Vladimir Kozyrev

vkozyrev@ucsc.edu

3-16-2011
CMPS 161 Final Project Write-up
Facebook Visualization

For my final project, my goal was to visualize groups of friends on the
Facebook social network. This presented a series of challenges, some of which
included gathering the data, storing the data, algorithmically making sense of the
data, displaying the results and learning new technologies to make all this possible
in a web based environment. The following paper will discuss all these topics

section by section.

Section 1: General project hypothesis:

Social networks, such as Facebook, can very naturally be represented as a
graph. For my project I decided to make each person a node, while edges represent
friendships. The value of the edge signifies friends in common. [hypothesize that
close friends share a lot of friends in common, and if we delete the low values edges,

we will end up having cliques of close friends.

Section 2: Gathering the data:

The first step to visualizing data is to gather it. Facebook did not lend itself to
do this very easily. A social network’s most natural representation is a graph. Each
node represents a person, and each edge represents a friendship. For my project, I

decided to weigh the edges based on friends shared in common. For storing the data

[used a sqlite database. In the database a person consisted of his facebook id, name,
picture url, friends (other people), and and “updated” field which also consisted of
people. The updated field merely signified that the relationship between that person
was up to date. This way if there is one new person in the graph, we don’t have to
run the update on every person. This is very important, because Facebook does not

make it easy to gather date on other people’s friendships very simple.

Facebook has a method for retrieving an Facebook app user’s entire friends
list. This makes it easy for me to get a JSON object representation of all of my
friends, and their Facebook user ids. The main problem is that this method is not
supported for other people. MY original idea was to retriever my friend list, and all
of my friends’ friend lists. I would then be able to run a simple cross reference on
the computer to rebuild their friends list. Essentially the goal was to see which of my
friends were friends with my other friends. Since Facebook didn’t allow me to

retrieve other people’s lists, I had to find a workaround.

The solution I stumbled upon was an old Facebook API method called
areFriends. This method takes two user ids, and returns true if they are friends. So |
wrote an algorithm to cross-reference all of my friends against all my other friends
one at a time. The problem is that this is far slower than my previous method,

especially since each call is a HTTP request. To calculate n number of friends, the

algorithm would run Hn —i times. [had 8 threads pounding the Facebook server
i=0

for about 3 hours, making about 300,000 HTTP request, in order to complete my

dataset.

The reason that the number we multiply by decreases as we go down the set
is because the friendships are symmetrical. Meaning we for person 3, we don’t have
to check against person 1 and 2. But we do still have to check person 3-n. This helps
greatly with the overall runtime, although it still takes a few hours to complete all

the HTTP requests.

Section 3: Storing the data:

As stated before I used sqlite database to store the data, but I did not actually
have to write sql code. I used the Django web framework to both interact with the
Facebook API and to handle my database. Django makes it very easy to define
database models as classes, and it automatically generates the sql necessary to
create the tables. On top of that, to retrieve items I don’t have to write any code
either. Overall it is a very fast and efficient system to create rapid-prototype
projects. Python also allowed me to easily thread my program in order to speed up

the data collection process.

The backend used a total of 9 threads and two synchronized queues to
complete the data-gathering task. Python includes a synchronized, meaning only
one thread can access it at a time, queue class which makes having concurrent
threads access the same queue very simple. This is necessary to avoid data
corruption and race conditions. The first thing that happens was the server creates a
large numbe rof “to-check” objects. These simply consist of two people, and they
mean that these two people need to have their friendship checked. It adds all of

these to the “todo” queue. After this 8 http-worker threads and one database thread

is created. The http-workers take an item out of the “todo” queue and check if those
two people are friends. It then takes the result and creates a “result” object, which
consists of two people and a Boolean value representing whether they are friends or
not. It then adds that object to the “database” queue. The database worker takes
items from the “database” queue and updates the database as fast as it can. We only
want one thread writing to the database at a time to avoid data corruption, and that
is why the http-workers don’t write to the database themselves, and also why we

only have one database thread.

Section 4: Technologies used

As stated before I used python and Django for the back end code. Python is a
very powerful language that also is very convenient for rapid prototyping. Django
allowed me to quickly define database models and skip writing sql code. Django also
allows me to send data to the client without having to reinvent the wheel. Python is
definitely slower than any compiled language, but since we are dealing with HTTP
requests, the time for the data to travel back and forth will always take more time
than the python code executing (youtube runs a python backend). For the client
side, I stuck with HTTP with Javascript for the computation. I also used the jQuery
library to make the site appear dynamic. If the dataset was 2-3 times larger than it

currently is, Javascript might have been too slow, but as it stands it works fine.

Section 5: Data analysis

Once the client starts the program he is given the choice to log in with
Facebook. Once he does he can update his friends network on our servers (disabled
because I have my data-set, and don’t want other people to destroy my server by
having it make millions of http requests). Or they can use the sample data, which is

my friends network. This is the only option that is activated right now.

Once the client receives the friend network information from the server in
the form of a JSON object, I proceed to create a graph from it. The person class
contains all the basic information about the person, an array of friend objects, and a
Boolean value used for BFS. The friend objects represent edges between two people,

and have a value based on friends shared in common.

There is also a graph class. This contains the people in the graph (nodes and
edges), and an array of graphs (this are BFS results with different tolerances). To
construct the graph we run through each person, and see how many friends in
common they have with every other person. This is also a pretty slow operation,
although with a dataset of about 800 people, it doesn’t take too long for the

computer to calculate this.

After this I run BFS on the graph 100 times, each time increasing the
tolerance for the edges. As the tolerance increases, lower values edges are skipped.
Pretty soon the graph starts having multiple cliques, so BFS is used here to find
groups of connected people. These groups are added to an array called groups, and

that array is added to the graphs array. This results in a 3D array as follows,

graphs|[tolerance][group][person]. Once this was complete, it was time to display

the data.

Section 6: Displaying the data

My original plan was to display the data using webGL in the browser. As |
looked more into the data I had, I realized this would probably not be the best
solution. It would have resulting in a more cluttered and glitzy presentation that
didn’t add much to the actual analysis of the data. Instead I went for a 3-tired
approach of a slider, group display area, and people in the group display area. Since
we have pre-calculated all our data, switching between the different graphs takes no
computation time, this makes the slider seem very smooth and fluid (it actually

displays the groups as you are sliding it).

First, to create the slider I used the jQuery slider library. This allows me to
easily create a HTML slider element that hooks directly into my Javascript with
callback functions. As the person moves the slider, which is valued 0-99, the

relevant groups from the graphs array are displayed (which is also numbered 0-99).

The groups in the current graphs array index are instantly displayed in the
groups section. This is done using a callback function. Whenever the person changes
the value of the slider, I use a jQuery function to clear the contents of the groupBox
element, and replace it with new groups. Inside the group identifier boxes is a label
and a number representing the people in that group. These are all clickable

elements, and when a user clicks on one, he is shows a list of people in that group in

the friendBox area. These include the profile pictures and links to their Facebook

profile.

[think this is a much better Ul for a number of reasons. Firstly, it is far more
browser compatible as opposed to using webGL. Secondly, it is more efficient and
faster. Lastly, it is more informative. A person instantly sees the size of the groups,
and once the click on a group the instantly see every one in that group. Moreover
they also see their profile picture, which has a very good effect of the readability of

the data.

Section 7: Results and analysis of the data

Originally [was expecting 5-6 large groups of people, but the algorithm acted
in a way I did not fully prepare for. Instead it usually found small groups of very

close friends, as in people who all know the same people.

One major snag, and the reason for the slider, was the fact that if one has a
group of 15 people who all know each other, once the slider goes beyond 15 (the
highest value of their edges), they will disappear from the visualization. This means
that the user has to slide that slider back and forth to see all the interesting results. I
could not find an algorithm that would pick the most relevant groups out of every

BFS result.

But the end result was interesting nonetheless. While to an outside observer
looking at the results of my friends might not make much since, to a person who

owns the list, it is very interesting. These are some notable results that I found.

On the far left (most edges are kept) end of the slider, I instantly saw a group
of people from my summer internship. It would make sense that they wouldn’t
know any one from Santa Cruz or my other home in San Jose. The other group was

basically every other friend I had.

Around the middle it also got very interesting. The UCSC swim team diverged
from the rest of the school very quickly. And as one dragged the slider, one could see
how it transitioned from swimmers and non-swimmers who hung out with us, to

the closer-knit swim team group.

Once the slider was pushed even further a group emerged of the 4 members
of the Santa Cruz TME entertainment company. Once the slider was pushed further,

one of them dropped out and left the 3 founders in the group.

But the most notable result for me was when I pushed it as far right as I could
and there was only one group of 3 people. When I clicked on that group, there were

3 swimmers, all of whom lived in the same dorm-room together freshman year.

