
3D Space Combat Game
John Mitchell

University of California, Santa Cruz

Abstract
In this paper, I present a 3D space combat
game implemented using XNA Framework
4.0. The game makes use of animation
techniques including particle systems for
effects and behaviors for controlling enemy
ships.

1 Introduction
While particle systems and behaviors are two
of the simpler techniques for controlling
objects in games, they can work quite well if
used correctly.

2 Related Works
Relatively few space games have been
released in recent years, most notably X3:
Terran Conflict, released in 2008. It makes use
of similar techniques for effects. My aim was
to create a game with a similar feel to X3. In
order to promote this, as well as avoid
spending large amounts of time on areas other
than the main focus of this project, almost all
of the models and textures I used were
borrowed from X3.

3 Entity Representation
All in-game entities - “GameObjects” inherit
from a single class, which stores basic
information present in any entity, such as its
3D model, position, orientation, and speed.
Position and speed are represented by a 3D
vector using single precision floats. This could
potentially cause problems at larger distances
and higher speeds, although the values in this
game are low enough that it makes little
difference.

Orientation is represented by a Quaternion
object, native to the XNA Framework. Using
quaternions completely avoids the problem of
gimbal lock – one rotation axis overlapping
another due to subsequent local rotations.

The 3D model is loaded through the XNA
content pipeline, which makes loading and
displaying models quite easy. Most models
borrowed from X3 use a custom shader that
enables specular and environment reflections,
normal mapping, and self illumination.

3.1 Ships
In addition to all information present in
GameObjects, ships contain information about
their ship class, weapons, and additional
information about their model, including
engine positions and cockpit view. The ship
class also implements an Update function for
controlling its position, and two Draw
functions, one for drawing the cockpit view
and one for drawing an external view. For
ships, movement is implemented in an arcade
style, with the speed always parallel to the
ship's forward vector. This gives a better feel,
as well as makes the player's ship easier to
control. Information about each ship type is
loaded from a text file and stored in a
dictionary, making it easy to add additional
types.

3.2 Missiles
In addition to all information present in
GameObjects, missiles contain information
about how much damage they can deal and
how long they can fly. The missile class also
implements the same functions as the ship
class, although the Draw from cockpit function
does nothing because missiles have no cockpit.
Unlike ships, missiles use a simplified
Newtonian movement model. The speed is a

vector independent of the forward vector of
the missile, and is changed by at most the
acceleration of the missile to be as close to
parallel to the forward vector as possible.
Information about each missile type is also
loaded from a text file and stored in a
dictionary.

3.3 Projectiles
The projectile class is the most simple of the
classes that inherit from GameObject. It only
contains information about the projectile's
range and damage. The Update function is also
much simpler than the other classes, as
projectiles only move in a straight line.

3.4 Weapons
Weapons are a special type of object, as they
are only present attached to the hulls of ships.
In addition to information about their model,
orientation, and position on the ship's hull,
they contain information about the projectiles
they fire. Their Update function is also simple,
as it only decrements the delay before it is
ready to fire again. Information about each
weapon type is also loaded from a text file and
stored in a dictionary.

4 Shaders
Two custom shaders are used to display all
models. The first, IgnoreLight, is a simple
shader that outputs just the color read from a
texture. It also contains the same input
variables as the second shader in order to make
the two swappable with a single change to the
code.
The second, XModel, is responsible for all
implemented texture effects present in X3

models. This shader is built from the shader in
the XNA normal mapping sample. This shader
makes use of three additional texture maps – a
normal map, a specular map, and a self
illumination map – in order to compute
specular and environment reflections, and
illumination. First, the normal vector of the
position of the screen pixel on the surface is

computed. This direction is then used to
compute the direction of specular reflections
and the direction reflections will come from.
The specular reflection is then calculated using
a phong model, and the environment reflection
is retrieved from a cube map that was created
at runtime. The color from the self
illumination map is then added and the final
result is returned.

5 Particle System
Several particle systems are used to create
effects including engine trails and explosions.
My initial attempt at implementing a particle
system ran everything on the CPU, which
resulted in unacceptable performance with just
several thousand particles. This was
completely insufficient even for the trail of one
missile. I then switched to using the XNA
particles 3D sample, which runs as much as
possible on the GPU. This particle system is
capable of acceptable performance even when
there are tens of thousands of particles at once.
It contains a number of optimizations that
allow it to run faster. Separate particle systems
must be created for each different group of
settings. Each system must have the same life.
This is due to the fact that the list of particles
is implemented as a circular queue. Active
particles are always within the same range, so
the it can easily find which particles are active
and need to be drawn. This allows particle
objects to always be kept in the same location,
avoiding the performance overhead present
when moving particles between lists of active
and inactive particles. Each system must also
have the same texture, range of sizes, and
range of speeds, although this to make creating
new particles faster rather than updating
particles faster. To further optimize
performance, the NoOverwrite flag is used
when writing to the vertex buffer, which tells
the GPU that any data it is currently using will
not be changed in this write, so it can update
the buffer without waiting for the current
frame to finish drawing. Therefore, four

indices are required – firstActiveParticle for
storing the index of the first particle that is still
alive, firstNewParticle for
storing the index of the
first particle that has not
yet been uploaded to the
GPU, firstFreeParticle for
storing the index of the
first particle that can be
reused, and finally
firstRetiredParticle for
storing the index of the first particle that has
died but could still be actively drawn by the
GPU, since it could potentially be up to two
frames behind. By moving these indices
around instead of the actual particle objects,
performance is greatly increased.

The ParticleEffect shader is responsible for
doing almost all of the computation related to
drawing the particles. The custom vertex struct
used does not contain the current position of
the particle, only the initial position and
velocity, so the shader must first compute the
current position of the particle based on its
age. It can then compute the position of the
corners of the particle quad based on the size
and rotation of the particle. Once this has been
calculated, the shader can output the color of
the pixel, which is read from the particle
texture and multiplied by the color of the
particle.

5.1 Particle Effects
The main use for particle effects in this game
is drawing engine trails. These consist of
stationary particles that are dropped at regular
intervals along an object's path, approximately
one per world unit. One side-effect of this
approach is that when the player is moving
backwards, the particle trail appears to flow
over the front of the player's ship. Each
particle fades and disappears over a span of
one to two seconds, depending on the exact
kind of trail it is. The texture is a noisy circle
that fades out towards the edges, created by
manipulating materials in 3DS Max.

There are also three different particle
systems for creating explosions of various

sizes. These consist of fast-
moving particles that fly away
from the center point of the
explosion. The texture is a
small fireball that has been
darkened to avoid
oversaturating due to additive
blending. The largest of the
explosion particle systems is

used for when a ship is killed. The smallest is
used for drawing when a projectile impacts a
ship's hull. The remaining explosion particle
system is used whenever a missile explodes,
whether it is from impacting a ship's hull,
being shot down, or self destructing because it
ran out of fuel.

The final particle system is used to draw
dust from the nebula the player is flying
through. It consists of a small number of short-
lived large particles, randomly spawned
around the player's current position. These
particles are stationary in order to give the
player a sense of how fast they are moving,
although they rotate slowly in order to avoid
repetitiveness.

6 Behaviors

All enemy ships are controlled using a set of
behaviors based on the behaviors presented by
Craig Reynolds. Enemy behaviors consist of
two main modes, combat and patrol, plus
obstacle avoidance that is always active. All
behaviors are implemented using a “seekTo”
operation, which attempts to turn the object to
face the specified point.

The combat behavior is further divided
into two phases. In the first phase – chasing
the player – the enemies attempt to seek to the
player and fire weapons when the player is in
range. Once the enemy and player are within a
certain distance of each other, the enemy ship
will switch to the second combat phase. In the
second phase – fleeing from the player for

another attack pass – the
enemies attempt to seek to a
point in the opposite direction
of the player. In addition, if the
player is directly facing an
enemy ship it will instead seek
to a random point, changing if
the player manages to continue
facing directly at that enemy
ship. Finally, after either the

enemy ship has reached its maximum weapon
range or a certain amount of time has passed, it
will switch back to the chase phase.

The obstacle avoidance behavior is
relatively simple. If an enemy comes within a
certain distance of another object, it will
attempt to seek to a point in the opposite
direction of the obstacle. While not perfect,
this works quite well in most cases.

The patrol behavior is also relatively
simple. When enemies are patrolling, they
attempt to seek to waypoints on their patrol
path. Once it is within a certain distance of the
current waypoint, the enemy will switch to the
next waypoint and continue on until it finds
the player within its radar range, at which
point it will switch to the combat behavior.

When combined, these behaviors result in
somewhat complex movements. In particular,
it is quite difficult to hit an enemy while it is in
flee mode. Unfortunately, actually hitting the
player with their weapons is quite difficult for
the enemy ships due to the relatively slow
speed of the projectiles – just five to eight
times the maximum speed of the player's ship.
By the time the projectile reaches the player,
he will have likely moved from the point he
was expected to be in. The same is applicable
to the player as well, since aim assist is used
due to the distances involved.

7 Collision Detection
Collision detection between projectiles or
missiles and ships is done in two stages. In the
first phase, the line between the projectile's
current position and the position it will be in
next frame is tested against the bounding
sphere of each ship. If a possible collision is
detected, the same line will be tested against
each triangle of a simplified version of the
ship's model. This model is loaded at the same
time as the high quality model, and stored
along with that model. If no collision model is
present, the actual model is used instead.

8 Future Work
Currently, the game does not have any kind of
menu system or collisions between ships. For
future versions, these would be two of the
main priorities. Further work would see all art
borrowed from X3 replaced with unique art.

9 Conclusion
This paper has presented a 3D space combat
game that makes use of behavioral algorithms
for controlling enemy ships. Overall, the
behaviors are quite successful, although they
are too challenging for the player to put in a
final game.

References
Egosoft. X3: Terran Conflict – Info.
http://www.egosoft.com/games/x3tc/info_en.php

Normal Mapping Sample.
http://create.msdn.com/en-
US/education/catalog/sample/normal_mapping

Particles 3D Sample. http://create.msdn.com/en-
US/education/catalog/sample/particle_3d

Craig Reynolds. Steering Behaviors for
Autonomous Characters.
http://www.red3d.com/cwr/steer/

