localization, trajectory tracking, human

behavior sensing, etc.. The majority of these applications rely

on the measurement of the received signal data from tags,

including the phase shift between the reader to tags (we use

“phase” hereafter) and the received signal strength (RSS).

For example, the phase measurement can help to derive

the distance and angle of arrival (AoA) from the reader

antennas to a tag and further localize the tag [2], [21]. A

successive collection of the phases from a mobile tag can

help to determine the moving trajectory of the tagged object

[32], [33], [43], [46], [47]. Phases have also been used for

human activity sensing [35], [43]. The RSS can also be used

to infer the distance from a tag to the reader or the existence

of a moving object around the tag. Hence there have been

applications that localize the target tag [42] or detect human

gestures [6], [8], [35] by observing the variation of the RSS.

For RFID sensing applications, accurate measurement of the
multipath-free physical information of the backscatter signals

is a must for their correct operations. The multipath-free

physical information is defined as the phase and RSS of the

signals without environment affection from a tag to the reader,

which can reflect the actual distance and relative location

changes. In this paper, we call the line-of-sight (LOS) signal

phase as the clean phase and the RSS that is not affected by the

environment as the clean RSS. Unfortunately, in most practical

RFID setups, signals may be reflected by various reflectors in

the environment [42], including walls, furniture, shelves, and

moving persons. We consider these environments as multipath-
prevalent environments. Multiple reflected signals combine

with each other and result in measurement results extremely

different from the clean ones. We provide an incomplete

list of recent research about RFID sensing applications in

Table I. We find that they either cannot combat multipaths
or require extra devices/restrictions. They might assume

low-multipath environments, no moving persons [21], [33],

[46], or apply the following two approaches: 1) Collecting

plenties of training data in the deployment area to estimate the

multipath [31], [32], [47]. This type of methods only considers

the static reflectors but obviously does not work when moving

persons exist. 2) Using special hardware including Software

Defined Radio (SDR) [5], [13], [23]–[26], [42], synchronised

antenna array (e.g. MUSIC algorithm [30]), moving antennas

[31], [42], robots [23], [31], [41], and broadband nonlinear

backscatter devices [24]. These methods increase the device

cost, may not be compatible with existing RFID systems, and

only work for certain specific applications. We specify them

in Sec. II.

This paper presents a low-cost, universal, and accurate solu-

tion of Clean Physical Information eXtraction (CPIX) in multi-

path prevalent environments. CPIX achieves a significant
quality gain of RFID sensing with little cost – it requires no

extra device or restriction in addition to the current operating

RFID systems: reader, tags, and a data analysis server. Hence

it is a simple yet fundamental improvement to a diverse

group of RFID sensing applications.

We resolve a number of challenges in the design and

implementation of CPIX, including the uncontrollable and
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TABLE I
SOME RECENT RFID SENSING METHODS (“LOCALIZATION” MAY INCLUDE TRAJECTORY TRACKING)

Method Task Info. used
Combat

multipath
Restrictions

RF-IDraw [43] SIGCOMM’14 Localization Phase � 2 readers, 8 antennas, limited space
Tagoram [46] MobiCom’14 Localization Phase � N/A
BackPos [21] Infocom’14 Localization Phase � N/A

STPP [33] NSDI’15 Tag ordering Phase � Mobile antenna
Tagyro [45] MobiCom’16 Orientation Phase � N/A

APID [6] UbiComp’16 Behavior sensing RSS � N/A
RFIPad [7] ICDCS’17 Behavior sensing Phase & RSS � N/A

Tag-Compass [20] Infocom’17 Orientation RSS � N/A
RIO [29]MobiCom’17 Behavior sensing Phase � N/A

ReMix [38]SIGCOMM’18 In-body localization Phase � Non-commodity SDR-based equipments
PinIt [42] SIGCOMM’13 Localization RSS � SDR, mobile antenna, anchor tags

MobiTagbot [31] MobiSys’16 Tag ordering Phase � Mobile antennas, robot, training
BNB [24] MobiCom’16 Localization Phase � Non-commodity devices

RFly [25] SIGCOMM’17 Localization Phase � Drones and Non-commodity devices
RFind [26] MobiCom’17 Localization Phase � Non-commodity SDR-based reader

WiSh [13]MobiSys’18 Localization Phase � Non-commodity SDR-based reader
RF-Echo [5] MobiCom’17 Localization Raw RF signals � Non-commodity tags and reader
TurboTrack [23] NSDI’19 Localization Raw RF signals � Need an SDR-based reader and a complex localization Helper

unpredictable multipath reflections and device diversity. The

basic idea of CPIX is to conduct signal measurement from

multiple channels of a commodity reader. Our unique in-

novation is that we decompose the measured data into two

parts: the contribution determined by the LOS signal and the

contribution by the reflected signals, and then derive their

mathematical relationships.

The state-of-the-art RFID systems can benefit from CPIX

and obtain a much more accurate phase and signal strength

measurement by simply installing the CPIX middleware pro-

gram at a backend server connected to the reader. We thor-

oughly evaluate the effectiveness of CPIX by implementing it

on two main-stream user applications, namely tag localization

and human behavior sensing. For tag localization, we utilize

the clean phases processed by CPIX as the input of a state-of-

the-art hyperbola-based localization method [21]. The CPIX

based localization algorithm can achieve median errors of

6.17∼7.63cm (in different setups), which reduce the error of

the hyperbola-based localization by 33% to 54% and is the
most accurate tag localization result by commodity devices.

The accuracy is also comparable to or higher than those in low-

multipath lab environments by recent methods (some of them

only apply to 2D) [21], [33], [46]. We also implement CPIX

on a recent human behavior recognition application RFIPad

[7] and find CPIX improves the accuracy of RFIPad by 10%

to 20%. We demonstrate that CPIX is universally applicable

to many sensing applications.

Our contributions are summarized as follows.

1) CPIX is the first generalized solution that can measure

the multipath-free physical information by only COTS

RFID devices. It is a middleware program running on

the back server without extra hardware or hardware

modification.

2) CPIX needs no deployment of reference/anchor tags or

sensors, nor training data collection. It highly improves

the application variety and convenience of CPIX.

3) We have done a thorough implementation and validate

that CPIX significantly improves the accuracy of tag

localization and human behavior sensing. We believe

CPIX could benefit a diverse group of RFID sensing

applications.

The rest of paper is organized as follows. We review the

related work in Section II. The model and validation of

multipath reflections are presented in Section III. The system

design and evaluation can be found in Section IV and V.

Finally we conclude this paper in Section VI.

II. RELATED WORK

Tag localization and trajectory tracking: Due to the close

relationship with the travel distance of signals, phases have

been widely used in tag trajectory tracking and localization.

BackPos [21] illustrates a specific method for tag localization

by constructing a hyperbola with the received phases of the

target tags, without using anchor tags. It can achieve a mean

accuracy of 12.8cm with a variance of 3.8cm. However,

the accuracy of BackPos heavily relies on a low-multipath

environment. MobiTagbot [31] is a recent method to determine

the orders of a set of tags, which can work in multipath-

prevalent environments. It needs extra hardware, i.e., a robot

reader with mobile antennas, as well as extra training time.

Besides localization, tag trajectory tracking has also been

studied [27], [28], [38], [40], [43], [46], [49]. Tagoram [46]

is designed to track a moving tag based on the hologram

method using COTS RFID systems. RF-IDraw [43] requires

a user to carry a tag on her finger and limit the movement

within a small area. Then it can track the detailed trajectory

shape of the moving tag with high accuracy. However, the

performances of these work also rely on a low-multipath

environment. RF-Echo [5] , Broadband Nonlinear Backscatter

[24], RFind [26] and TurboTrack [23] are recent localization

methods that can combat the multipath effect. However, they

both require extra hardware such as software-defined radio,

non-commodity readers, antenna arrays and even self-defined

tags.

Human behavior sensing: The movement of human body

will interference the backscatter communication between the
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RFID reader and tags. Researchers have studied the relation-

ship between the received phase or signal strength profile and

human activities [1], [3], [8], [12], [14], [29], [34], [35], [47],

[48]. Tadar [47] introduces a device-free method for tracking

moving objects through a wall. It can remove the influence of

static objects, such as furniture, by collecting reference data

in advance. RFIPad [7] is a human hand gesture detection

system to recognize basic touchscreen operations and English

letters. They all rely on low-multipath environments. In recent

years, some researchers employ machine-learning tools and

algorithms to explore and infer the human behavior among

tremendous data in a multipath-prevalent environment. How-

ever, it needs considerable hardware costs, including additional

antennas and computing support equipments, which limits its

applications.

LOS identification techniques: Prior work in other tech-

nologies, such as WiFi and 60GHz wireless, may employ a

frequency domain transform method to identify the line-of-

sight signals [26]. The basic idea is to transform the frequency

domain signals in a certain bandwidth into a time domain.

Based on the fact that LOS signal arrives earliest in time,

they choose the first peak as the estimation of the LOS

signal. However, this method cannot be applied in COTS RFID

system. That is because commercial RFID devices transmit

RF signals at a certain central frequency and the bandwidth

is extremely small (about 4MHz with InpinJ R420). Even

though we can transform the frequency domain signals into

the time domain, the LOS signal and other reflected signals

will superpose with each other and cannot be distinguished.

Besides frequency domain transformation, MUSIC is an al-

gorithm used for finding the emitters’ locations. Its basic

idea is to estimate the direction of multiple arrived signals.

However, this method needs a synchronous antenna array and

corresponding supporting devices. However, the COTS RFID

systems do not support the synchronous antenna array, even

if it equipped with an antenna hub.

Multi-channel based signal measurement: The basic idea

of CPIX to find out the internal relationship among the

measurement of physical information from multiple channels

of the reader and then infer the actual value of the clean

phase/RSS. Multi-channel based signal measurement has been

used in other technologies, such as WiFi, 60GHz wireless, and

acoustic signals [37], [44]. However, RFID devices and proto-

cols [9], [10] work differently from other wireless technologies

and hence these methods cannot be applied directly to RFID.

III. BACKGROUND

Before we introduce our method, we first introduce the

propagation model of the passive RFID system. A passive

RFID tag communicates with the RFID reader by backscat-

tering its electric signals. Since there are prevalent reflectors

in the real world, the received signals at the reader’s antenna

can be expressed as a superposition of the line-of-sight (LOS)

(a) LOS and reflected signal (b) Wave superposition

Fig. 1. RF signal propagation model. The two-dimensional coordinate system
in (b) is a polar coordinate system, in which the vectors on this plane represent
the RF signals.

signal PL and the combined multipath signals PM , i.e.:

P (ρ, β) = ρL · cos(2πf · tL + θ)︸ ︷︷ ︸
LOS signal PL

+ ρM · cos(2πf · tM + α)︸ ︷︷ ︸
Multipath signal PM

(1)

where f denotes the signal frequency, which can be considered

as identical for both LOS and multipath signals. tL and tM
are the signal transmitting time of LOS signal and multipath

ones, respectively. β, θ and α represent the phases of the

received signal, LOS signal and combined multipath signals

respectively. And ρ, ρL and ρM are signals’ amplitudes. The

amplitude ρ can be estimated by the received signal strength

(RSS), i.e., ρ = 10
RSS
1000 [46]. Note that only the line-of-sight

signal PL has the following relationship with the distance

between the reader and the tag [21], [46], [47]:

θ = (θA + θT + θD) mod 2π (2)

where θA and θT are the initial phases of the reader antenna

and the tag, respectively. And θD is the corresponding phase

change over the signal travel distance, which is defined as:

θD = (2π · 2d/λ) mod 2π (3)

where d is the distance from the antenna to the tag. λ = c/f
is the wavelength and c is the speed of electromagnetic

signal. In contrast, the multipath signal PM is determined

by surrounding reflectors, such as moving objects like human

beings, robots and static ones like furniture, walls, etc.. In

addition, due to the non-negligible reflection attenuations, we

have ρM < ρL.

A. Model of signal propagation

Observing the aforementioned elaborations, we find that

the received signal P is not a linear relationship with the

LOS signal PL. As shown in Fig. 1, the received signal P
(black dotted line) is the superposition of the LOS signal

PL (grey line) and current multipath signal PM (red dotted

line). However, we have no information about the multipath

signal PM . As a result, the COTS reader is not able to tell the

LOS signal PL from its received signal P . In other words, the

physical data (including phase and RSS) we measured from the

received signal cannot accurately reflect the exact values and

changes of the LOS signal, causing existing work to be error-

prone in multipath-prevalent environments. In the following

subsection, we will verify the impact of the multipath effects

with experiments.
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(a) Different environments (b) With mobility

Fig. 2. Phase variations due to multipaths, radian is the phase and radius is
the RSS (-dBm)

B. Experimental analysis of multipaths

We conduct two sets of experiments using COTS RFID

devices to validate that multipath reflections will cause the

measurement data (including phase and RSS) from the re-

ceived signal completely unpredictable and deviated from

the LOS ones. The first experiment is to show the ubiquity

of multipath in different static environments. We place one

tag in front of a reader, and then keep their separation

distance unchanged, but move the whole system to 10 different

locations in indoor environments. The received phases and

RSSs of the same tag are shown in Fig. 2(a)1,where the

radius reflects the absolute value of RSS and the radian shows

the degree of phase. We find that the phase measurement

results have a huge variance in (105◦, 345◦). This variance

may introduce > 20cm errors when calculating the distance

([λ ·(345◦−105◦)]/360◦ ≈ 21cm, for λ ≈ 32cm), resulting in

a destructive impact on tag localization and trajectory tracking.

The second experiment is to investigate the signal fluctuations

caused by moving objects. We let the reader keep querying

a tag and collecting the signals for 10 seconds. During that

time, a volunteer moves around the tag arbitrarily. As shown

in Fig. 2(b), the values of phase are widely distributed in the

2π range and the RSS varies in [-30, -20]dBm. In other words,

the movement of objects around the tag will make the phase

and RSS measurements significantly different from the clean

physical information and hence damage the performance of

RFID sensing applications such as localization, human activity

recognition, etc..

IV. CPIX DESIGN

The objective of CPIX is to extract the clean measure-

ment information, namely the phase and RSS, from a tag in

multipath environments. Extracting the multipath-free physical

information from the measured data is challenging. Our
unique innovation is that we decompose the measured
signals into two parts: the contribution determined by the

LOS signal and the contribution by the reflected signal, and

derive their mathematical relationships. We further validate

that measurement from different channels can be fitted with a

linear function of the two types of contributions, which can be

1Whether the reader works with a fixed frequency or with hopping
frequencies do not matter in our design.

used to extract the clean measurement. CPIX can be separated

into three steps, including 1) Phase decomposition. 2) Clean

phase calculation. 3) RSS calculation. To be more clear, we

list some key parameters used in our algorithm in Table. II.

A. Phase decomposition

As aforementioned, the received signal is a vector superpo-

sition of the LOS signal and other reflected ones. Therefore,

in this step, we first explore the relationship between the LOS

signal PL and the received signals P .

We illustrate the relationship between the measured phase

β and the clean phase θ, in Fig. 3. The radius of the vector

represents the amplitude of the signal and the polar angle

represents the current phase. As shown in Fig. 3(a), the gray

line
−−→
OC denotes the line-of-sight signal PL, while the red line−→

OA represents the superposition of all reflected signals, i.e.,
PM . Their phases are θ and α, respectively. When

−−→
OC and−→

OA meet at the receiving antenna, they superpose with each

other and form a new signal
−−→
OB, which is reported as the

signal measurement, i.e., P .

We first build a bridge between the multipath signal and

LOS signal. As shown in Fig. 3(a), we decompose the multi-

path vector
−→
OA into two parts, one vector

−−→
OA′ is perpendic-

ular to LOS signal
−−→
OC, while another vector

−−→
OA′′ is parallel

to
−−→
OC. As shown in Fig. 3(b), we let

−−→
OC ′ =

−−→
OC +

−−→
OA′′.

The new polar angle α′ of vector
−−→
OA′ has the following

relationship with the former one:

α′ = (θ +
π

2
+ k0 · π) mod 2π (4)

where k0 is a non-negative integer. In the new forms, according

to the Phasor arithmetic, we have a following equation:

tanβ =
|−−→OC ′| · sin θ + |−−→OA′| · sinα′

|−−→OC ′| · cos θ + |−−→OA′| · cosα′
(5)

Considering the relationship between the values of α′ and θ
in Eq. 4, if we replace α′ with θ in Eq. 5 we have:

tanβ =
tan θ + (−1)k0 · |−−→OC′|

|−−→OA′|

1 + (−1)k0+1 · tan θ · |−−→OC′|
|−−→OA′|

(6)

We find that θ and α′ do not have a linear relationship with

the phase β. In order to process them in a mathematical way,

we define two scalars, θ̂ and α̂, whose sum is the received

phase β, i.e.,
β = θ̂ + α̂ (7)

where θ̂ is the contribution to β determined by θ and α̂ is the

contribution to β determined by α. We call θ̂ as the mirror
image phases of θ and α̂ as the multipath variable. According

to the Trigonometric relation, we have:

tanβ = tan(θ̂ + α̂) =
tan θ̂ + tan α̂

1− tan θ̂ · tan α̂
(8)
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(a) Signals superposition (b) Decompose signals

Fig. 3. Relationships between β and θ

Comparing Eq. 6 and Eq. 8, we find that the two variables,

α̂ and θ̂, have the following relationship with θ:⎧⎨
⎩
θ̂ = (θ + k̂ · π) mod 2π,where k̂ ∈ Z

α̂ = arctan(−1)k0 · |−−→OC′|
|−−→OA′|

,
(9)

In this way, we transform the measured phase β from the

superposition of two unknown phases into a simple sum of two

scalar phases α̂ and θ̂. In addition, we build a bridge between

the desired clean phase θ and its image phase θ̂ (Eq. 9). In

the following section, we will elaborate on how to calculate

the value of the image phase θ̂ and finally infer the value of

the clean phase θ.

B. Clean phase calculation

In the previous section, we find that the measured phase β
does not have a linear relationship with the clean phase θ and

multipath phase α. Instead, we choose two phases, namely the

multipath variable α̂ and the mirror image phase θ̂, and build

a linear equation with the measured phase β. In this section,

we try to calculate the exact value of the mirror image phase
θ̂ by exploring the internal relationship among the measured

phases β in multiple channels.

We first introduce an observation and our conjecture about

the received phase β in multiple channels. Recall that a reader

has N channels (N = 16 in our experiments). We make a

conjecture that the received phase βn in channel n can be

expressed as:

βn = α̂n + θ̂ + (n− 1) ·Δθ̂ (10)

where θ̂ refers to the mirror image phase in the first channel.

α̂n is the multipath variable in channel n. Note that the

multipath variables α̂n in channel n are different and non-
linear for different channels2. On the contrary, the phase shift

Δθ̂ between two adjacent channels is linear. It is composed

of three parts, namely the phase changes ΔθD over distance,

phase changes ΔθA and ΔθT due to the device characteristics.

When the channel is switched from n to n+1, the wavelength

λ varies. As a result, the received signal over the same distance

will incur a phase change of ΔθD. In addition, the initial

2The reasons are two-fold. First, signals’ phases vary with the frequency,
which means, even if the reflectors keep stable in the environment, the phases
over the same reflection path are also different. Second, the path-loss and
reflection attenuations are both different at different transmitting frequencies.
The theoretical path loss in free space [11], [15], [50] is FSPL(dB) =
20log10(d)+20log10(f)−27.55. And the reflection attenuation in free space

can be denoted as RL(dB) = 20logZin−Z0
Zin+Z0

, where Zin is the impedance,

which is related to the frequency. As a result, the multipath variables α̂n of
different channels will be not only inconformity, but also non-linear.
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Fig. 4. The reported phases in 16 channels

phases of the antenna and tag will change by ΔθA and ΔθT ,

respectively. Observing the three components of Δθ̂, we find

that all of them are introduced by frequency hopping. As the

frequency varies linearly among different channels, the phase

shift Δθ̂ should be linear as well.

To validate the aforementioned conjecture, we perform a

set of experiments. We place a tag in two different places,

i.e., an open area and a multipath-prevalent environment, and

record the reported phases βn in each channel. The results are

shown in Fig. 4(a). The measurement phases in the open area

are roughly on a straight line y′. That is because the effect

of multipath signals in the open area is negligible when it is

compared with the line-of-sight one, i.e., α̂n � Δθ̂. Hence

we can safely express the straight line y′ as:

y′ = κ′ · n+ d′, where κ′ = Δθ̂, d′ = θ̂ −Δθ̂ (11)

We call y′ as the ideal line, which is only correct when there

is no multipath effect. According to Fig. 4(a), the reported

phases in the open area (the blue dots) indeed follow the linear

relationship, which is consistent with our conjecture. On the

other hand, in a narrow space, the multipath effect becomes

severe. In the second experiment, the multipath variables α̂n

cannot be ignored. As a result, the phase fluctuates sharply

from channel 1 to 16, as outlined by the orange triangles in

Fig.4(a).

In fact, the measured data in practice is more likely to

be inaccurate and error-prone. To retrieve the exact value of

tag’s mirror image phase θ̂ from the measured one, i.e., β, we

analogize the Eq. 10 as a matrix equation A · x = b, i.e.,

AN×(N+2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 ... 0 1 0
0 1 0 ... 0 1 1
0 0 1 ... 0 1 2
. . . . . . .
. . . . . . .
. . . . . . .
0 0 0 ... 1 1 N − 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

xT
N+2×1 = [α̂1, α̂2, α̂3, ...α̂N , θ̂,Δθ̂],

bTN×1 = [β1, β2, β3, ...βN ],

(12)

where AN×(N+2) is the coefficients matrix, x(N+2)×1 is the

unknown variable matrix, and bN×1 represents the matrix of

reported phases. And (·)T represents the transpose of the

matrix. Obviously, Eq. 12 is a set of non-homogeneous linear

equations. Since we have N + 2 unknown variables and N
equations, the solution of x has infinite possible candidates.
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TABLE II
THE KEY PARAMETERS

Para. Expression Para. Expression Para. Expression
θ The phase of the LOS signal. β, βn The received phase (in channel n). α The phase of the multipath signals.

θ̂ The mirror-image of θ. α̂, α̂n The multipath variable (in channel n). Δθ̂ The phase between two adjacent channels.
y′ The ideal line. κ′, d′ The slope and the intercept of the ideal line. ωn The weight of the data in channel n.
y The fitting line. κ, d The slope and the intercept of the fitting line. yn The value on the fitting line at channel n .
ϕ The optimization function. e1,e2 The errors introduced by multipath effects. Sn The residual error at channel n.

To find out the valid solution of x, we need to establish two

more additional equations.

To achieve this goal, we fit these reported phases βn in all

channels into a line. We define the fitting line as yn = κ·n+d,

which has the minimal ϕ as follows:

ϕ =

N∑
n=1

ωn · (yn − βn)
2, (13)

where ωn is the weight of channel n. Intuitively, the multi-

path effects are not identical for each channel. We define a

weight function to reduce the influence of severe influences

of outliers. The principle to determine the weight function

is very simple, i.e., a more serious dynamic multipath effect

leads to more discrete phase reports. As we know, the dy-

namic reflectors, such as moving objects and humans, will

introduce the uncontrollable and unpredictable errors into the

measured phases. In contrast, the static multipath effect, which

introduced by static objects like walls, ceilings, and furniture,

will be much more stable and have a normal distribution [19].

Our goal is to reduce the influence of dynamic multipath, and

try to estimate the exact effects of static multipath signals.

Therefore, we divide the α̂n into two parts, α̂n = α̂s
n + α̂d

n,

where α̂s
n represents the contribution of static reflectors, and

α̂d
n comprises of the impact introduced by moving objects. We

utilize the sample mean difference σn of received phases in

channel n to represent the discrete degrees: σn =
∑ |β0

n−βn|
t ,

where β0
n represents the reported phase samples in channel n,

and βn is the average value of all the t samples. We further

define the weight function as:

ωn =
N · pn∑

pn
, n = 1, 2, 3...N, (14)

Here we define pn = e(
∑N

n=1 σn)−(N ·σn). The pn measures

the discrete level of the n-th channel among all the N chan-

nels [31]. To make the weighted function easy to solve, we

further process the measurement pn with Eq. 14. The sum

of all ωn equals to the number of channels, i.e., N . In this

way, we reduce the weights of severely polluted channels

in order to eliminate the impact of the uncontrollable and

dynamic multipath effect. Since the dynamic multipath effects

follow a Gaussian distribution3, when the sample number t
is sufficiently large, we can safely make an assumption that∑N

n=1 ωn · α̂d
n ≈ 0. The weight function will help us to find

a more appropriate fitting line and ultimately, to get accurate

results.

3The experiments and explanations can be found in [19].

Determining the most appropriate values of rake ratio κ and

intercept d for the fitting line requires minimizing ϕ in Eq. 13.

To achieve this goal, we calculate the partial derivative of ϕ
for variable κ and d, respectively:{

∂ϕ
∂κ =

∑N
n=1 ωn · [2n2κ+ 2n(d− βn)]

∂ϕ
∂d =

∑N
n=1 ωn · [2d+ 2(κ · n− βn)]

(15)

Let Eq. 15 equals 0 and solve the equations. We have:{
κ = Δθ̂ + e1, e1 = N ·∑ω·n·α̂n−

∑
ω·n·∑ω·α̂n

N ·∑ω·n2−(
∑

ω·n)2
d = θ̂ −Δθ̂ + e2, e2 =

∑
ω·n2·∑ω·α̂n−

∑
ω·n·α̂n·

∑
ω·n

N ·∑ω·n2−(
∑

ω·n)2
(16)

We find that the slope κ and the intercept d of the fitting line y
have an error e1 and e2 with that of the ideal line, respectively.

If we can make sure the value of the errors, we can estimate

the value of our expected value, θ̂. To do so, we find two

additional equations:

Equation I: Intuitively, the first equation we built is one of

the equations in Eq. 16:

κ = Δθ̂ + e1 (17)

Note that another equation in Eq. 16 has the same effect as

Eq. 17. We can utilize either of them.

Equation II: As shown in Fig. 4(b), the points yn on the

fitting line have a gap with the reported phase βn. We define

the difference between each pair of yn and βn as residual
error Sn, i.e.:

Sn = yn − βn, n = 1, 2, 3...N (18)

According to the Eq. 16, the residual error Sn can be

transformed into another expression, i.e., the second desired

equation:

Sn = n · e1 + e2 − α̂n, n = 1, 2, 3...N (19)

With Equ. 17 and 19, we can solve all the unknown variables

in matrix x, including the mirror image phase θ̂ and the

multipath variable α̂. Since θ̂ = (θ + k̂ · π) mod 2π (Eq. 9),

the clean phase θ has two feasible solutions. However, the

value of clean phase θ is limited by the received phase β:

∠BOC ′ = (θ − β) mod 2π < π
2 . Hence we can determine

the solution of θ that meets such a requirement. Due to space

limit, we skip the details.

C. RSS calculation

Besides phases, the measured RSS profile is not reliable

as well. We conduct an experiment to explain it. We ask a

volunteer to push her right hand in a crowded lab, and use a
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Fig. 5. A volunteer pushes the right hand and the ground truth can be obtained by Kinect
Fig. 6. Model of the signals

Kinect to capture the movement trajectory (as shown in Fig. 5).

According to the movement trajectory obtained by the Kinect,

we further calculate the phase profile of this activity (as shown

in the top figure in Fig. 5(c)). Obviously, the received RSS can

not accurately reflect the tendency of the movement (as shown

in the bottom figure in Fig. 5(c)).

Our basic idea towards this problem is utilizing the geomet-

rical relationship between the former received signal
−−→
OB and

the later one,
−−→
OB′, to infer the human interference signal

−−→
OD.

Consider an example in Fig. 6,
−−→
OB is the received signal at

the reader. At that time, a human movement introduces a new

multipath signal, i.e.,
−−→
OD in Fig. 6. Then the current received

signal changes to
−−→
OB′. Our goal is to retrieve the amplitude

of
−−→
OD at each time point and to estimate the behavior RSS.

In fact, the information (including the amplitudes and phases)

of the received signals
−−→
OB and

−−→
OB′ can be directly obtained

with commercial readers. According to Edge and Side axioms

(SAS) [22], we can further make sure the remaining edge,
−−→
BB′

, which is a translational vector of
−−→
OD.

−−→
BB′ has the same

length and orientation with the vector
−−→
OD. In this way, we

estimate the amplitude of
−−→
OD by solving the aforementioned

triangle problem.

The RSS profile estimated by CPIX and the one originally

collected by the reader are also exhibited in Fig. 5(c). We find

that the RSS profile estimated by CPIX is very similar to the

ground truth, while the raw RSS signal is not.

V. EVALUATION AND CASE STUDY

To thoroughly evaluate CPIX, we implement CPIX on

COTS RFID devices and apply it to two mainstream RFID

sensing applications, including tag localization and human

behavior sensing. We evaluate the performance of the two

applications and compare them to the methods without CPIX.

A. Prototype implementation

Hardware: the CPIX prototype includes nothing more
than the basic components of a typical passive RFID system:

an RFID reader, several directional antennas, a set of tags, and

a backend server, which are all commodity devices. In specific,

we use an ImpinJ Speedway R420 RFID reader, four Laird

S9028PCL directional antennas, and four types of mainstream

UHF passive RFID tags: ImpinJ E41C, E41B and Alien 9710,

Alien 9640. Note it is usual for a reader to carry multiple

antennas to improve the coverage, and the price of an antenna

is much cheaper than the reader. The R420 reader operates at

the UHF frequency band (920.625 ∼ 924.375 MHz) and is

able to hop over 16 channels. The gaps between two adjacent

channels are the same, i.e., 0.25 MHZ. The inventory mode

is FM0, which can support about 380 successful queries per

second. Each directional antenna has a gain of 8dBi and a size

of 25cm×25cm. We run the software components of CPIX at

a Dell desktop, which equips Intel Core i7-7700 CPU at 3.6

GHz and 16G memory. The ground truth data are obtained

by laser range finder and Kinect, which are not required by

CPIX.

Software: The backscatter communication of RFID uses

two mainstream protocols, namely LLRP [10] and EPC Class

1 Generation 2 (C1G2) [9]. The reader communicates with

passive tags according to EPC C1G2, and the reader reports

the information back to the server based on LLRP. The CPIX

software on the PC is implemented using C#.

B. Use case 1: Tag localization

Localization is the most commonly proposed RFID sens-

ing application. It is also the basis of another important

application, trajectory tracking. To emulate the practical en-

vironments, we conduct experiments in three different envi-

ronments, i.e., the “hallway” (HW), “laboratory” (Lab), and

“Office” (OF), as shown in Fig. 7. In the three environments,

multipath reflections exist and could be a critical factor that

impacts the localization accuracy. Intuitively, the laboratory

environment is considered to include more multipath reflectors

than the hallway. Besides walls and grounds, many furniture

like cabinet may be a strong reflector. While the office may

contain even more multipath sources than the laboratory. The

tagged items are placed among a mess of metal products like

computer and screen, plastics, glasses and textile fabrics. The
Office environment is more complex than most environ-
ments used in existing work listed in Tables I.

We deploy 80 passive RFID tags in all. Among them, 12

are ImpinJ E41C tags, 40 are ImpinJ E41B tags, 20 are ALN-

9710 and the other 8 are ALN-9640 tags, for the reader to

localize. We utilize four antennas and form them as a square

(as shown in Fig. 7). The coordinate origin of the deployment

space is set as the center of this square. The tags we try to

localize are at different positions. Their location varies among

-82cm∼16cm in height (z-axis), -89cm∼104cm in width (y-

axis), and 92cm∼300cm in depth (x-axis). For the hallway

experiments, in each round, only one tag is interrogated

and the multipath effect is much weaker than that of the

laboratory and office environment. While for laboratory/office

environments, we place 20/10 tags in the area and localize all
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Fig. 7. Experiment environments and localization results of CPIX

(a) No mobility (b) With mobility
Fig. 8. Mean localization errors

of them at the same time. For each environment, we conduct

two sets of experiments. One is without moving objects and

another has one volunteer keep walking arbitrarily in the area.

The walking speed is 1∼2m/s. We call these two setups as

“no mobility” and “with mobility”.

The localization algorithm is a recently developed

Hyperbola-based Localization (HL) method introduced in [21],

[43]. We do not change the existing localization algorithm and

just feed the algorithm with two sets of phase data, because our

objective is to evaluate the quality of the phase data reported

by CPIX rather than a new localization method.

Localization errors. In Fig. 8, we show the mean localiza-

tion errors of the HL algorithm when using the CPIX phase

(w/ CPIX) and the phase data from the reader API (w/o CPIX)

respectively. We find that CPIX evidently reduces the HL

errors in all environments, with and without mobility. The

error reduction rate in Hallway is 38.4% (10.02cm to 6.17cm)

without mobility and 41.2% (12.48cm to 7.34cm) with mo-

bility. The error reduction rate in Lab is 32.7% (11.09cm to

7.58cm) without mobility and 41.5% (14.09cm to 8.24cm)

with mobility. The error reduction rate in Office is 52.5%

(16.05cm to 7.63cm) without mobility and 54.2% (20.6cm

to 9.43cm) with mobility. We find when the environment is

more complex and includes mobility, the multipath are more

significant and the error reduction using CPIX is more obvious.

We also test the ability of CPIX on penetrating obstacles.

We put the tagged things in a paper box, and then close the

box and try to localize the tags inside the box. The estimation

results of CPIX are shown in Fig. 7(e). We find that though

the box blocks the LOS signals and introduce more reflections,

the localization errors are still acceptable in this case. In this

case, CPIX shows possibilities of localizing none-line-of-
sight objects with a COTS reader.

Distance versus error. We also investigate the relationship

between localization error and tag distance to the antennas

in the lab environment. We place 40 tags in 4 different

distances: 0.5m, 1m, 2m, and 3m, each with 10 tags. The
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distance from the tag to the reader varies evenly in 0.5m to

3m. According to Fig. 9, the mean error by utilizing CPIX

for 0.5m, 1m, 2m and 3m are 5.13cm, 6.26cm, 6.42cm and

7.18cm, respectively, which is much better than the original

HL method (10.95cm, 11.01cm, 11.87cm, 12.32cm). In addi-

tion, CPIX works well even with one person moving around

(8.01cm, 8.27cm, 8.98cm, 9.22cm). CPIX can achieve a good

localization accuracy even when the distance is 3m, which is

considered to be far in most existing work.

Number of samples versus error. In our experiments, an

RFID reader stays at each channel for a short time period.

During this period, the reader is able to collect a number of

samples of tag replies. We expect to use fewer samples yet

achieve higher localization accuracy. We then observe the re-

lationship between the number of samples and the localization

error. In Fig. 10, we show the error in the office environment

when utilizing the first M samples (M = 1, 2, ...100). The

top figure shows the errors in ‘no mobility’ case, while the

bottom one shows the results with mobility. We find that the

errors are stable without mobility, and vary from 7.34cm to

8.13cm. While for dynamic case, the errors fluctuate sharply

before the first 12 samples, and quickly converge to the mean

error. Note that in UHF passive RFID systems, the throughput

of inventorying tags is very high. Normally a tag can report

up to 380 samples to the reader per second. Hence CPIX only

requires a trivial time for collecting phase data while providing

a high localization accuracy.

Number of channels versus error. In CPIX, we may use

up to all 16 channels. It is worth to investigate the minimum

number of channels required for this method, considering that

in some extreme applications the time duration for localizing

a tag may be limited to allow a reader to traverse only a small

number of channels. We then alter the number of channels

from 3 to 16 involved in each experiment and show the results

in Fig. 11. The left figure shows the results without moving

person. We find that the mean error reduces slowly when

the number of channels increases. Using only three channels
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(a) No mobility (b) With mobility

Fig. 11. Channel number vs. Error

TABLE III
THE SIMILARITY OF GROUND TRUTH SIGNAL AND THE SIGNALS

WITH/WITHOUT CPIX.

Method RSS Phase
Raw data 30.18% 72.66%

with CPIX 89.26% 82.17%

could achieve a mean localization error <7cm. While the

right one shows error variations with a person moving around.

The errors fluctuate among channels. However, the error in

the worst case is no larger than 8.15cm/9.49cm/11.06cm in

HW/Lab/OF environments.

C. Use case 2: Human activity sensing

To evaluate the performance of CPIX on combating multi-

path effects in human activity sensing, we conduct two sets

of experiments. The first is validating CPIX on accurately

retrieving human activities. The second one is applying CPIX

to an existing activity sensing system, RFIPad [7].

Accurately retrieving the human activity. In this set of

experiments, we ask two volunteers to perform three activities,

namely pushing hands, pulling hands and raising legs. To

evaluate the performance of CPIX on coping with multipath

effects, we conduct the experiments in three different places.

At all these places, the volunteer is surrounded by many strong

reflectors, including several metal cabinets, tables, and other

furniture. We use a Kinect to capture the ground truth of the

movement paths of the activity. In tab. III, we exhibit the sim-

ilarity among the ground truth and the RSS and phase signals

with or without CPIX. We find that the raw data can hardly

reflect human activity, especially the RSS profile. While CPIX

can significantly improve the similarity even in multipath-

prevalent environments. So CPIX can accurately retrieve the

human movement trajectory in different environments, which

may improve the accuracy and practicability of the human

activity sensing system.

Apply CPIX in state-of-the-art sensing system. We also

apply CPIX to a state-of-the-art human behavior sensing work,

RFIPad [7], and evaluate its performance. RFIPad is a human

hand gesture detection system, which can recognize touch-

pad actions and 26 English letters by detecting every stroke

people “write” in the air. As shown in Fig. 12, we form 25

tags in a 5 × 5 array, with an equal interval of 6cm. People

can perform in-air handwriting on the virtual screen. We

employ the same experiment deployment in the RFIPad work:

a directional antenna placing face the tag array with a people

in-between. In fact, some of the English letters are similar to

Tag array

Reader

Antenna

Fig. 12. Experiment deployment
Fig. 13. Five hand trajectories
of four strokes

TABLE IV
ACCURACY OF RFIPAD WITH/WITHOUT CPIX

Data CPIX −→ ↓ ↘ ⊙
RSS w/o 60% 73.33% 80% 73.33 %

w/ 80% 86.67% 86.67% 93.33%
Phase w/o 73.33% 86.67% 80 % 86.67%

w/ 80% 93.33% 86.67% 93.33%

each other, e.g., ‘H’ and ‘A’, ‘X’ and ‘V’, ‘P’ and ‘D’, etc..
As a result, detecting every stroke accurately is necessary for

letter recognition. We choose four kinds of typical strokes,

namely ‘−→’, ‘↓’, ‘↘’, ‘
⊙

(click)’. As shown in Fig. 13,

for every stroke, we choose five possible hand trajectories

(or positions). We repeat each hand trajectory for 10 times

and determine which gesture the person performs. To observe

the influences of multipath effects on system performance,

we place the system in a crowded office room. We employ

the same recognition algorithm proposed in RFIPad and feed

it with the data with or without CPIX. Note that RFIPad

may use either the phase or RSS data. Hence we compare

the recognition accuracy of both directly measured data (w/o

CPIX) and CPIX data (with CPIX) when utilizing phase or

RSS. The recognition accuracy of RFIPad with/ without CPIX

is exhibited in Table IV, which shows that employing CPIX

can improve the recognition accuracy significantly. In most

situations, CPIX can improve the accuracy to around 90%

compared to the original accuracy (70%-80%).

VI. CONCLUSION

In this paper, we present CPIX, the first generalized and

low-cost solution to calculate accurate clean physical infor-

mation for RFID sensing in the practical multipath-prevent

environment. We use a new signal analysis model to extract the

clean physical information using multi-channel measurement.

We study two use cases of CPIX: tag localization and human

behaviour sensing. The experiments indict that CPIX can

achieve good accuracies.
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