
CUDA-Driven Particle System
Michael Rubino



The program will utilize a parametrically 
defined helix to generate forces to apply to 
a large quantity of particles - hopefully 
several million - through the application of 
CUDA kernels.

Overview



Cyclone
Generated by parametrically defining a helix and giving it a variable width on 
the y-axis (I'm currently accomplishing this through a simple linear 
interpolation between two widths as height increases, resulting in an 
inverted cone-like shape).

Force vectors are defined by forming a vector between a point on the helix 
and its previous point. This results in one less force vector being formed than 
there are total points on the helix. Their magnitudes are specified by user-
defined values when forming the helix, interpolating from a minimum to a 
maximum magnitude as the points rise on the y-axis.

These vectors are applied to each particle based on the particle's distance 
from the 'head' point of the vector, with the force on a given particle being 
dampened by its distance from the force vector.

The cyclone is transformable and continuously rotates at a user-defined rate 
to simulate particle movement appropriately.



CUDA is Compute Unified Device Architecture, an NVIDIA-designed parallel 
computing platform that is implemented on their newer GPUs. It allows for 
access to the GPU's multiprocessors, enabling the programmer to process a 
high volume of identical calculations with different pieces of data very 
quickly.

The program will make use of this GPU interface by calling several CUDA 
kernel functions to process all the necessary components of force vector and 
gravity calculations on each particle in the system and perform the actual 
update to each particle's location after determining how it is affected in total 
by the cyclone.

CUDA



The particle system is defined, in its simplest form, by a series of points and 
velocities. These points will be generated evenly in a bounding box for the 
particle system at program start, and will be confined to this box over the 
duration of the simulation. This out-of-bounds check will be performed in a 
kernel function, most likely in the particle's position-updating kernel 
function.

The particle system may be altered to spawn particles at the base of the 
cyclone; in this situation, particles will be given a lifetime and emission rate 
such that they die near the top of the cyclone and are spawned at a rate fast 
enough to keep the appearance of the cyclone constant. 

Each particle will use a point sprite, variable lifetime coloration, and alpha 
blending to give the cyclone the appearance of either a dust devil or tornado.

Particle System



The particles are to react to collision with a 'ground' surface similar to that of 
the fractal terrain generated for our first program. I have not yet determined 
the best method for this, but am considering using a map containing each 
point on the terrain sorted by its X and Z components in order to allow a fast 
lookup of the point on the terrain that each particle is closest to. 

This data will either be utilized by limiting a particle's minimum y-value by 
the nearest terrain point's y-value, or by locating the two nearest points on 
the terrain and interpolating between their y-values to find a more precise 
limit for the particle.

Terrain Collision



So far, the helix is fully implemented and can be generated based on a 
number of user-specified parameters for a wide variety of testing conditions.

The CUDA backend for the particle system is nearly complete, and all of the 
appropriate function calls to make OpenGL interface with CUDA in the 
necessary manner are in place. 

Based on the work I have completed so far, the project could, potentially, be 
completed at the end of next week. If that is the case, I would like to look 
further into a volumetric lighting example I have found and possibly attempt 
to implement volumetric lighting on the cyclone's particle system with a 
greatly reduced particle count (between 30k-60k particles). 

Progress


