Zablan 7

Mark Ian Zablan

Professor Alex Pang

CMPS 161

March 17, 2011

Pinball Simulation

Abstract

One of the core issues behind computer graphics and animation is when

two or more bodies interact with each other, otherwise known as collision

detection. This problem has with time become nearly synonymous with computer

games and the like as nearly any game requires interaction between two or more

entities, making it necessary to understand when two things are holding an

exchange, whether it be hitting physical boundaries such as walls or being within

range to activate certain parts of gameplay. This project is aimed at finding greater
understanding behind collision detection by attempting to replicate a simple pinball
machine.

1 Introduction

Simulations of the physical world tend to be very intuitive. When a ball is dropped inside a game the ball will fall with some force to the ground and probably bounce before losing energy and stopping. The laws by which this happens have been well defined by physicists and other hard scientists within the past millenia towards understanding the methods by which the natural world works. Ironically it is this desire to understand nature that the computer scientist replicates what happens in the real world in a controlled environment. This comes with several advantages, among the least of which is the elimination of outside forces which could potentially skew the results of an experiment. It is also arguable that a greater understanding of such interactions occur when one has to break it down and attempt to replicate it.

Of course there are elements not present in the outside world that can make their way into a simulation. A simple bug or bad programming can of course skew results if the computer does not understand anything it does, but instead simply does it.

This paper introduces an attempt for greater understanding of a physics-based system with one of the most common tasks in software engineering, collision detection in the form of a pinball simulation. An issue that has long been associated with computer animation, the collision detection issue is one that also branches out into video games and physics-based animation and even robotics [1]. Video game programmers especially often have the issue of what items are colliding with what, and resolving the collision with game state changes such as a save point or simply being rebuffed when trying to run through a wall.

Through a simple interaction of the ball with the rest of the pinball playing field, the ball should be colliding and interacting with the rest of the game world, mainly through collision resolutions. If the ball hits a wall, it will bounce back. When not colliding gravity will pull the ball downward. The ball will lose speed if simply pressed against a flat wall eventually coming to a halt.

This paper is structured as followed: Section 2 provides a background of the physics implemented and how differences between the real world and a simulation change things. Section 3 details the implementation of the simulation itself. Section 4 details possible future work. Section 5 concludes the paper.

2 Physics Groundwork

Physics more or less define everything that can occur in our world and knowledge of its inner workings is necessary in a physics-based system. Specifically a world with a ball moving around will have some kind of motion and will transfer energy when it collides with other objects in the world. The ball will have some kind of gravity that will constantly pull the ball down. For the purposes of simplicity these examples are the core of the project.

Physics details every event that can occur, but within the realm of a simulation many elements that would otherwise be present are removed from the equation. For example, although there are complex methods of determining friction present on an object, this was foregone in favor of instead simply reducing the velocity vector while the ball was proceeding through the update() function.

Gravity is an somewhat important factor when dealing with the world. This natural phenomenon of two bodies drawing themselves towards each other began in modern study far back during the Scientific Revolution and the famed scientist Galileo [2]. Although there are complex formula for calculating the force of gravity, given the size of the earth overpowering nearly every element on the play field and the force of gravity for every other object on the map being miniscule, the simulation simply assumes that gravity is a force of acceleration that constantly brings the ball downward.

Another issue is that if this is a true pinball simulation, the force of gravity should be slanted across a board. However, simple calculations show that despite that the gravitational constant is just that—a constant. A flat addition to the velocity vector at every integration step will suffice for such a situation.

Fig 2.1 Diagram of an elastic collision[image: image1.png]Conservation of momentum: - m, v,+m,v,=m, vi+m,v;

LI B |

anergy: iy m=

Combining these two equations and doing a lot of algebra gives

velocities of objects 1 and 2:
_vilm—my)+2m,v,

Conservation of

Smy=m)+2m, v,

m,+m, m,+m,

The most intricate and most important part of this assignment is of course the collision detection and resolution. If the ball cannot be bound within the play field, there is no pinball game there is simply a sphere flying off screen never to be heard from again. Working under the assumption that the ball is a perfect sphere, it is assumed to have some radius r that can be used for any object it might encounter. If any wall or object finds itself within r units of the screen, it will report that there is a collision happening. While this happens it becomes necessary to shut out other reports of collisions until the collision event is resolved. This is explained further in section on implementation.

The majority of objects present on the field are not solid circles, so it becomes necessary to detect how far any object is from the ball. If this is say a wall, with two points used to determine where it starts and end, it becomes necessary to calculate the distance of the closest point on the line to the sphere. If the distance between this closest point on the line and the center of the ball ever becomes < r we can assume a collision event [3 4].

To find this point on the line, it has to be some point between A and B, where A and B are the endpoints to the line segment we are checking for collision. Taking the center of the ball, point P, we take the dot product of the line from A to P and A to B in order to get a perpendicular segment from point P to some spot on the line AB, t [3 4].

The collisions themselves for the project would be designed as a a partially elastic collision. Inelastic collisions would require far more work than what could be applied. Instead a middle-ground of sorts was reached where some of the energy from the elastic collision was always lost by some fixed proportion.

When two objects collide, there is often the need for some linear algebra to resolve the resulting force equation. As shown below there are quite a few variables involved that must be solved through as system of equations [5]. However, the simulation relies on several facts that make these calculations far simpler. It assumes that none of the objects that the ball hits can have any influence on what the object will do next. The ball cannot move a play field wall or suddenly push a flipper out of the way. Secondly it assumes that the ball is the only thing with weight that matters. Everything except the ball is assumed to have a weight nearing infinity, and will never move unless player input deems it so, in case of the flippers.

[image: image2.png]unit tangent,

Fig 2.2a List of equations that must be solved

With this information in hand it becomes apparent that the original velocity of the ball colliding with say, a wall, will almost likely be zero. Knowing this, the system of equations can be simplified as follows:

· m1 * v1 + m2 * v2 = m1 * v1' + m2 * v2'

· ½ m1 * v1^2 + ½ m2 * v2^2 = ½ m1 * v1'^2 + ½ m2 * v2'^2

· m1 = 1 and m2 = ∞ we see that v2 = 0

· v1 + ∞ * 0 = v1' + ∞ * v2'

· v1 = v1 + ∞ * v2'

· v1 / ∞ = v1' / ∞ + v2'

· 0 = 0 + v2'

· v2' = 0

After some experimentation it became clear that when solving for v1' that it was almost the same as v1.

To finish the calculations required calculations involving the unit normal of the collision itself, the unit tangent of the collision, converting the velocity vectors into scalars, and eventually converting them back using the unit vectors. [5] This new vector allows us to find the solution to this equation.

3 Implementation

The majority of the code for this assignment was converting the math from all the equations and implementing them into subroutines for the simulation. On top of this the program proved to be somewhat challenging resulting in greater knowledge of FLTK, Microsoft VS 2010 and the VC compiler, and C++ in general.

The program was decided fairly early to use the Visual Studio 2010 IDE, as it was readily available and was something known to work. It would definitely save time by not having to go look elsewhere. FLTK was a decision made somewhat late, as experiences with GLUT proved to be far too much and FLTK was still being updated, unlike the long depreciated GLUT. Ironically FLTK does have a limited GLUT library, one of which was the glutSolidSphere which was used for the graphic drawn to screen for the Ball in this program.

Regarding FLTK in further detail, there was a great deal of work needed to set up the libraries, and tutorials for it were at best obtuse and difficult to understand. Thankfully a nice set of starter code was found online that among other things demonstrated the interaction of various FL Widgets through a parent widget, an example crucial for this assignment, despite the actual project's limited GUI.

Before major work could begin several data structure sets would need to be imported that were used originally for programming assignment 3. Specifically a Point_3d and Vector_3d class. Although this project was done entirely, the hassle of writing a completely separate class was outweighed by the minor memory issues and filling in an extra zero field. Using these proved to be quite valuable especially with the overloaded operators. It made the code far more readable and easier to track down bugs. With these structures in place work could move forward to the major part of the assignment.

The collision detection that was quickly put together proved to be very buggy. It became apparent that while a collision was in the process of happening (as the objects are touching and before they separate) the addition of other collisions could prove disastrous. The situations in which to disable gravity also proved somewhat of a hassle. All collision detection was done a postiori, that is to say, the program waited for the collision to happen before doing collision resolution, rather than preparing ahead of time in an a priori method. The former is more popular, especially in game programming [6].

Each object that could be present on the play field was a subclass of the superclass Object. With several virtual functions put in place it could be possible for collision detection to work regardless of what shape or form an object took. Class Poly in particular checked for collisions amongst each Line object it owned. Note that we assume that any other shape can be defined using lines and polygons, which are a set of interconnected lines. This flexible implementation allowed for a great deal of reusable code at the risk of ball collisions flying off the screen if they gathered enough speed to simply “phase” through a wall during their update calls.

4 Future Work

This project due to how it was coded and by it's extremely extensible nature could easily be a bridge to a larger pinball game project of some kind. Implementing several different types of physics into the game such as magnetism, collision with other dynamically moving objects such as other balls, and possibly a third-dimension to allow for ramps and the like, the game can quickly grow in complexity and demonstrated far more than simple collisions.

5 Conclusion

This paper provided a demonstration of a simple physics system under the guise of a small pinball simulation. Collisions and gravity were demonstrated and some animation in the form of the ball and the flippers. It demonstrated how a ball could interact with relatively fixed structures.

[image: image3.png]Pinball Simulation - mzablan W1

Fig 5.1 The finished product in action.

Works Cited

1. "Collision Detection and Proximity Queries." Collision Detection and Proximity Queries - GAMMA.UNC. GAMMA @ UNC, 01 Mar 2011. Web. 17 Mar 2011. <http://gamma.cs.unc.edu/research/collision/>.

2. "Gravitation." Wikipedia. Wikimedia, 12 Mar 2011. Web. 17 Mar 2011. <http://en.wikipedia.org/wiki/Gravitation>.

3. Bourke, Paul. "Minimum Distance between a Point and a Line." Paul Bourke. Paul Bourke, Oct 1988. Web. 17 Mar 2011. <http://paulbourke.net/geometry/pointline/>.

4. papalazaru, . "closest point on a line." 17 Apr 2007. Online Posting to Euronomus. Web. 17 Mar 2011.

5. Berchek, Chad. "2-Dimensional Elastic Collisions without Trigonometry." Vobarian Software. Vobarian Software, 03 Aug 2009. Web. 17 Mar 2011. <http://www.vobarian.com/collisions/2dcollisions2.pdf>.

6. "Collision Detection." Wikipedia. Wikimedia, 14 Mar 2011. Web. 17 Mar 2011. <http://en.wikipedia.org/wiki/Collision_detection>.

