
Final Project Technical Paper
Ryan Drury

Abstract– Here I’ll outline my attempt at simulating hair. I’ll

try to cover every detail of my implementation, and the results

that were yielded.

I. Introduction
I was hoping to get as far as I could in simulating hair

that would dynamically and realistically interact with its
outside environment. I was also hoping to explore the
rendering component, but my progress in that area was
limited. I made a decent amount of progress with respect
to the physics, although they aren’t quite stable enough
to be used in practice. I tried to implement collision de-
tection between the hairs and the model in which they
were rooted, but the algorithm was very inefficient and it
slowed down to a halt. It is also very unstable and unre-
liable. The hairs have a stiffness to them that can keep
them away from the scalp, so this isn’t that much of a
problem. I gave the user the ability to add and remove
hair from certain faces of the model by clicking on them.
The method for picking was ray tracing, as it was quite
simple to extend my collision detection code for ray trac-
ing. I also added a wind effect.

II. Implementation Details
Here I’ll cover my methods for the physics, and the

rendering I implemented. As a disclaimer, I am not that
familiar with the official terminology for physics, and I
will frequently use the word acceleration when I should
use force, because in my program, mass is ignored.

A. Rod Physics
The model I choose to use for the strands of hair was

a linked chain of rods that would try to be rigid. That is,
they would always try to not compress or stretch, given
the forces exerted upon them by their outside environ-
ment. To implement this, I used an adhoc method that
made use of the spring equation and spring dampening.
For each rod, I would go to the end points and compute
an acceleration pushing them towards the center with a
magnitude of:

l − L
2

where L is the length the rod should maintain and l
is the current length of the rod. If nothing else was act-
ing upon the two points, and if the two points had no
previous speed towards or away from each other, then it
would be guaranteed that the rod would have length L in
the next frame. However, the two endpoints would then
continue rocketing towards each other in the next frame,
as opposed to stopping. To solve this problem, I included

spring dampening.
To put the process of spring dampening into words,

the amount of velocity that each end point has towards
or away from the other is calculated, and then eliminated.
To do this, I first calculated the average velocity of the
two points:

vave =
v1 + v2

2
I then computed the direction to the other point with:

d = p2 − p1

I then computed the speed that each point had relative
to the average velocity by taking the difference:

v′
1 = v1 − vave
v′
2 = v2 − vave

I then computed the projection of these velocities onto
the directional vector:

v̂1 = projd(v′
1)

v̂2 = projd(v′
2)

It happens that v̂1 = −v̂2, so you can compute v̂2 more
efficiently that way. These two velocities represent how
much the two end points are towards or away from each
other. To eliminate this movement, we can subtract these
velocities out of the picture:

v1 ← v1 − v̂1
v2 ← v2 − v̂2

So that is how I dampen velocities. Once I had these
routines implemented in functions, I applied them as fol-
lows. First, I used the dampening function to make it
so that the points have no velocity towards or away from
each other. Then I moved the points based upon their
new velocities. Then, at this point in the future, I ap-
plied a spring with a constant of 1

2 . So that computed
the new velocity to use. I then moved the points back to
their previous positions. I found this experimentally, and
it seemed to work reasonably well as long as the gravity
was low enough.

So the previous mechanics were responsible for preserv-
ing the lengths of the hair rods. The next thing I imple-
mented was the stiffness of the hair. That is, I wanted the
rods to exert forces on one another so that they would try
to maintain certain relative angles to one another. I’ll now
describe my implementation of this.

I would begin a loop over the points in the chain of
rods composing a strand of hair, and I would examine
three points at a time. There is a middle point, p0, and
point to the left, p1, and a point to the right, p2. These
three points determine two rods, which meet at a certain
angle at the center point. Let d1 = p1 − p0, d2 = p2 − p0.
These are the vectors emanating out from the middle point
to the two neighboring points. The current angle at the
meeting point between the two rods is calculated via:

θC = arccos
(

d1 · d2

||d1||||d2||

)
There is a specified ideal angle that the joint should

obtain. Let this angle be θI . There is also a constant that
behaves like a spring constant. Suppose this constant is
denoted by k. Then the torque acting on the points is
given by the spring equation:

τ = k(θC − θI)

Once this is calculated, an appropriate acceleration
needs to be applied to all three points. There are two intu-
itive notions that describe this acceleration. It must occur
within the plane determined by the three points. The an-
gle should only pull straight in, or push straight out. It
should not try to twist the orientation of the points, or
anything like that. Another thing is that it should act
on the points perpendicular to the direction between the
points. For this I defined a function, which I called an-
tiProjection, and it just computed:

antiproju(v) = v − proju(v)

which is like the other component of the projection.
That is, we can decompose v into the sum:

v = proju(v) + antiproju(v)

where proju(v) is a multiple of u and antiproju(v) is
orthogonal to u.

So to take care of the acceleration being orthogonal to
the relative positions, and for the acceleration to be within
the plane determined by the three points, I computed:

c1 = antiprojd1
(d2)

c2 = antiprojd2
(d1)

Once obtained, c1 is a vector that is orthogonal to d1,
and is within the plane spanned by d1 and d2. Similarly, c2
is orthogonal to d2, and is within this plane. The desired
accelerations for p1 and p2 will be multiples of c1 and c2
respectively. I then normalized c1 and c2 and scaled them
by the magnitude of the acceleration to apply:

c′1 =
c1
||c1||

c′2 =
c2
||c2||

a1 = ||d1||τc′1
a2 = ||d2||τc′2

I scaled the amount acceleration by the distance be-
tween the respective points because I had usually seen
things like that when I had seen torque, but I can’t com-
pletely justify or explain my use of it there. There may
be a better, or more correct way. My strands became very
unstable if they had more than around 15 links, so maybe
this is related. Anyways, once the accelerations were cal-
culated, I applied them as follows:

v1 ← v1 + a1

v2 ← v2 + a2

To keep it so that the net force on the system was still
zero, I subtracted the velocity of the center point by these
accelerations:

v0 ← v0 − a1 − a2

So that did it. A good value for the k was −.4. Any-
thing smaller seemed to fold too easily and things higher
than that would start strobing back and forth.

So those are the two main procedures I used to main-
tain the behavior of the hair. For the angular springyness,
I did a single pass through the chain of rods, calling the
above procedure on every triple of adjacent points. For the
procedure that tries to maintain the lengths of the rods, I
did n passes through a chain of length n, which yields an n
squared algorithm. This seemed to dramatically improve
the behavior though, so I kept it.

I’ll now describe the physics involved for keeping the
hair attached to the model. I only attached hairs to the
vertices on the model. To maintain the attachment, I set
the position of the first point in the chain to the loca-
tion of its assigned vertex on the model. In this way, the
chain would get pulled along if the model was to move.

One complication created by this was the fact that the
top point in the chain was unaffected by gravity, while
the rest of the points in the chain were. Since the length
maintenance code makes use of the velocity, this created
a strange effect. To compensate, I would treat the first
point differently during these calculations, accelerating it
upwards by negative gravity before so that it would ap-
pear to be moving away from the other points, and then
reseting its velocity back to zero afterwards. This seemed
to help.

To get the hairs to go off the scalp and fight gravity,
I used the angular spring procedure to give the first rod
a tendency to try to align itself with the vertex normal
at the vertex it was attached to. When gravity was suffi-
ciently low, this worked pretty well and collision detection
between the scalp and the hair wasn’t needed too badly. It
would be feasible to have the chain use an arbitrary vector
to align itself with, and this would accomplish “combing”
of the hair, but I did not implement such a feature.

A final feature I added near the end was wind resis-
tance. I considered this as a function that operated on
the end points of a single rod. The input to the function
is a vector giving the wind direction and its magnitude.
I compute the dot product between the normalized wind
vector and direction vector for the current rod. If the two
vectors were orthogonal, the I wanted maximum force. If
they were parallel, then I wanted no force. So I defined
the equation for the force to be:

a = (1− abs (w′ · d′))w

And this seemed to work pretty well. I now realize that
this is incorrect, as wind does not accelerate things in this
way, but rather, averages the objects velocity with its own
wind velocity. In that sense, something traveling the same
speed as the wind will not undergo any acceleration, while
my model above will continue to accelerate such an object.
So that is a flaw.

B. Hair Rendering
A chain of points is placed at each vertex in the model.

These chains emanating from the vertices are used as val-
ues for interpolation for the hair strands coming off the
faces. To interpolate two chains of points, I interpolate
the positions of each of the points along the respective
chains. The result is a new chain of the same length,
where each point is somewhere in the middle. I then per-
formed a variant of bilinear interpolation to generate hair
strands across faces. It is a little different because my code
only does the interpolation over triangles, rather than four
sided objects, so there are only three boarder values to in-
terpolate between. I first interpolate between two of the
border values. I then interpolate between this calculated
interpolation and the third boarder value. A side effect of

using this is that many hairs tend to bunch up near the
third value. This could be fixed by using indexing for the
parameters of the interpolation that compensated for this
effect. But I did not implement this correction.

So that is how I perform the interpolation along the
faces. I will now describe how I render a particular chain
of points (generated by the interpolation) as a strand of
hair. I was hoping to try many different techniques for
this, but I ended up with sticking to a pretty minimalis-
tic approach. I did not try to employ any kind of curved,
parametric line. Each rod in the chain is rendered as a tex-
tured rectangular prism. It is a cheap rectangular prism,
where only 3 quads are drawn for each rod. Two quads go
down the center of the rod, intersecting perpendicularly
such that their intersection is the rod itself (as a line in
3D space). The third quad is drawn at the roof of the seg-
ment. If the third quad was not there, then the hair would
look like plus signs if you happened to be looking straight
down the end of a hair. The quads were textured via a
ppm image loaded at run time. The texture coordinates
for each quad are determined completely by its position
in the chain. Each chain uses the same texture coordi-
nates, so every chain looks exactly the same, as far as the
texturing goes.

For the lighting of the hair, I followed advice given to
me by Professor Pang. Pang mentioned that it can be dif-
ficult to specify normals to hair, because you don’t have
a surface to work with. He went on to say that you can
just use the tangent line of the hair, and that it will look
alright. After implementing this, I am surprised that it
actually did turn out pretty well. When the hair curls and
oscillates, the lighting gives the impression of glossy, shiny
hair.

To control where the hair was, I simply stored the
memory to handle the hair being everywhere, but then
also had an array that stored which faces had active or in-
active hair. Inactive hair was not processed for the physics,
and it is not displayed.

C. Collision Detection
I was able to implement functional collision detection,

but the collision resolution was not very stable or reliable.
The collision detection, although correct, was also incredi-
bly slow for large amounts of hair, leading to speeds along
the lines of 1 frame for every 5 - 7 seconds. I will first
describe my methods for collision detection and the role
that the code ended up playing in my program.

I planned to implement collision detection by looking
for rods that intersected with triangles from the model.
So I wrote a function that found the intersection point be-
tween a line and a plane. This function took, as its inputs,
two points on the line, l0 and l1, a point on the plane, p,
and the normal vector to the plane, n. The intersection

point is then calculated as:

z =
n · (p− l0)
n · (l1 − l0)

(l1 − l0) + l0

where no intersection exists when we have that the de-
nominator, n · (l1 − l0) is zero. To derive this, you can
consider the parameterized line:

l(t) = t(l1 − l0) + l0

and then solve for a t such that l(t) will be on the
plane. That is, you can solve the equation:

n · (l(t)− p) = 0

and then plug that t back into l(t). So it wasn’t too
difficult to determine the intersection point between the
infinite plane and the infinite line. To check to see if the
line with end points, l0 and l1 had collided with the plane,
all you had to check was if t ∈ [0, 1], where t is the param-
eter mentioned in the above paragraph. The intersection
point will be on the line between its endpoints, l0 and l1,
if and only if 0 ≤ t ≤ 1. I had to mess with this to get
it so that rods wouldn’t collide with faces that they were
directly attached to at their root point. I never did get
that completely stable and usable.

So we know how the find the intersection point, and
whether to see if the intersection point is on the given
line. Now we need to test to see if it is actually within the
triangle. So suppose that the triangle is given as the three
points, p0, p1, and p2. We can let:

b1 = p1 − p0

b2 = p2 − p0

and then try to find x, y such that:

xb1 + yb2 = z − p0

where z was the intersection point. If we could get the
x and the y, then we would have that z was on the triangle
if and only if x, y ≥ 0 and x+ y ≤ 1. I calculated y as:

y =
||b1||2b2 · z − (b1 · z)(b1 · b2)
||b1||2||b2||2 − (b1 · b2)2

and then once y was known, x could be calculated as:

x =
b1 · z − b1 · b2y
||b1||2

Note that I really don’t think this is the best way to
do this, and that there probably is a better way. I just
got this to work so I stuck with it. When I derived this,

I started out with the initial equation and then I dotted
both sides with b1 and then another copy of it with b2,
solved for x in terms of y in one equation, applied the
substitution in the other equation, and then came down
to a single result.

So that completely covers my collision detection.
When it runs, it sees if every rod is colliding with every
face on the model, which takes forever when the hair has
many subsegments to it.

For the collision resolution, I tried to reflect the veloc-
ity of the point sticking inside the model out so that it
would bounce back out. This may work in certain cases,
but it wasn’t enough for when gravity was trying to push
a hair through a face.

Although the collision handling more or less failed, I
was able to use the code for the collision detection to im-
plement a ray tracer, which I used for picking the model’s
faces with the mouse cursor. I used the position of the
camera as l0 and then used information about the camera
(where it was looking and it’s orientation) as well as the
mouse’s position on the screen to create a point l1 that
was on the plane one unit away from the camera such that
l1 was always directly underneith the mouse cursor. I then
relaxed the condition from t ∈ [0, 1] to just t ≥ 0. I then
ran the intersection point calculation code for every face
on the model, and returned the face that minimized t. The
face that minimizes t is closest to the camera. This pick-
ing was used for spawning and deleting hair off of faces by
changing the flags that affect their hair status.

III. Conclusion
Using the blocks for the hair, as well as the interpola-

tion made the hair appear to be pretty nappy. The wind
effect looks very interesting if blown in the opposite direc-
tion of gravity. The movement is almost similar to that
of fire, but the movements are at a slower pace. I wasn’t
able to get as far as I would have liked. It would have
been interesting to see what a successful implementation
of collision detection would have looked like. I was unable
to handle twisting of the hair stands. That component of
the physics is ignored completely. It would have been very
interesting to explore more about the rendering compo-
nent of the project. I feel like I touched the surface of all
three of the areas, but not quite enough to create some-
thing that would be useful for an artist. But, still, it is
interesting and fun to play with.

References
[1] Florence Bertails, Basile Audoly, Marie-Paule

Cani, Bernard Querleux, Frederic Leroy, Jean-
Luc Leveque. ”Super Helices for Predicting
the Dynamics of Natural Hair.” ACM Trans-
actions on Graphics (Proceedings of the SIG-
GRAPH conference) - August 2006. Web. 31
Jan. 2011. http://www.lmm.jussieu.fr/ au-
doly/research/hair06/index.html

[2] Florence Bertails, Basile Audoly, Marie-Paule
Cani, Bernard Querleux, Frederic Leroy, Jean-
Luc Leveque. ”Super Helices for Predicting
the Dynamics of Natural Hair.” ACM Trans-
actions on Graphics (Proceedings of the SIG-
GRAPH conference) - August 2006. Web. 31
Jan. 2011. http://www.lmm.jussieu.fr/ au-
doly/research/hair06/index.html

[3] Florence Bertails, Basile Audoly, Bernard
Querleux, Frederic Leroy, Jean-Luc Leveque,
Marie-Paule Cani ”Predicting Natural Hair
Shapes by Solving the Statics of Flexible
Rods.” Eurographics (short papers) - August
2005. Web. 31 Jan, 2011. http://www-
evasion.imag.fr/Publications/2005/BAQLLC05/

[4] Bertails, F. (2009). Linear Time Super-Helices.
Computer graphics forum, 28(2), 417-426.

[5] Bruderlin, A. (2000). A method to generate wet and
broken-up animal fur. The Journal of visualization
and computer animation, 11(5), 249-259.

