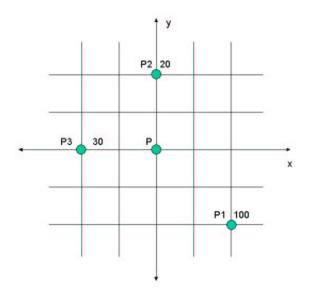
Login ID:

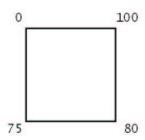

READ ME FIRST

- Don't spend too much time on any one problem. This exam will take approximately 60 minutes.
- Amount of time spent on a problem is not necessarily proportional to the points.
- Scan through the entire test and do the easy problems first.
- If something is not clear, ASK.
- BE NEAT. We cannot give you points for something that we can't read.
- Write down your assumptions.
- Don't just write your answer, show how you got them.
- This is a CLOSED BOOK, CLOSED NOTES exam.

1	25 points	Shepard's	
2	25 points	Contour Lines	
3	25 points	Flow on Surface	
4	25 points	Integration	
	100 points	GRAND TOTAL	

1. Shepard's Interpolation (25 points)

Given the three points: P1(2,-2), P2(0,2), P3(-2,0) and their corresponding values 100, 20, 30 (see figure below). Find the value at P(0,0) using Shepard's Interpolation when u=2, i.e. inverse distance square.



Exam #2 March 14, 2003 Score: _____

2. Contour Lines and Pseudocoloring (25 points)

(a) Contour line (10 points):

Find the edge intersections (between 0..1) of a contour line with a value of 50 through the following cell:

(b) Pseudocolor (15 points):

If the data range for the data set is 0 .. 100, and the standard rainbow colormap is used, what are the red, green and blue components of the contour line?

Exam #2 March 14, 2003 Score: _____

4 Lo	gin ID:	CMP	161	Winter	2003

3. Flow on Surface (25 points)

A polygon on an isosurface has a normal of N : [1, 1, 1]. The velocity field where that polygon is located is V : [1, 2, 3]. What is the velocity on the surface of the polygon? That is, what is the projection of V on the polygon whose normal is N?

Exam #2 March 14, 2003 Score: _____

4. Integration (25 points)

Assume that a one dimensional velocity field is define by $V(p_i) = 1 + p_i$, and integration step h = 0.1.

(a) Euler integration (5 points):

Where is the streamline at p_1 when $p_0 = 0$?

(b) RK4 integration (20 points):

Where is the streamline at p_1 when $p_0 = 0$?

Recall:

$$p_{n+1} = p_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

$$k_1 = hV(p_n)$$

$$k_2 = hV(p_n + \frac{k_1}{2})$$

$$k_3 = hV(p_n + \frac{\tilde{k_2}}{2})$$

$$k_4 = hV(p_n + k_3)$$