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Single best exposure tone-mapped Standard HDR Our result

Figure 1. An exposure stack taken at a sculpture garden. In the first row from left to right: single best exposure tone-mapped, standard
HDR, and our result. Our result captures all the range of the scene while being free of ghosting. The second row shows the original
exposures in the stack.

Abstract

The contrast in real world scenes is often beyond what
consumer cameras can capture. For these situations, High
Dynamic Range (HDR) images can be generated by taking
multiple exposures of the same scene. When fusing infor-
mation from different images, however, the slightest change
in the scene can generate artifacts which dramatically limit
the potential of this solution. We present a technique ca-
pable of dealing with a large amount of movement in the
scene: we find, in all the available exposures, patches con-
sistent with a reference image previously selected from the
stack. We generate the HDR image by averaging the radi-
ance estimates of all such regions and we compensate for
camera calibration errors by removing potential seams. We
show that our method works even in cases when many mov-
ing objects cover large regions of the scene.

1. Introduction

Progress in Computational Photography has provided
amateur photographers with tools to edit pictures in ways
that, only a decade ago, were exclusive territory of pro-
fessional photographers. For example, capturing and rep-
resenting a large portion of the radiance of a real world
scene—potentially several orders of magnitude larger than
what standard sensors can handle—can be achieved to-
day with consumer cameras and popular software, such as
Adobe Photoshop, by combining differently exposed pic-
tures.

Several methods have been proposed that can create a
High Dynamic Range (HDR) image from a set of Low Dy-
namic Range (LDR) ones (e.g. [4]). However, for most
of these approaches, it is essential that the scene be com-
pletely static in order to avoid introducing various artifacts
(for a description of such artifacts refer to Section 2). This
drastically limits the applicability of HDR imaging as most



scenes of interest do change, be it because people move or
for situations as common as branches blown by the wind.

Additionally, misalignment between the different expo-
sures and noise in the data, as well as in the estimated cam-
era response function, can complicate the problem of de-
tecting and correcting these artifacts.

We propose a method to generate an artifact-free HDR
image. Given a stack of images, we select as a reference
the image with the most useful information about the scene.
In each of the other exposures in the stack, we detect re-
gions that do not cause artifacts when combined with the
reference image. We then create a ghost-free HDR image
averaging only the information from these regions which
are, by construction, consistent. Finally, we remove poten-
tial boundary discontinuities around areas generated with
different sets of exposures.

Our algorithm produces an image that captures as much
dynamic range of the scene as possible and guarantees that
no artifacts are generated. We show that the proposed
method performs extremely well even when the scene is af-
fected by substantial changes, as shown in Figure 1. The
proposed approach naturally extends to other applications
that require combining multiple pictures, such as noise re-
duction.

2. Related Work
Hardware solutions for capturing HDR images are at an

adolescent stage at best (Reinhard et al. provide a compre-
hensive review [14]). Because they capture the whole range
in a single shot, these devices are not affected by scene
changes, unless the exposure time is too long. Unfortu-
nately, HDR camera prototypes usually suffer from limited
resolution and are not available to consumer users. More-
over, because of the large availability of point and shoot
cameras, approaches that only require capturing a set of
standard LDR pictures have a greater potential to impact
everyday photography.

2.1. HDR Generation

HDR images are usually generated from an LDR image
stack by computing a weighted average of the aligned input
images [12, 4, 13]. Whenever an object moves, the averag-
ing process washes it out. This artifact is usually referred to
as ghosting because of its faint appearance. The visibility
of a ghost generally grows with the difference between the
background and the moving object. However, because the
weighting of input images is designed to disregard pixels
that are over- or under-exposed, ghosts of extremely dark or
bright objects are usually difficult to notice.

A way of avoiding ghosting altogether is to find the best
exposure for each region in the scene. The final HDR image
can then be generated as a collage of all these patches [3].

This approach can generate a different type of artifact: an
object can be deformed or duplicated if it moves across the
boundary of one such region. Eden et al. use a similar strat-
egy in that they select only one exposure per region [5]. Be-
cause they first pick the middle exposure as the reference
frame to paste regions into, scene consistency is encour-
aged; however, objects moving in or across regions that are
over- or under-saturated in the reference frame can still be
duplicated or deformed. The main limitation of this class
of methods is that, at each pixel location, the information is
extracted from a single image.

2.2. Artifact Removal

Ghosting can be tackled through motion estimation. Bo-
goni, after global registration, uses optical flow estimation
as a means of per-pixel registration so that the radiance
values from the images in the stack can be correctly com-
bined [2]. Kang et al. take a similar approach and extend
it to produce HDR video sequences [9]. These methods are
limited by the quality of motion estimation as any mismatch
can generate ghosting.

A second class of algorithms seeks to modify the
weighted average to account for some meaningful property
of the pixel, together with its exposure. Khan et al., for
instance, suggest to estimate the probability of a pixel be-
longing to a moving object [10]; instead of employing this
information to track and realign the pixels, they incorporate
it in the weighting function to strongly attenuate the contri-
bution of moving pixels. The results of this approach look
very promising. However, apart from some faint ghosts be-
ing still visible in some examples, the generated scene is not
guaranteed to be consistent because the weighting is done at
a pixel level and, therefore, objects might be duplicated. Fi-
nally, it is not clear how it would perform when most of the
scene changes, as in the case of tree branches moving in the
wind, because of the underlying assumption that neighbor-
hoods around pixels predominantly represent background.

A different approach consists in determining how likely
a certain pixel is to generate ghosting. Reinhard et al. use
the variance across different exposures [14]; we found that,
due to slight misalignments and errors in camera calibra-
tion, the variance at pixel level is often too noisy. Jacobs
et al. have recently proposed an entropy-based method that
does not even require camera calibration [8]. The common
denominator to these techniques is the replacement of entire
regions with a single exposure; as the size of the ghosted re-
gion increases, the dynamic range of the scene can be com-
promised. Moreover, Jacobs et al., in order to avoid visible
seams at the border of pasted regions, still average with the
potentially ghosted HDR image.



3. Deghosting Algorithm
We seek to create an HDR image where neither dupli-

cation, nor ghosting artifacts are present. Duplication can
be avoided by using a single image from the stack as a ref-
erence. Additionally, if its dynamic range is extended ex-
clusively with consistent regions from the rest of the stack,
ghosting artifacts will not be introduced. We assume that
the input images are aligned and that we have an estimate
of the camera response function. For the latter we use the
approach described by Debevec and Malik [4].

3.1. Reference Image Selection

A crucial stage of our algorithm is that of picking a ref-
erence image from the stack so we can determine and omit
inconsistencies of the rest of the exposures with respect to
it. Consistency with the rest of the exposures means absence
of ghosting artifacts; additionally, because the reference is
a single image rather than a combination, it is guaranteed to
be self-consistent, thus no duplication artifacts are possible.
On the other hand, even with a moderate amount of motion
in the scene, it is virtually impossible to automatically gen-
erate a self-consistent reference frame by pasting regions
from different images in the stack, for the reasons described
in Section 2.1. Because the final result is an HDR version
of the reference frame, it is often useful to let the user select
it. In this way, undesired objects can be removed, provided
that there is at least one exposure where they do not appear,
as in the case of Figure 5. If every exposure in the stack is
acceptable to the user, the reference frame should be cho-
sen carefully for it strongly impacts the final result. Note
that the picture with the overall best exposure, typically the
middle one, is not necessarily the optimal choice: an image
that is globally over- or under-exposed in which, however,
texture is completely preserved, should be preferred to one
that is perfectly exposed, apart from one or more completely
saturated regions. Regions that are over- or under-saturated,
in fact, do not provide any valuable information to avoid
ghosting.

To suggest a good reference frame, therefore, we find
the saturated pixels in each image of the stack; we then re-
move small saturated regions with morphological operators
(erosion followed by dilation) because, for such areas, the
neighborhood usually contains enough information to avoid
artifacts. Finally we pick the exposure with the fewest re-
maining saturated pixels.

3.2. Extending the Dynamic Range

The reciprocity assumption states that, if the radiance of
the scene does not change, the exposure time X and the
irradiance E are linearly related through the exposure time
∆t:

X = E ·∆t. (1)

(a) (b)
Figure 2. The values at the pixels in one patch are plotted versus
those of the corresponding pixels in an image which is one stop
brighter. For matching patches, (a), the data points should lie on
the line y = x + ln(evij). We can measure the ghosting value of
two patches by computing the percentage of points that are more
distant than a given threshold from the line. In (b) such points are
indicated by green circles and the threshold by the dashed line.

In other words, given the value at the pixels pi in the i-th
image of the stack, the exposure at all corresponding pixels
in the j-th image with relative exposure evij should satisfy

X(pj) = X(pi) · evij . (2)

Aside from over- and under-saturated pixels, Eq. 2 should
only break when the scene changes, and can therefore be
used to decide if the irradiance at a given pixel in the refer-
ence frame can be combined with that of the corresponding
pixel in another image in the stack. In practice, however, a
small misalignment or imprecise estimation of the camera
response function can produce large deviations from this be-
havior. To obviate this lack of robustness at the pixel level,
we compare patches instead.

Figure 2 shows the log-exposure of each pixel in one
patch of one image, plotted versus the log-exposure of the
corresponding pixels in an image one stop brighter. Each
dot in a plot corresponds to one color channel for a pixel,
thus an RGB pixel produces three dots. Figure 2 (a) shows
a result when the scene within a patch aligns well. Taking
the logarithm of Eq. (2), we get ln(X(p2)) = ln(X(p1))+
ln(ev12), that is each log-exposure value in a patch should
be offset by a constant value. The ideal transfer function
is marked by the straight 45◦ line, and the corresponding
pixels cluster very close to the line. However, when the
scene changes within the patch, the exposure values at the
same pixel coordinates do not follow this simple relation,
as shown in Figure 2 (b). Based on this observation, we
define the ghosting value, a measure of the deviation of the
exposure in a patch from the model predicted from another
patch. We first detect the set of outliers, samples that are
farther than a threshold from the expected line (see circled
samples in Figure 2 (b)). The ghosting value for the pair
of patches is the maximum, over the three color channels,



of the number of outliers over the total number of pixels
in the patch. In other words, the ghosting value measures
the percentage of pixels that can cause ghosting in a patch.
We then determine if the patch pair is consistent by using
a second threshold, this time on the ghosting value. Both
thresholds can be selected by the user to adjust the sensitiv-
ity to ghosting: while more conservative thresholds may be
required in some situations to remove subtle ghosting, they
potentially limit the dynamic range of the final image. In
the results presented in this paper, because the different ex-
posures were at least one stop apart, the first threshold was
set to 0.75, and the patch was accepted when containing less
than 0.5% of outliers.

With this approach, we can find, for a given patch in the
reference frame, all the consistent patches in the other im-
ages in the stack. Repeating this process for all the patches
in the reference image, we can generate a ghost-free HDR
image combining all the irradiance information available.
For instance, if an object moves only in one frame (other
than the reference), all the remaining pictures from the stack
are used. This provides a significant improvement over
other approaches (e.g. [8], [5]) which use only one exposure
for regions where inconsistency is detected, even when the
potential source of ghosting is a single frame in the stack.

All the results shown in the paper are obtained by di-
viding the reference image in a 40 × 40 grid of patches;
smaller patches can allow for a larger dynamic range close
to areas with motion, but result in an increased sensitivity of
the ghosting value to noise. In principle, the patches can be
of arbitrarily complex shape—they can, for instance, be de-
termined by segmenting the reference image—but we found
that simple, rectangular patches work well.

3.3. Blending

The log-irradiance Li(p) of each input image i at pixel
p can be estimated, given the camera response function g,
as

Li(p) = g(Ii(p))− ln(ti), (3)

where Ii denotes the i-th input image and ti is the corre-
spondent exposure time.

Multiple exposures for each pixel p can be combined
with a weighted average as Debevec and Malik did [4]
to get the HDR irradiance map LH . As described in the
previous section, for each patch we find the largest set I
of input images that are consistent with the reference im-
age; two neighboring patches should therefore merge seam-
lessly, even if they are computed from different subsets of
exposures, L being a property of the scene.

In practice, significant artifacts are often visible at the
boundaries of blocks averaged from different sets of in-
put images because of inaccuracies in the camera response
function estimation (see Fig. 3).

To compute the final radiance image with no visible
boundary, we adapt the method proposed by Fattal et al. [6].
First, the gradient G(p) of the log-irradiance image is esti-
mated at each pixel in a block as

G(p) = ∇LH(p), (4)

where LH(p) is computed from the exposures in I only,
and G(p) = [Gx(p), Gy(p)] is the numerically estimated
gradient field of the sought log-irradiance image inside the
block.

Next, G is extended over the entire image by pasting the
gradient fields of all image blocks. The value of the gradi-
ent at the boundary of the patches needs to be hallucinated,
for example by replicating its last row and column. In or-
der to avoid additional artifacts, however, before detecting
potential ghosts as described in Section 3.2, we extend the
patches by one row and one column. In addition to provid-
ing the real gradient at each location of the patch, this strat-
egy also benefits the consistency of the gradient between
neighboring patches, as it causes nearby blocks, which are
already consistent with the reference image, to overlap in
the log-irradiance domain.

The final log-irradiance image L∗H can be estimated by
integrating the gradient field G(p) over the image domain.
To do this, we aim to estimate an image whose gradient is
closest to G, in the mean squared error sense. Formally, the
solution L∗H must minimize∫ ∫

||∇L∗H(p)−G(p)||2, (5)

where the integration is done over the entire image. Ac-
cording to variational analysis theory, the solution to Eq.
(5) must satisfy the following Euler-Lagrange equation at
each pixel location p:

∆L∗H(p) = div G(p), (6)

where ∆ and div stand for Laplace and divergence opera-
tors, respectively.

Equation (6) is known as Poisson equation, for which
various numerical solutions have been described [7]. In our
work we imposed Neumann boundary conditions for solv-
ing the differential equation Eq. (6). In other words, the
gradient of L∗H is assumed zero at the boundary of the im-
age along the boundary normal.

Because we solve Eq. (6) for each color channel sepa-
rately, we also need to correct the color balance of the out-
put. After converting L∗H to the estimated irradiance E, we
pick a pixel p̂ that is not affected by ghosting when aver-
aged over all the exposures and calculate its irradiance Ê .
We then scale E so that E(p̂) = Ê. This is similar to the
approach taken by Agarwala et al. [1].



Figure 3. First row from left to right: simple HDR image with ghosting, the output of our algorithm before blending, and our result after
blending. Particularly in smooth areas, abrupt changes at the boundary of different patches are visible before blending. The second row
shows the original exposures in the stack (note that the scene changes substantially with some objects moving and some disappearing).

Figure 4. The top left image is the simple HDR image with ghosting from a sequence of 4 pictures taken in a forest. A person walking in
the scene causes ghosting on the right side of the left image. Moreover, the branches present strong artifacts due to the wind blowing. The
top right image is our result. A detail from standard HDR and our result can be seen in the bottom row (right), together with two images
from the stack (left).



Standard HDR Our result

Figure 5. Our algorithm can also be used to remove unwanted ob-
jects from the HDR image. The second row shows the original
exposures in the stack. According to our measure, the exposure to
be used as the reference was the 4th; however, because we aimed
to also remove the people walking, the 5th picture was manually
selected from the stack. Note that some regions of the 4th frame
that did not cause ghosting were still combined in the final HDR
(see Figure 7).

4. Results

We tested our algorithm on a variety of scenes to eval-
uate its performance in the presence of different sources of
artifacts. All the stacks were taken by manually bracketing
the exposure time, all other settings of the camera being left
unvaried. The camera response function was estimated only
once with the approach described in [4]. All the HDR pic-
tures shown in the paper have been tone-mapped with the
algorithm proposed by Lischinski et al. [11].

Figure 1 shows a common case: a high dynamic range
scene characterized by the presence of people walking
around. The result shown is obtained by automatically se-
lecting the reference frame because the exposures in the
stack were semantically equivalent. A different situation
is shown in Figure 5. The frame automatically selected as
a reference was the fourth from the left on the bottom row,
however, given the presence of people walking, we man-
ually picked the fifth, the choice being only based on the
scene content. Note that our result captures most of the
range, part of which is still extracted from regions of the
fourth frame, while preserving complete consistency with

the reference frame. For both Figure 1 and Figure 5, we also
show how many exposures were used to generate the single
patches (Figure 7). Note that it is infrequent that only one
exposure is selected; even in regions where some motion
occurs, all the consistent images are combined. Figure 4
shows another typical situation that our algorithm can han-
dle; the wind is causing both the branches and their shadows
to move.

Figure 6 shows another application of the same princi-
ple. A dark scene is captured with a high ISO sensitivity,
with obvious repercussions on the level of sensor noise. An
effective strategy for removing noise is to take a stack of
pictures and average them [15]; however, when movement
occurs, ghosts are introduced, as shown in the picture in the
middle. Our de-ghosting approach can be applied to aver-
age only patches that are consistent with a reference frame;
in other words, we can treat the set of pictures as an expo-
sure stack where all the exposure values are the same. The
results are identical to those of a simple average where no
movement occurs, while in the dynamic regions ghosting is
traded for some noise.

5. Limitations and Future Work
Occasionally, some barely visible seams at the bound-

ary of different patches can survive the Poisson Blending
step. To remove this artifact, the shape of the patches can
be allowed to vary to match that of objects in the reference
image. Additionally a multi-scale approach can be designed
so as to preserve the robustness offered by patches while al-
lowing for smaller patches where needed.

It is also noteworthy that, when every image in the stack
contains a large region that is over- or under-saturated, the
risk exists that the correctly exposed picture will be detected
as generating ghosting by our algorithm, thus being dis-
carded from the HDR computation. In practice we found
that, because we use patches, the small amount of remaining
texture is generally enough to prevent this from happening.
Further work can be done on defining a smart collage of the
different images from the stack to address this problem in a
way that does not create duplication artifacts.

6. Conclusions
We presented an algorithm capable of capturing as much

dynamic range of a scene as possible, without introducing
ghosting. When the scene is static, our approach is equiva-
lent to standard HDR techniques; otherwise it successfully
determines which regions can be combined with the refer-
ence image from other exposures in the stack so that con-
sistency is preserved. Our algorithm proved successful on a
variety of different scenarios, even when the motion affects
a substantial part of the scene. In addition to preventing ar-
tifacts, it also allows the user to select the reference frame



Figure 6. Stack consisting of 10 pictures affected by ISO noise,
one of which is shown on the left. The noise can be attenuated
by averaging the pixel values across the stack, but moving objects
can cause ghosting as shown in the middle picture. Alternatively, a
reference picture can be selected and only pixels consistent with it
can be averaged together as shown in the picture on the right. Note
that, where movement occurs, noise may be not removed (see inset
on the puppet).

Figure 7. Our algorithm combines as much dynamic range of a
scene as possible without introducing ghosting. In these pictures,
the color of a patch is proportional to the number of images com-
bined. On the left is the map for Figure 5, on the right that for
Figure 1. Note that, even when a region changes significantly in
all the exposures, as in the case of the people walking in Figure 1,
our algorithm still finds multiple exposures to combine.

so as to remove potentially unwanted objects. The idea can
be extended to other applications requiring a stack of pic-
tures, as we showed by de-noising images affected by ISO
noise.
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