Musical Fireworks
Justin Phan

jhphan

Abstract

Visualization techniques have been used to help people deepen their understanding of non-literal ideas. However, the existing visualization techniques have focused on the opposite ends of the spectrum between the literal and the abstract. This paper describes a new visualization representation aimed at the middle ground of the music visualization spectrum.

1
Introduction

Music is a complex existence that truly has no bounds. As music is an auditory experience, we can only process the art through our ears. However, there is much more to music than what we can hear, but unfortunately we cannot see music with our naked eye. Through visualization can we experience music with our eyes. There exist a number of mediums that visualize music for us, but they are generally limited to equalizers, as seen in Figure 1.
[image: image1.png]

Figure 1: Waveform of Music via Windows Media Player

This paper presents a visualization tool for music, an expressive art form with many abstract aspects to it. This tool visualizes the aspects of a music file and interprets it into data. By using the data from the music file, it parses it into usable variables that are used to create a visual spectacle of fireworks for the song.

This visualization tool allows people to gain a deeper understanding of the form of music. This tool shows how a song can be parsed by a computer, gives insight into the complexity of a song, and displays how music can be visually interpreted and represented. During development of this tool I was even able to discover a bug in a library by using the visualization.

This paper is structured as follows: section 2 gives an overview of music visualization programs, section 3 describes how the visualization is created, section 4 describes the author’s experiences using the program, section 5 gives an overview of related work, section 6 describes possible future work and section 7 concludes.
2
Background
The form of visualization in Figure 1 is one of the more literal ways to analyze music into a form that can be interpreted with the eyes, but by nature, it is not very music like, as music should be represented more freely than with just a waveform. People have caught onto this, and thus created a more expressionistic way to represent music, resulting in an abstract visual spectacle, such as the one in Figure 2. However, these representations have very little to do with the actual rhythm of the music, at least much less so than the waveform representation.

[image: image2.png]

Figure 2: Abstract Visualization of Music via Windows Media Player

In my opinion, both are on the extremes, and there should be a better middle-ground. There should be a visualization of music that not only represents the literal aspects of sound, but also the abstract aspects of sound that is akin to music. Much like the Bellagio water show as seen in Figure 3, I aim to create a visualization of music, representing the flow of sound through fireworks.

[image: image3.jpg]

Figure 3: Bellagio Water Show – A form of visualization

Just to address every aspect, what constitutes music? Music, as any dictionary would put it, is an art of sound in time that expresses ideas and emotions in significant forms through the elements of rhythm, melody, harmony, and color. With this in mind, I move on to computationally analyzing music.

3
Method
The method that my project is using is what many other programs use in order to interpret music, and that is the Fourier Transform algorithm. But before this algorithm can be applied, we must first sample sounds. What sampling sounds does it what it sounds like—it takes a sample of sound, which in this case, will be music. Since most sounds nowadays are stored digitally, sampling sounds is relatively simple. As Relisoft puts it, “Sound is converted to electrical current using a microphone. Continuous oscillations of air pressure become continuous oscillations of voltage in an electrical circuit. This fast-changing voltage is then converted into a series of numbers by a digitizer. A digitizer acts like a very fast digital voltmeter. It makes thousands of measurements per second. Each measurement results in a number that can be stored digitally (that is, only a finite number of significant digits of this number are recorded). This number is called a sample and the whole conversion of sound to a series of numbers is called sampling [2].”
Then comes the analysis of the sound sample, known as Wavelet Analysis. The process of this analysis can be best described by Relisoft, “Consider a fixed-size buffer that is the result of sampling a sound. If the buffer contains n samples, it can be viewed as an n-dimensional vector. Each sample becomes a coordinate of this vector in some n-dimensional space… The wavelet transform is obtained by re-calculating the coordinates of this vector of samples using a different basis in n-dimensional space [2].” Now, as for the actual Fourier analysis, it can be summed up as such:
It so happens that the Fourier wavelets form an orthogonal system--if you take a scalar product of any two of them, you'll get zero. Also, with proper normalization, you can make the squares of these vectors equal to one. N of these vectors form a perfect orthonormal basis in N-dimensional space. In other words, any buffer with N samples can be projected onto these N vectors giving N numbers (which are called Fourier coefficients). These numbers form the digital Fourier transform of the buffer.

Conversely, given those numbers we can reconstitute the original buffer. It is enough to multiply each basis vector by its corresponding Fourier coefficient and add them all up to obtain one N-dimensional vector exactly equal to the original sample buffer. The process of reconstructing the sound wave from its Fourier coefficients is called Fourier synthesis. Since each basis vector is a sampled sine (cosine) wave of a given frequency, you see that by adding up these waves with appropriate coefficients you can re-create any sound wave. In this sense a sound wave is the sum of the pure frequencies contained in it.

We now know (theoretically) how to extract these frequencies (Fourier analysis) as well as synthesize arbitrary sounds from them (Fourier synthesis). It's time for some practical algorithms. But before we get to it, we have to learn some complex numbers [2].
To help better understand the concept, refer to Figure 4.
[image: image4.png]samples

Q“

1st half

2nd half

1st half

2nd half

Figure 4: Fourier Analysis

Then I need to understand how fireworks function, and apply that knowledge during the programming phase. I stumbled across a nice little explanation of how to possibly implement fireworks in code as follows: “During the start phase (the rocket phase) we use almost the same coordinates for all the particles. The speed of the rocket is determined by the initial speed reduced by the influence of gravity (i.e. the vertical speed is reduced by gravity until the rocket would stop rising and starts falling down). When the rocket explodes things become more interesting: additionally to the original vertical and horizontal speed components each particle gets one speed component which is directed away from the explosion. It is not sufficient to replace the original two speed components by the speed component from the explosion [1]!”
4
Results
I began this project by looking up the method listed above, and then searched for a lot of source code that I could work off of (why bother reinventing FFT when someone else might have done so in a simple to use program?). Unfortunately for me, all the source code I had found ended up being uncompilable due to all the libraries and other files needed in order for it to link correctly. I spent many hours trying to get sndpeek [4] to work, but regardless of all the libraries I installed and downloaded, the code just refused to work for me. I even asked a fellow classmate who was doing a similar project how he got his to compile, and his suggestions did not help me.
Eventually I stumbled across some source code that did work off of the NeHe downloads page. Using that as a base, I started experimenting with the FFT program that was essentially the program in Figure 5. This figure is a modified version of the original code (though it is fundamentally the same). Using this as a base, I went to look for using particle engines or any fireworks source code.
[image: image5.png]

Figure 5: Prototype – 2D Sound Equalizer

Similarly, it was difficult to find any source code for fireworks, let alone any that worked. Since I was lucky enough to find a working program on NeHe, I thought I would go there again to see if I could find anything to work with, and I did find source code for fireworks. It was quite an impressive program, aside from the fact that it had the same problem of not compiling. I did not let this stop me, and so I tried to incorporate the code from the fireworks source code into the already working code of the equalizer.

After much work and effort into linking the two together, I came up with no results. Discouraged by the fact the great fireworks code did not work, I went to look for the basics and try to work from the ground up. Knowing that NeHe provided very comprehensive OpenGL tutorials, I browsed the table of contents and looked at pages relevant to my project. This led me to the introduction of particle effects, which worked similarly to what I need for my fireworks.
Following the tutorial, I incorporated that code into my program and altered the sound equalizer I already had to display the fireworks created through a particle engine. Afterwards, I tried linking the parameters of the fireworks with variables from the song, and allowed it to be altered as such. To say the very least, my results were not what I had hoped for. My end result can be seen in Figure 6 below, and it was nowhere near what I had originally envisioned.
What I had hoped for in this project was to at least get the fireworks to fire from the ground into the air and explode, but all I could manage given the time I had was having fireworks that are relatively constant in its life time, that will explode on occasion. They will also move up and down to the song, keeping remnants of the previous sound equalizer version of the code.
[image: image6.png]

Figure 6: Result – Current Program

5
Related Work
There has been work on visualizing music. As mentioned above, Windows Media Player is creates a solid visualization of music, though it falls more to the ends of the spectrum rather than being a combination of the two. In addition, there are many other user created programs that do what my program does separately: a pure sound equalizer and a fireworks particle engine [3]. Aside from there being programs that do what I did separately, there are programs that do similar things in a different visualization. One example of such is visualization of music through a water fountain [5].
6
Future Work
Currently the program does not represent the fireworks as well as I had imagined it would, and it is still a little inconsistent in what it currently does. If I do continue working on this program, I would refine the fireworks to actually look and behave like a firework. In addition, I would better parse the sound file to obtain many variables that can be used, as opposed to what I currently have working. Finally, I would better link the music to the firework display, so that the final product would look like it was an actual choreographed spectacle much like the Bellagio water show.
7
Conclusion
This paper has presented a visualization tool for representing music both literal and abstractly, through the spectacle of fireworks. It provides a deeper understanding of the way music behaves, shows how a song file can be read by the computer and parsed into data, and creates a visual representation of music as a spectacle.
References
[1] Heinz. "Tutorial 8 -Particle System." NATUREWIZARD. Web. 15 Mar. 2011.

<http://www.naturewizard.com/tutorial08.html>.

[2] Milewski, Bartosz. "The Fourier Transform." Reliable Software. Web. 18 Feb. 2011.

<http://www.relisoft.com/science/physics/sound.html>.
[3] Molofee, Jeff. "NeHe Tutorial." NeHe Productions. Web. 12 Mar. 2011.

<http://nehe.gamedev.net>.

[4] Wang, Ge, Perry Cook, and Ananya Misra. "Sndpeek : Real-time Audio

Visualization." Princeton Sound Lab. Web. 18 Feb. 2011.

<http://soundlab.cs.princeton.edu/software/sndpeek/>.

[5] Wang, Kai. "Music Fountain." Web. 18 Feb. 2011.

<http://www.soe.ucsc.edu/classes/cmps161/Winter09/projects/kwang10/project.htm>.
