
Final Project
Drum Visualization & Animation

Alexander J Stathis
CMPS 161 - Animation & Visualization
University of California, Santa Cruz

astathis@ucsc.edu

Abstract

This project intends to provide a visual interpretation of the vibrations
of a damped circular membrane (drum) after being struck. By applying
solutions to the damped wave equation in two variables to produce a
height value, the user can visualize the ‘sound’ made by a drum as waves
rippling through the surface of the membrane.

1 Introduction

When a drum is struck, the surface ripples and displaces the air around it. The
air around the drum is displaced in a manner similar to the ripple of the drum,
which transmits waves through the air. The waves are transmitted to the ear,
which is the sound that one hears. It is difficult to visualize the waves that
one hears, but the waves that are transmitted through the drum are governed
by a specific set of equations. By understanding the equations that govern the
movement of the waves across the membrane, I hope to visualize these waves and
in turn provide insight into the waves that travel through the air and produce
the sound that one hears when a drum is struck.

2 Method

The drumhead can be modeled as a damped circular membrane in 2 dimensions.
Because the circular membrane is highly symmetric, it is possible to parame-
terize the membrane by r and θ to take advantage of these symmetries. The
following parameterization is used:

x = r · sin(θ)

y = r · cos(θ)

z = u(r, θ, t)

1



where 0 ≤ θ ≤ 2π, 0 ≤ r ≤ R, and z is the height of the membrane as explained
later. R is the desired radius of the membrane, and without loss I choose R to
be 1, as I just scale later when I go to draw the membrane.

Because I intend to provide an accurate representation of the waves that
travel across the membrane, I must specify several restraints on u(r, θ, t). First
is the condition that the boundary of the drum must remain stationary at
all times. Second, the initial agitation of the drum is caused by a striking
motion. In the instant the drum is struck, it is distorted heavily around a single
point, while the rest of the membrane remains stationary. Essentially, for a
small radius around the point of striking, the drum is drastically displaced in
a continuous manner, but the rest of the drum remains flat. Also, because the
drum resists such a striking, the instant that the contact between the stick and
the membrane is released, the drum is initially at rest everywhere. The following

equations model these conditions[4]:

u(R, θ, t) = 0 (1)

u(r, θ, 0) =
A

2πσ
e−

1
2σ2 [(r cos θ−r∗ cos θ∗)

2+((r sin θ−r∗ sin θ∗)
2] (2)

∂

∂t
u(r, θ, t) = 0 (3)

In equation (2), A is the initial displacement amplitude, σ is the radius of
the strike, and r∗ and θ∗ are the striking point of the membrane. To put it
simply, as the distance from the striking point gets further, the amplitude of
the displacement decreases exponentially. The exponential function guarantees
the continuity condition of the strike, and σ can be varied to choose how local
the displacement is.

The last restraint is that as the displacement transfers throughout the sur-
face, it travels in a wave like motion. As such, I dictate that u(r, θ, t) must be
modeled by the wave equation. I also require that this equation be damped, as
otherwise our surface would oscillate forever. The wave equation in r and θ is

as follows[4]:
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
=

1

c2

(
∂2u

∂t2
+ 2a

∂u

∂t

)
where a is the damping factor, and c is the speed of the wave on the membrane.

Kin provides a solution to such an equation with the given boundary and
initial conditions. He solves using separation of variables and the orthogonality

relationship of sine, cosine, and bessel functions[4]. This solution is the height
function I will use to model my drumhead.

u(r, θ, t) =
1

2

∞∑
n=1

[
J0(k0nr)a0n cos(

√
ω2
mn − a2 · t)e−at

]
+

∞∑
m=1

∞∑
n=1

[
Jm(kmnr)(amn cos(mθ) + bmn sin(mθ)) cos(

√
ω2
mn − a2 · t)e−at

]

2



Where the constants amn and bmn are given by

amn =
2

π[Jm+1(kmn)]2

∫ 1

0

∫ 2π

0

rJm(kmnr)u(r, θ, 0) cos(mθ)dθdr

bmn =
2

π[Jm+1(kmn)]2

∫ 1

0

∫ 2π

0

rJm(kmnr)u(r, θ, 0) sin(mθ)dθdr

and ωmn = ckmn, Jm is the mth Bessel function, and kmn is the nth root of Jm.
Each zero of the Bessel functions is a different mode of vibration of the drum.

Zeros of the 0th Bessel are the symmetric modes (displacement is the same
regardless of θ) and zeros of the mth Bessel function for m ≥ 1 are asymmetric

modes of vibration[1].

3 Results

The project is programmed using the c++ language with the OpenGL and
fltk (Fast Lighting Toolkit) apis. The actual drumhead is drawn with the
OpenGL api, while fltk is used to create the windows, handle user intactivity
(both in presenting and handling gui interaction and when the user interacts
directly with the OpenGL window), and telling the OpenGL window to redraw.

The OpenGL code is contained in a class derived from one provided in the
fltk api, and displayed in a sub window of the main fltk window. This

class contains a static timer method which ticks every 1
24

th
of a second and

causes a redraw of the OpenGL code. Each time a redraw is done, the circle is
drawn using r and θ coordinates which are converted to x and y coordinates via
the parameterization provided in Method. A predefined hardcoded θ-resolution
and r-resolution are used to draw the circle. For instance, the 0 to 1 range
is divided into r-resolution sections, each of which contains a vertex for every
θ-resolution. A quad is drawn using the nth and (n + 1)st r-sections and θ
and θ + θ-resolution points as vertices. For each such vertex, a height is com-
puted using the technique outlined below, but initially the membrane is at rest.

3



The drumhead initially at rest

3.1 Computing Heights

3.1.1 Computing amn and bmn

Each time the user interacts with the membrane (agitates the drum in a dif-
ferent position), the coefficients amn and bmn are recalculated. As these are
double integrals, I computed them numerically using the Trapezoidal Rule. The

Trapzeoidal Rule is as follows[7]:∫ b

a

f(x) ≈ b− a

N

[
f(a) + f(b)

2
+

N−1∑
k=1

f(a+ k
b− a

N
)

]

where N is the number of ‘steps’ (a larger number of ‘steps’ results in a closer
approximation) used. Due to the fact that these only needed to be recalculated
once when the user interacts with the membrane, these can be calculated using
a reasonably large N , thus making these approximations relatively accurate.

3.1.2 Computing u(r, θ, t)

Due to the infinite sums in the solution to height function, the height at each
point is only an approximation. This approximation is in fact quite rough, as
only the first 4 symmetric and asymmetric modes are summed. Summing further
proved to be extremely costly, as it requires two more computations of the Bessel

4



function for each vertex in the resolution (roughly 2000 extra computations per
extra sum per redraw).

The Bessel zeros are calculated initially when the program begins running.
The Bessel function and its zeros are calculated using the gsl (Gnu Scientific
Library) api. Originally, I had decided to approximate these via one of the

definitions[2] of the function itself, but this proved too costly and inaccurate.

3.2 Controlling the Waves

3.2.1 The GUI

Using the fltk api makes it relatively easy to implement user controls. Sliders
are used to control the value of the damping factor, the speed of the wave on the
membrane, the initial displacement amplitude, and the locality of the strike.

The drumhead after several seconds with some damping

5



The drumhead after several seconds with no damping

Buttons are implemented similarly to both reset the membrane back to its
resting position and also to swap back and forth between wireframe and solid
viewing modes.

3.2.2 Interacting With the Membrane

fltk’s native window handler is used to capture mouse click coordinates. These
coordinates are then converted into OpenGL space coordinates using the inverse
projection and modelview matrices via OpenGL’s gluUnProject function. I
then apply the inverse parameterization to obtain the coordinates of r∗ and θ∗,
and recalculate the coefficients as described above in 3.1.1.

Three images depicting different initial striking locations

6



4 Conclusion

In general, this project provides exactly what it set out to do: a very solid
user interactive visualization of the vibrating drum. User interactivity is fairly
robust, as many of the constants are controlled via sliders. The control is in
depth enough that the membrane can be displaced in a variety of ways.

This project leaves a lot of room for implementation of extra features, which
will be outlined below in the Future Work section, but provides the basic func-
tionality that was originally intended.

5 Future Work

1 Extra User Interactivity

Possible variables to control include the tension of the drumhead and the
density of the drumhead (or allowing different ‘materials’ to be selected for the
drumhead). The same effects can be gotten via the damping and wave speed
controls already available, but if 2 is to be implemented these new controls
could more intuitively control the sound of the wave. Also, providing controls
for different initial conditions for the drumhead (agitating the drumhead in
different ways).

2 Sound

The height function outlined in the Method section above may also be used
to generate sound. Frequencies and amplitudes for the vibrations of the sound
will need to be computed some how, possibly via the methods suggested by Kin
[4]. Extra libraries will need to be found and compiled in the project to provide
such functionality.

3 Drum & Drumstick Modeling

It might be nice to enclose the drumhead in a nice drum model, along with
a drumstick that follows the mouse location on the screen. Also, a canned
animation for the drumstick when striking the membrane might be nice to show
the initial agitation of the drum.

4 Different Drum Shapes

This implementation provides only a visualization of a circular drum head
due to the fact that the height is computed using a closed form solution based
on boundary conditions that require the symmetry of the circle. It should
be possible to switch to an iterative method that computes heights based on
previous values using integration, at which point it may be possible to implement
different shapes, as long as the same restrictions on u(r, θ, t) are considered.

6 Related Work

Static videos of the vibrations of the drum are widely available throughout the
web. These videos provide a nice representation of the vibrations of the drum,

7



but they lack the the user interactivity and variability of the program outlined
above.

Kin [4] provides small clips of drums being struck along a single radial axis
at different displacements. These clips contain sound and are governed by the
same equations provided above in the Method section.

Russell [3] provides several static videos of the some symmetric and non-
symmetric modal vibrations of the drum. These are nice visualizations of the
individual modal agitations, but do not provide interactivity or understanding
of the actual vibrations of the drum when struck, just a several nodes.

Falstad [5] provides a similar representation to mine. He allows the user to
interactively strike the membrane, and also has a nice visualization of which
modes are vibrating after displacing the drum. He also generates sounds based
on several variables of the drum membrane.

References

[1] Steve Zelditch. Vibrating Drum. Johns Hopkins University, F2005.
http://www.mathematics.jhu.edu/zelditch/Teaching/F2005110.302/

PDF%20Lectures/DrumundBessel.pdf

[2] Weisstein, Eric W. “Bessel Function of the First Kind.” From MathWorld.
http://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html

[3] Daniel A Russell. “Acoustics and Vibration An-
imations”. Kettering University, Flint, mi.
http://paws.kettering.edu/~drussell/Demos/MembraneCircle/

Circle.html

[4] Hon Kin. “Sound Simulation of a Drumhead”. The Hong Kong University
of Science & Technology. http://www.math.ust.hk/ machas/drum/

[5] Paul Falstad. “Circular Membrane Applet”. 25 March 2005.
http://www.falstad.com/circosc/

[6] Wikipedia contributors. “Bessel Functions.” Wikipedia, The
Free Encyclopedia. 25 Aug. 2004. Web. 10 Mar. 2011.
http://en.wikipedia.org/wiki/Bessel function

[7] Wikipedia contributors. “Trapezoidal Rule.” Wikipedia, The
Free Encyclopedia. 20 Apr. 2009. Web. 10 Mar. 2011.
http://en.wikipedia.org/wiki/Trapezoidal rule

8


