
The Admin Transformer 

Thomas Lindsey Freeman 

CMPS 161 UCSC Winter 2011 Quarter 

Abstract 

 Animated models in OpenGL using in-system generated geometry is a tricky subject 

area, and this project shows off a vehicle that can change into different forms that makes use of a 

custom built keyframe system made for OpenGL model objects that had to be developed for the 

project. 

Introduction 

 There has always been a fascination with objects that transform their shape to become 

something else/perform another function, with TV shows such as Transformers and Power 

Ranger’s Megazords capitalizing on this desire. For my final project in CMPS 161 I decided to 

create a vehicle that could shift into either a mechanized walker or a hovercraft airplane, taking 

inspiration from a wide swath of movies and games such as Back to the Future, Spy Hunter, and 

the afore mentioned Power Rangers and Transformers TV series and movies. As I discovered 

over time however, this idea while simple on paper turned out to be a difficult task to 

accomplish, requiring a custom animation system to make the morphing between vehicle modes 

possible. This paper will discuss that system I came up with the hurdles I faced. 

Background 

OpenGL combined with the QT SDK was used for this project, which allowed me 

considerable freedom in deciding how to go about implementing the vehicle to be animated. 

Originally since there were several complex animations that needed to be mapped out and 

scripted,  I was intending on using an open source toolset called Cal3D to import the vehicle 

model but after blueprinting out the design I decided instead to create the model by hand (using 

self calculated point data)  in OpenGL. This decision was brought about by several hurdles I 

foresaw coming about; 

1. The model was simplistic enough that it would be a waste of time and effort to 

create it in a traditional program such as Blender or 3DS Max and then 

export/import into OpenGL. 

2. The actual import process is complicated by the lack of code bases that could both 

bring a model and its associated animations and skeleton into OpenGL (and in 

some cases out of my technical expertise) 

 In the end I decided on a three part design for the main body of the vehicle, consisting of 

a head and torso that could rotate together on a “hinge” and the legs which would appear as the 



trunk area of a car but would split apart to become legs or wings depending on the vehicle mode 

being changed to.  

 

 

 

 

 

 

 

Method 

After tediously modeling out the car, I placed each part in a display list, ensuring fast 

redraw times due to the lack of needing to create and draw each quad polygon anew each refresh 

tick. I then created a series of draw functions for the various body parts and grouped them 

together. This permitted me to apply whatever translations/rotations I wished to each part 

separately while at the same time keeping the entire vehicle enclosed within a body structure 

boundary. 

With the modeling completed I turned my attention to the issue of how to animate the 

model. Since animation was the biggest part of my project I had to find a way to modify the parts 

of the vehicle to match the complex animations I storyboarded out. In previous projects keyboard 

input was used to great success to increase the position/rotation of OpenGL objects to great 

success, however such a method was not feasible in this case as the model had to handle static 

operations in sequential succession. Since importing a model with intact animations was a 

method I deemed too complicated (and seemly impossible after days of researching), I was 

forced to design and create my own keyframe animation system from scratch. 

The custom keyframe system I came up with takes in translation, rotation, and velocity 

vectors in three dimensions along with an angle for the rotations. In addition to these variables, a 

bodypart ID is passed in that ensures the keyframe’s passing of OpenGL commands is done on 

the right bodypart draw function (avoiding cases such as wishing to have the head turn 90 

degress but having it applied to every body part as well). This was accomplished by running a 

check of the animation state function before the redraw of a bodypart display list. At a 

keyframe’s creation, the passed variables get set as maximum values with a current variable set 

up opposite of each one. These current variables are incremented/decremented with each 

program tick update, ensuring smooth transforms from start to end point.  



Careful pushing and popping of transformation matrices had to be done to ensure the last 

keyframe’s coordinates would be taken into account and not forgotten when a new keyframe was 

activated and used. This involved running through a loop of already expired keyframes in the 

check animation state function and applying each translation and rotation operation of these 

frames onto the respective bodypart passed in as a variable into the function. After this the 

current frame would be updated and any transformation applied on top of the expired frames 

position/rotations. Without this step the animation for each frame would play out then snap the 

bodypart back to its default position before the next keyframe due to the resetting of the 

transforming matrix. 

Modifying the origin of the car’s body and its various parts was another necessity for the 

project as many of the animations involve flipping or hinging parts. To this end I made a 

function that takes in a new origin position and applies it before drawing the various body parts. 

This is useful when for example in the car to walker animation the body has to rise up and rotate 

itself onto the trunk. In this case the back wheels need to be the source of the origin for the 

rotation which necessitates the moving of the body origin from the bottom of the vehicle to the 

location of the wheels.  

Since applying storyboarded animations on paper to actual models is often not a smooth 

transition, I also created an animation debugging system that allows user inputted keyframe 

points to any bodypart of their choosing. The system is toggled with a specific key press and then 

separate modes for translation, rotation can be activated. Once one of these modes have been 

turned on then the X, Y, Z axis’s can be enabled and increased/decreased. The states of all the 

variables are displayed with each modification, allowing the user to note down the variables for 

later input into a static keyframe to have animated out automatically. A similar debugging 

system was created for the camera, allowing the user to find and note down the various 

position/view variables in order to place the camera in a “chase” location behind the vehicle. 

With the camera debug mode the user could adjust the X, Y, Z axis and the tilt/angle of the 

camera. 

Since we are heavily encouraged to use and show off as much animation as possible in 

the project, I created a function that swings the camera around the model during a transformation 

to show off the morphing in all its glory. This is done by incrementing the angle each frame tick 

any of the “currently in transformation” Boolean values is triggered. Getting a perfect 360 degree 

rotation is not necessary as the rotation matrices are destroyed and the camera reverted to its 

original chase position as soon as the respective boolean values are set back to false. 

Since locking the camera to the vehicle and keeping it in the same position as the vehicle 

moves proved to be difficult I decided instead on making the vehicle and camera stationary and 

instead translate/rotate the terrain via the vehicle input controls instead. This insures the camera 

is always in the perfect chase position. 



Result 

 

While the project originally started out as a sandbox game where the user could control a 

vehicle around the terrain, it quickly changed into a necessity of having the ability to keyframe 

objects in OpenGL without the need to have complicated third party plugin programs. Time was 

a major factor for this project and if I had had more of it I would have been able to go further 

with the actual vehicle manipulation and environment implementation. As it stands now I have a 

relatively robust keyframe system that can be easily adapted to other projects I undertake that 

require animation.  



The project was not without difficulties, I originally intended to have the vehicle be in the 

midst of heightmap generated terrain that could be collided with, as well have influence on the 

various parts of the body (such as feet that could be shifted based on the terrain height or 

position) as well as having the model be completely modeled out in a traditional 3D modeling 

program package. The time I put into researching alternate ways to accomplish my goals was 

significant and it wasn’t until the last few weeks of the quarter that I was able to make substantial 

progress. I was hoping to also make it so multiple keyframes could be executed at the same time 

but due to logic and time issues I was forced to abandon the feature. 

Much time was also lost on the keyframe system, mostly to do with 

calculation/interpretation issues as well as debugging/testing. Early on in the system’s 

development I dropped support for scaling of objects as it was hard to lock down an anchor point 

for the object to stick to while resizing. Negative numbers were also a big issue for a long time, 

refusing to expire keyframes when the goal distance or rotation was met. This was eventually 

discovered to be due to an issue with the datatype used to store the variables as well as a logic 

problem with the three axis. This was corrected by making separate cases for each axis and 

checkpoints that had to be all activated before a keyframe could consider itself expired and 

inactive. 

Related work 

Most of the information and work I’ve found on keyframe systems has mostly been with 

interpreting and integrating animations made in modeling programs outside of OpenGL. These 

solutions are often large open source subset code databases that are difficult for the average user 

to integrate into their projects, more suited toward games that require vast numbers of models 

and intact animations. The more simple systems often only import the geometry data and not the 

animation data. 

Future Work 

Currently the animation keyframe system is still in the fine tuning phase of development. 

For future projects I hope to make it so multiple keyframes can be executed at once and 

keyframe delays can be used to hold an animation at a point for a certain number of frames. I 

also hope to make a more substantial version of my transforming vehicle game once this 

keyframe system has been perfected, as I have high desire to make a game that challenges 

players on multiple levels of environment and controllability. 

 

 

 

 



Conclusion 

Animated morphing with restricted movement of parts is something that has been made 

easy with traditional 3D modeling program’s use of keyframe and skeleton systems. While my 

method of overcoming OpenGL’s lack of such systems is perhaps not the most elegant, it 

nevertheless was a easier task to implement for animated sequences then using a larger program 

more suited for larger, complicated programs, and is a system I hope to improve upon in the near 

future.  

References 

 Cal3D: http://gna.org/projects/cal3d/ 

 OpenGL:Tutorials:Basic Bones System: 

http://gpwiki.org/index.php/OpenGL:Tutorials:Basic_Bones_System 

 Key Frame Animation: 

intranet.cs.man.ac.uk/Intranet_subweb/library/3yrep/.../5724217.pdf 

  

 

 

  

 

 

 


