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A b ~ r ~ t  

New hierarchical solid modeling operations are 
developed, which simulate twisting, bending, tapering, 
or similar transformations of geometric objects. The 
chief result is that  the normal vector of an arbitrarily 
deformed smooth surface can be calculated directly 
from the surface normal vector of the undeformed sur- 
face and a transformation matrix. Deformations are 
easily combined in a hierarchical structure, creating 
complex objects from simpler ones. The position vec- 
tors and normal vectors in the simpler objects are 
used to calculate the position and normal vectors in 
the more complex forms; each level in the deforma- 
tion hierarchy requires an additional matrix multiply 
for the normal vector calculation. Deformations are 
important and highly intuitive operations which ease 
the control and rendering of large families of three- 
dimensional geometric shapes. 

KEYWORDS: Computational Geometry, Solid 
Modeling, Deformation 

I n t r o d u c t i o n  

Modeling hierarchies are a convenient and efficient 
way to represent geometric objects, allowing users to 
combine simpler graphical primitives and operators 
into more complex forms. The leaf-nodes in the 
hierarchy are the hardware/firmware commands on the 
equipment which draws the vectors, changes the colors 
of individual pixels, and operates on lists of line seg- 
ments or polygons. With the appropriate algorithms 
and interfaces, users can develop a strong intuitive feel- 
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ing for the results of a manipulation, can think in terms 
of each operation, and are able to create the objects 
and scenes which they desire. 

In this paper, we introduce globally and locally 
defined deformations as new hierarchical operations for 
use in solid modeling. These operations extend the con- 
ventional operations of rotation, translation, Boolean 
union, intersection and difference. In section one, the 
transformation rules for tangent vectors and for nor- 
mal vectors are shown. In section two, several ex- 
amples of deformation functions are listed. A method 
is shown in section three to convert arbitrary local rep- 
resentations of deformations to global representations, 
for space curves and surfaces. Finally, in section four, 
applications of the methods to the rendering process 
are described, opening future research directions in 
ray-tracing algorithms. Appendix A contains a deriva- 
tion of the normal vector transformation rule. 

Deformations allow the user to treat a solid as if 
it were constructed from a special type of topological 
putty or clay, which may be bent, twisted, tapered, 
compressed, expanded, and otherwise transformed 
repeatedly into a final shape. They are highly intuitive 
and easily visualized operations which simulate some 
important manufacturing processes for fabricating ob- 
jects, such as the bending of bar stock and sheet me- 
tal. Deformations can be incorporated into traditional 
CAD/CAM solid modeling and surface patch methods, 
reducing the data storage requirements for simulating 
flexible geometric objects, such as objects made of me- 
tal, fabric or rubber. 

t Previous address, Raster Technologies Inc., N. 
Billerica, Mass. 
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Although it is possible to use these techniques to 
accurately model the physical properties of different 
elastic materials with the partial differential equa- 
tions of elasticity and plasticity theory, simpler math- 
ematical deformation methods exist. These simpler 
methods have reduced computational needs, are widely 
applicable in modeling, and are described in the ex- 
amples section. It is beyond the scope of this paper to 
formulate the mathematical  details of exact mechani- 
cal descriptions of physical deformation properties of 
materials. 

1.0 B a c k g r o u n d  a n d  Der iva t ions .  

A g loba l ly  specif ied d e f o r m a t i o n  of a three 
dimensional solid is a mathematical  function F which 
explicitly modifies the global coordinates of points in 
space. Points in the undeformed solid are called (small) 
z, while points in the deformed solid are called (capital) 
X .  Mathematically, this is represented by the equation 

X = F_(x_). [Equation 1.1a] 

The z, y, and z components of the three dimen- 
sional vector _x are designated Zl, z2, and z3. (For 
notational convenience, xl, z2, and x3 and x, y, and 
z are used interchangably. A similar convention holds 
for the upper case forms.) 

A local ly  specif ied d e f o r m a t i o n  modifies the 
tangent space of the solid. Differential vectors in the 
substance of the solid are rotated and/or  skewed; these 
vectors are integrated to obtain the global position. 
The differential vectors can be thought of as separate 
chain-links which can rotate and stretch; the local 
specification of the deformation is the rotation and 
skewing matrix function. The position of the end-link 
in the chain is the vector sum of the previous links, as 
shown in section three. 

Tangent vectors and normal vectors are the two 
most important vectors used in modeling - -  the former 
for delineating and constructing the local geometry, 
and the latter for obtaining surface orientation and 
lighting information. Tangent and normal vectors on 
the undeformed surface may be transformed into the 
tangent and normal vectors on the deformed surface; 
the algebraic manipulations for the transformation 
rules involve a single multiplication by the Jacobian 
matrix J of the transformation function F.  In this 
paper, the term "tangent transformation" substitutes 
for "contravariant transformation s and is the transfor- 
mation rule for the tangent vectors. The term "normal 
transformation s substitutes for "covariant transforma- 
tion" and is the transformation rule for the normal 
vectors. 

The Jacobian matrix J for the transformation 
function X ~ F__(_z) is a function of _z, and is calculated 

by taking partial derivatives of F F_ with respect to the 
coordinates Zl, z2, and as: 

O_F(~) 
J i(z-) - -  Ozi [Equation 1.1b] 

In other words, the i th column of J is obtained by 
the partial  derivative of F(_z) with respect to zi. 

When the surface of an object is given by a 
parametric function of two variables u and v, 

x_-~ z_(u,v), [Equation 1.1el 

any tangent vector to the surface may be obtained 
from linear combinations of partial derivatives of _z 
with respect to u and v. The normal vector direction 
may be obtained from the cross product of two linearly 
independent surface tangent vectors. 

The t a n g e n t  vec tor  t r a n s f o r m a t i o n  rule  is 
a restatement of the chain rule in multidimensional 
calculus. The new vector derivative is equal to the 
Jacobian matrix times the old derivative. 

In matrix form, this is expressed as: 

OX Oz 
~u ~" J ~ u  [Eq~:ation 1.2a] 

This is equivalent in component fcrm to: 

3 

Xi,u -~ E Jiyzj, u [Equations 1.2b] 

In other words, the new tangent vector OX/Ou is 
equal to the Jacobian matrix J times the old tangent 
vector Ox_/Ou 

The n o r m a l  v e c t o r  t r a n s f o r m a t i o n  rule  in- 
volves the inverse transpose of the Jacobian matrix. A 
derivation of this result is found in Appendix A. 

[Equation 1.3] 

n (x) ~ det Jj-XTn(z) 

Of course, since only the direction of the normal 
vector is important,  it is not necessary to compute the 
value of the determinant in practice, although it some- 
times is implicitly calculated as shown in Appendix A. 
As is well known from calculus, the determinant of the 
Jucobian is the local volume ratio at each point in the 
transformation, between the deformed region and the 
undeformed region. 
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2 .0  E x a m p l e s  o f  D e f o r m a t i o n s .  

Ezample ~.1: Scaling. One of the simplest defor- 
mations is a change in the length of the three global 
components parallel to the coordinate axes. This 
produces an orthogonal scaling operation : 

X ~ a l  Z 

Y = a2y [Equation 2.1a] 

~ a3z 

The components of the Jacobian matrix are given 
by 

aXu 
Jf f  -~- Oz i ' 

J =  

SO 

[Equation 2.1b] 

The volume change of a region scaled by this 
transformation is obtained from the Jacobian deter- 
minant, which is axa2a~. The normal transformation 
matrix is the inverse transpose of the Jacobian matrix 
(optionally times the determinant of the Jacobian 
matrix), and is given by: 

('?Ca :) j - I T  = a 3 det J 
al a2 

Without the factor of the determinant, the normal 
transformation matrix is: (1 :0 00) 

__j-1r = 1/a2 
0 1~as 

To obtain the new normal vector at any point on 
the surface of an object subjected to this deformation, 
we multiply the original normal vector by either of the 
above normal transformation matrices. The new un i t  
normal vector is easily obtained by dividing the output 
components by the magnitude of the vector. 

For instance, consider converting a point 
[Zl,Z2, Z3] T lying on a roughly spherical surface 
centered at the origin, with normal vector [nz, n2, ns] T. 
The transformed surface point on the resulting ellip- 
soidal shape is [al zz, a2 z2, as z3] r and the transformed 
normal vector is parallel to [n l /a l , n2 /a2 ,na /a3]  T. 
The volume ratio between the shapes is ala2a3. 

The scaling transformation is a special case of 
general affine transformations, in which the Jacobian 
matrix is a constant matrix. Affine transformations i.~-- 
dude skewing, rotation, and scaling transformations. 
When the transformation consists of pure rotation, it 
is interesting to note that  the inverse of the matrix is 

equal to its transpose. For pure rotation, this means 
tha t  the tangent vector and the normal vector are 
transformed by a single matrix. For more general 
affine transformations, pairs of constant matrices are 
required. 

E=ample 2.2: Global Tapering along the Z Azis. 
Tapering is similar to scaling, by differentially changing 
the length of two global components without changing 
the length of the third. In figure 2.2, the function f ( z )  
is a piecewise linear function which decreases as z in- 
creases (from page bot tom to the top). The magnitude 
of the tapering rate progressively increases from figure 
2.2 a through figure 2.2 d. When the tapering function 
f ( z )  = 1 , the portion of the deformed object is un- 
changed; the object increases in size as a function of z 
when i f ( z )  > 0, and decreases in size when i f ( z )  < O. 
The object passes through a singularity at f ( z )  = 0 
and becomes everted when f ( z )  < O. 

r -~- f(z), 

X = rx,  [Equation 2.2a] 
Y = ry,  

Z . = z  

The tangent transformation matrix is given by: 

J =  r f '  ) y l  [Equation 2.2b] 
0 

The local volumetric rate of expansion, from the 
determinant, is r 2. 

The normal transformation matrix is given by: 

- - r f t ( z ) x  - - r f f ( z ) y  r 2 

The inverse transformation is given by: 

r(Z)  = I ( Z ) ,  

z ~-~ X / r ,  [Equation 2.2e] 
y -~ Y / r ,  

z ~ Z  

Tronsfo rmotlon T~'~A~ ¢ 
T rans fo rma t io~  . . . . . . .  "~ ] 

l Tronsformot;on TAPERS the reg;c~.n ] 
Tronsforrnotlon TAPERS the reg;on 

Figure 2.2 Progressive TApering of • Ribbon 
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Ezaraple ~.3: Global Azial Twists. For some ap- 
plications, it is useful to simulate global twisting of an 
object. A twist can be approximated as differential 
rotation, just as tapering is a differential scaling of 
the global basis vectors. We rotate one pair of global 
basis vectors as a function of height, without altering 
the third global basis vector. The deformation can be 
demonstrated by twisting a deck of cards, in which 
each card is rotated somewhat more than the card 
beneath it. 

The global twist around the z axis is produced by 
the following equations: 

O = f(z)  

Oo = cos(O) 

So = s~n(o) 

The inverse transformation is given by~ 

[Equation 2.3b] 

o = l ( z ) ,  

z = X C o  + YSe,  

v = - x 8 o  + YOo, 

z = Z  

which is basically a twist in the opposite direction. 

X = zCo - ySa, 

Y = zSo + yCe, [Equation 2.3a] 

Z = Z .  

The twist proceeds along the z axis at a rate of 
f ( z )  radians per unit length in the z direction. 

The tangent transformation matrix is given by 

Co - S o  --xSe ft(z) - yCo f (z) ~ 
J =  Se Ca zCoft(z) ySo f ( z )  

- o o 1 ) 

Note that  the determinant of the Jacobian matrix 
is unity, so that  the twisting transformation preserves 
the volume of the original solid. This is consistent 
with our "card-deck" model of twisting, since each 
individual card retains its original volume. 

The normal transformation matrix is given by: 

j_-IT = So Co 
-- yft(z)  --aft(z) 

Our original deck of cards is a rectangular solid, 
with orthogonal normal vectors. We can see from the 
above transformation matrix that  the normal vectors 
to the twisted deck will generally tilt out of the z-y 
plane. 

Figures 2.3.1 a--d show the effect of a progressively 
increasing twist. In these line drawings of solids, vec- 
tors are hidden by the normal vector cri terion--if  the 
normal vector (as calculated by the above transforma- 
tion matrix) faces the viewer, the line is drawn, other- 
wise, the line segment is not drawn. Figure 2.3.3 shows 
an object which has been twisted and tapered, while 
figures 2.3.4 and 2.3.2 show the results from twisting 
an object around an axis not within the object itself. 

Figure 2.3.1 Progressive Twisting of a Ribbon 

% %  
% %  

Figure 2.3.2 Progressive Twisting of Two Primitives 

! 

Figure 2.3.3 Twisting of a Tapered Primitive 
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Figure 2.3.4 Tapering of a Twisted offset Primitive 

Ezaraple 2.~: Global Linear Ben& along the Y-  
Azis. For other applications, it is useful to have a 
simple simulation of bending. 

The following equations represent an isotropie 
bend along a centerline parallel to the y-axis: the 
length of the centerline does not change during the 
bending process. The bending angle O, is constant 
at the extremities, but changes linearly in the central 
region. In the bent region, the bending rate k, 
measured in radians per unit length, is constant, and 
the differential basis vectors are simultaneously rotated 
and translated around the third local basis vector. 
Outside the bent region, the deformation consists of a 
rigid body rotation and translation. The range of the 
bending deformation is controlled by Y~in, and Y,~ax, 
with the bent region corresponding to values of y such 
that y,=i,<y<_y,~=. The axis of the bend is located 
along [s, yo, 1/k] T, where s is the parameter of the line. 
The center of the bend occurs at y ---- y0--i.e., where 
one would "put one's thumbs" to create the bend. The 
radius of curvature of the bend is 1/k. 

The bending angle 0 is given by: 

where 

o = k(# - yo), 
Co = cos(O), 

So = sin(O), 

if y < y,,~, 
~ = {Y?in, i f y r a i n < Y < y m a ,  

Y,=a=, if y >  y,=== 

The formula for this type of bending along the y 

axis centerline is given by the following relations: 

[Equation 2.4a] 

S ~  

f - s o ( ~ -  ~) + ~0, y.~,._<y_<y.,==, 
r = ( - s ~ ( ~ -  ~) + yo + c , ( y  - y ~ . ) ,  . < ym,.  

I - S o ( ~ -  ~) + yo + co (y  - y ~ . . ) ,  y > v . . . .  

f ( ~ o (  z - -  i )  ..}_1 ~ , Yrain ~__ Y ~__ Ymaz, 

z = i coCz  ~) + i + s o ( y -  y. , , . ) ,  ~ < ~ . . .  
( c , ( z  1) + ~ + s0cy y . . . ) ,  ~ > ~ . . =  

These functions have continuous values at the 
boundaries of each of the three regions for y, and in 
the limit, for k ---- 0. However, there is a jump in 
the derivative of the bending angle 0 at the y ~ Ymi, 
and y ---- ym~= boundaries. The discontinuities may 
be eliminated by using a smooth function for 0 as a 
function of y, but the transformation matrices would 
need to be re-derived. 

The tangent transformation matrix is given by: 

where 

(! 0 0) 
J c o o  - ~z) 
= So(1 -- kz) Co 

k, i f~----y 
~ : =  0, i f ~ y .  

The local rate of expansion, as obtained from the 
determinant, is 1 - kz. 

The normal transformation matrix is given by: 

(l _ kz)j_-lT I l  - kz O 0 I 
_ -~-- 0 C o  - - S 0 ( 1  - -  k z )  

0 So Co(1 -- kz) ] 

The inverse transformation is given by: 

[Equation 2.4b] 

o . , ~  = k( v . ~ .  - yo ) 

o . ~ .  = k ( y . . ~  - yo) 

o --- ~o, if o . . . ~ < o . . .  
/ 

z = X  
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0 
~ = ~ + ~ 0  

Y = - y o ) C o  + ( z  - -~ )so  + t], ,9 = ~ , , , , , ,  o r  y , , , . =  

f~- + ( ( r  - v0) ~ + (z  - ~)~)'/~, y . , .  < ~ < ~ 
z = ( _ ( y  _ yo)So + ( ~ -  ~ ) v o  + ~, fl = w , , .  or y , , , . .  

Figure 2.4.2 Progressive Change in Bending Range of a Region 

In figure 2.4.2, a constant 90 ° bend is produced by 
wrying  the range and the bend rate. In other words, 
k(ym~,~ --  Ym~n) = ~/2 in each of the examples. In 
figure 2.4.3, a twisted object is subjected to a progres- 
sive bend to produce a Moebius band. Figures 2.4.4 
a and b show a hierarchy of tapering, twisting, and 
bending, by superimposing a bend on the objects in 
figures 2.3.2 and 2.3.3. In figure 2.4.5, a chair is made 
from six primitives using seven bends. The details of 
the crimp in the coordinate systems is shown in figures 
2 .4 .6  a -  b .  

However, the type of bendiug shown in the figures 
does not retain all of the generality that true bending 
requires. Some materials are anisotropic and have an 
intrinsic "grain" or directionality in them. Although 
this is beyond the scope of this paper, it is interesting 
to note that the tangent and normal transformation 
rules may still be utilized. 

o 
Figure 2.4.3 Moebius band is produced wi th  a twist  and ~ bend 

I Tronsformat;on BENDS the region 1 
Tronsformat;on BENDS the reg;on 

=o9 
Figure 2.4.4 & Bent,  Twisted,  Tapered Primit ive  

Figure 2.4.1 Progressive Bending of a Region 
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Figure 2.4.4 b Bent, Twisted Primitive 

Figure 2.4.5 Chair Model, with six primitives and seven bends. 

Figure 2.4.6 Details of the Bend near the Crimp 

3 . 0  C o n v e r t i n g  L o c a l  R e p r e s e n t a t l o n s  
t o  G l o b a l  R e p r e s e n t a t i o n s .  

In this section, a method for generating more 
general shapes is addressed. The Jacobian matrix J (x)  
is assumed to be known as a function of xz, z2, and 
z3, but a closed form expression for the corresponc~- 
ing coordinate deformation function X = F(_z) is not 
known (i.e., in terms of standard mathematical  func- 
tions). The basic method involves 

(1) the conversion of the undeformed input shape 
into its tangent vectors by differentiation, 

(2) transforming the tangent vectors via the tan- 
gent transformation rule into the tangent vectors of 
the deformed object, and then 

(3) integrating the new tangent vectors to obtain 
the new position vectors of the deformed space curve, 
surface, or solid. 

This "local-to-global" operation converts the local 
tangent vectors and Jacobian matrix into the global 
position vectors. The absolute position in space of the 
deformed object is defined within an arbitrary integra- 
tion constant vec to r .  

The above method provides a completely general 
description of deformation, and may be directly 
coupled to the output from the elasticity equations, 
finite element analysis, or other advanced mathe- 
matical models of deformable entities describing a 
profoundly general collection of shapes. The in- 
tegrations outlined above need not be calculated ex- 
plicitly in a ray-tracing environment: a multidimen- 
sional Newton's method can use the Jacobian matrix 
directly. 

3.1 Transformatio~ of Space Curves. Given a 
space curve, parameterized by a single variable s, 

z = z_(a), ao_<s<s  

a new curve X(s)  is desired which is the deformed ver- 
sion of z(s). The Jacobian matrix J ( s )  or J(_z(s)) is 
assumed to be known, but the coordinate transforma- 
tion function X = E_(z_) is assumed to be unavailable. 
As stated above, the equation for X(s)  may be derived 
from the fact that,  

(1) by definition, the position X(s)  is a constant 
vector plus the integral of the derivative of the position, 
i.e., 

[Equation 

i" x__(.)  = + 

3.]a]  
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(2) the derivative of the position is obtained via 
the tangent transformation rule, Equation 1.2 a, so 

[Equation 3.1hi 

K J( x c s )  = + 

where J(_x(s)) is the Jacobian matrix which depends 

upon the value of s, and x_l(s) is the arclength deriva- 
tive ( a tangent vector) of the input curve z_(s). At each 
point in the untransformed curve, x_(s), the tangent 
vectors xt(s) are rotated and skewed to a new orienta- 
tion in the transformed curve: the curve can be bent 
and twisted with or without being being stretched. For 
this case, any matrix function which allows the integral 
to be evaluated may serve as a Jacobian, since there is 
only one path along which to integrate. 

For inextensible bending and twisting transforma- 
tions of the space curve, with no stretching at any point 
of the curve, the Jacobian matrix J(s)  must be a vary- 
ing rotation matrix function. (Even though this is not 
a cofistant afllne rotation, the matrix function for the 
tangent vector transformation rule is identical to that 
used for the normal vector transformation rule.) 

3.£ TransIormations o] 3-D surfaces and solids. 
The representation of a transformed surface or solid 
can be obtained much in the same manner as a space 
curve. First, an origin O0 - is chosen in the object to 
be deformed. For each point z in the surface of the 
object, a piecewise smooth space curve is chosen, which 
connects the origin O to the input point x_. The space 
curve is then subjected to the deformation as in section 
3.1. if J(_z) is in fact the Jacobian of some (unspecified) 
deformation function X___ = _F(x_), the transformation 
from x_ to X__ is unique: all smooth paths connecting 
O and z will be equivalent. Since the equation of the 
surface is given by _x ---- _x(u, v) , the space curve in the 
surface may be obtained by selecting two functions of 
a single variable, say s , for u and for v. i.e., 

u = u(s) 

= 

so that  the space curve in the surface ~_(s) is obtained 
by substituting the values of u and v into the equation 
for x. 

This space curve is then transformed as shown 
above, in Equation 3.1 b. The space curve should 
be piecewise differentiable, so that  the derivatives can 
be evaluated and integrated. The equation for the 

deformed curve is 

[Equation 3.2.1] 

= 

+ 

Expanding the above equation, using the fact that 
the symbol ' means d/ds, and using the multidimen- 
sional chain rule, we obtain 

= 

~ ~ ~ Oz , Ox_ ,^ ^ 

As stated before, for consistency, _J must be the 

Jacobian matrix of some global function F_(z), so that 
the results are independent of the path connecting 
O_ and x_, and so that  the tangent and normal vec- 
tor transformation rules apply. The test for the 
"Jacobian-ness" of the matrix, (in the absence of a pre- 
specified deformation function F(_x)) depends on the 
partial derivatives of the columns of J(x) 

The columns must satisfy 

J .  . ---- J .  . [ E q u a t i o n  3.2.2] 
--s~3 - - 3 ~ t  

In other words, the partial derivative of the i th 
column of _J with respect to zy must be equal to the 

partial derivative of the 3 "th column of J with respect 
to zl. (The underlying principle to prove this result 
is a multiple-integration path consistency requirement. 
The integrand must be an exact differential.) The 
values of the Jacobian may be directly related to the 
material properties of the substance to be modeled, 
and may utilize the plasticity and elasticity equations. 

4.0 A p p l i c a t i o n s  to  R e n d e r i n g  

To obtain a set of control points and normal vec- 
tors with which to create surface patches like polygons 
or spline patches, we sample the deformed surface 
parametrically, With the appropriate sampling, the 
patches can faithfully tesselate the desired object, with 
more detail where the surface is highly curved, and less 
detail where the surface is flat. 

First, the object is sampled with a raw grid of 
parametric u-v values. This raw parametric sampling 
of the surface is then refined using normal vector 
criteria, as calculated by the transformation rule: the 
surface is recursively subdivided when the adjacent 
normal vectors diverge too greatly. Dot products 
which are far enough from unity indicate that  more 
recursive detail is necessary in that  region. 
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In this way, patch-oriented methods like depth- 
buffer and scan-line encoding schemes are effective. 
These algori.thms are linear in terms of the total sur- 
face area and total number of patches. The direct sub- 
divison approach is not as well-suited to ray tracing, 
since the total number of operations is quadratic in the 
number of ray comparisons and objects. 

The incident ray can be intersected with the 
deformed primitive analytically, to reduce the num- 
ber of objects. In addition, it is possible to use the 
inverse deformation to undeform the primitives and 
trace along the deformed rays. (See figures 4.1 and 
4.2). This reduces the dimensi0nality of the parameter  
search from three to one, indicating a tremendous sav- 
ing in numerical complexity. 

Figure 4.2 Undeformed primitive, in its undeformed coor- 
dinate system, showing path of ray 

A p p e n d i x  A" 
P r o o f  o f  t h e  n o r m a l  v e c t o r  t r a n s f o r m a t i o n  r u l e .  

The Jacobian techniques in this paper aid the 
traditional solution methods, to find roots of non- 
linear ray equations (in the context, of ray-tracing 
deformed objects), including the multidimensional 
Newton-Raphson method, the method of regula falsi, 
and the one-dimensional Newton's methods in N-  
space. (See [ACTON].) The analysis of rendering 
deformed primitives using these techniques is left to 
a future study. 

Figure 4.1 Deformed primitive, in undeformed space. 

A short derivation in cross product and dot 
product style demonstrates the normal vector trans- 
formation rule. 

The surface of an undeformed object is given by 
a parametric function of two variables u and v,z_ -p- 
x(u, v). The goal is to discover an expression for the 
normal vector to the surface after it has been subjected 
to the deformation X__ -~- F(_z). 

We note that  the inverse of an arbi trary three 
by three matrix _M_M may be obtained from the cross- 
products of pairs of its columns via: 

[M_2 MI^M ] T = 

We start  the derivation using the fact tha t  the 
normal vector is the cross product of independent sur- 
face tangent vectors: 

OX OX [Equation B . I ~  n-(x) ~- Ou A Ov 

The tangent vectors for X_(u, v) are expanded in 
terms of z(s, t). 

= 

Matrix multiplication is expanded, yielding 

) n (X) ~--- ~zi,~, A zd,,, 
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The summations are combined together: 

3 3 

Since the cross product of a vector with itself is the 
zero vector, and since for any vectors b and £, bA¢ ~-~ 
-£Ab~ this expands to: 

Z 2 , u Z 3 ,  u - -  Z 3 , u Z 2 ,  ~ 

n(X) = ( J z A L ,  J__sAJ1, J I A J 2 ) |  zz,uz1,~, Zl,uZS,, / 

Thus, 

n.(x) = [J2AJ_~, JsAJ1, J' lAJ2]n (z) 

Since det M = -bf I • (M2A_MMs) for an arbitrary 
matrix M, 

n (X) -~ det JJ-1Tn(z) 

In other words, the new normal vector n(X) is 
expressed as a multiplication of matrix _j-1T ~nd the 

old normal vector n_ (ffi). 
Since only the direction of the normal vector is 

important, it is not necessary to compute the value 
of the determinant in practice, unless one needs the 
local volume ratio between corresponding points in the 
deformed and undeformed objects. 

The fact that the normal vector follows this type 
of transformation rule makes it less expensive to calcu- 
late, increasing its applicability in a variety of modeling 
circumstances. 
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