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Distributed control of swarms

Schooling fish

Tiny robot, courtesy [CS], see [CAS00]

(i) Large number of robots with limited communication.

(ii) Control algorithm and communication law on each robot.

Goal is to write control algorithm and communication law for individual
robots such that the whole swarm achieves some collective task.
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Spatially-induced graphs

R-disk communication graph Visibility graph

We model communication networks with spatially induced graphs

(i) Set of robot positions induce graph, G = (V, E).

(ii) Edge between robots i and j indicates communication is possible be-
tween i and j.

(iii) Mapping between set of positions and graph should be invariant un-
der permutation of robot identities

Here we show the r-disk graph. We like to pick graphs which are reason-
able, but crude, approximations of how wireless networks might actually
behave.
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Robotic Network Model

Network model equivalent to [MBCF07].

Each robot runs a discrete time communications law. At particular time
slices, robots communicate with neighbors over proximity graph, and
modify values stored in logic variables.

Each robot, i, runs a continuous time control law which controls the mo-
tion of robot i based on i’s position state and logic variables. Robots are
fully actuated. In our case, they live in R2.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Outline

(i) Background

(ii) Algebraic Connectivity

(iii) Key idea / game

(iv) Final algorithm

(v) Conclusions / Future work



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Connectivity and collective behavior

R-disk communication graph

Failure to rendezvous due to lapse in connectivity

If communication network becomes disconnected, it is, at best, as if we
have two smaller swarms.

(go through this quickly)
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Algebraic Graph Theory

Given a graph, G = (V, E), the Laplacian matrix, L(G) be the matrix

Li,j =

 −1 (i, j) ∈ E
deg(i) i = j
0 otherwise

If the graph is weighted, i.e. for each (i, j) ∈ E there is a wi,j ∈ R, we can
define a weighted Laplacian matrix L(G) by

Li,j =

 −wi,j (i, j) ∈ E∑
k 6=i(wi,k) i = j

0 otherwise
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The Graph Laplacian

The Laplacian has several nice properties

• L1 = 0

• The multiplicity of the zero eigenvalue is the number of components
of the graph.

• The speed of convergence of common control algorithms for flock-
ing, rendezvous and consensus depend on the second smallest eigen-
value, λ2 of the Laplacian matrix of the communication graph.
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Problem Setup (1 of 2)

Suppose a communication graph for a swarm of robots is weighted, and
the weights depend on the relative positions of the two robots sharing a
communication link.

Then λ2(L(G)) depends on the positions of the robots in the swarm.

An instantaneous motion of a robot creates an instantaneous change in
λ2(L(G)).

Evolution of graph
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Problem Setup (2 of 2)

Whenever L(G) has a distinct second smallest eigenvalue, gradient of
λ2(L(G)) with respect to L(G) is v2v

T
2 where L(G)v2 = λ2(L(G))v2.

Nonsmooth. Let fλi
(L) map L ∈ Sym(n) to λi(L).

Nonsmooth gradient is:

f ◦λi
(M ; X) = max

{v∈Sn : Mv=λiv}
vvT •X,

∂fλi
(M) = co{v∈Sn : Mv=λiv}{vvT}.

Example nonsmooth function
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Notation

Quickly

LAP(n) ⊆ Sym(n) is the space of valid Laplacian matrices, i.e. L ∈ LAP(n)
implies L1 = 0 and Li,j ≤ 0 for i 6= j.

LAP±(n) is an extension of this space. Lacks the Li,j ≤ 0 requirement.
Rates of change of a Laplacian matrices live in LAP±(n)

A ≤LAP B if and only if Ai,j ≥ Bi,j for all i 6= j.
Interval [A, B]LAP for A, B ∈ LAP±(n) defined in the natural way.
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Prior work

Prior work revolves around finding gradient of fλ2
in space of robot posi-

tions and moving in direction of that gradient.

Difficult to do in a distributed fashion. Centralized solutions in-
clude [Boy06] and [KM06].

Decentralized solution [dGJ06] follows gradient approach

• Communication complexity required to compute eigenvalue

• Nonsmoothness of eigenvalue gradient.

(see also: Yang and Freeman, Zavlanos and Pappas)
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Our solution

• Information dissemination algorithm.
...

... ...

...

p0

t0

pi

t1

pn

tn

(pi,ti)

(pi,ti)

(pi,ti)

• Each robot has bounds on value of Laplacian matrix

• Game against world-picking opponent. (appears in next section)
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Our solution (1 of 4)

Game in space of matrices.

Given A, B ∈ LAP(n) which bound Laplacian, find X ∈ LAP±(n) which
doesn’t decrease λ2 for any Laplacian in range with λ2 ∈ [λ−, λ+].

+

−

λ+, λ− and λ2 over time.
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Our solution (2 of 4)

Game in space of matrices.

Given A, B ∈ LAP(n), A ≤LAP B, and λ+ ∈ R find a direction X ∈ LAP±(n)
having X • V ≥ 0 for every V in the generalized gradient of some L ∈
[A, B]LAP having fλ2

(L) ≤ λ+.

Suffices to find X ∈ LAP±(n) having X • (vvT ) ≥ 0 for every v having
Lv = fλ2

(L)v for some L ∈ [A, B]LAP having fλ2
(L) ≤ λ+.
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Our solution (3 of 4)

Find set enclosing the set of every v having Lv = fλ2
(L)v for some L ∈

[A, B]LAP having fλ2
(L) ≤ λ+.

Such a v must have 2 components.

• Component in m lowest eigenvectors for some m having fλm+1
(A) ≥ λ+

• Component in other eigenvectors of a small enough magnitude that
multiplying by fλm+1

(A) and adding to contribution of other compo-
nent to Lv keeps Lv under λ+v.
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Our solution (4 of 4)

Pick basis for first component, Mu(m). Pick ball radius enclosing second

component, εA(m) =
√

λ+−λ2(A)
λm+1(A)−λ2(A)

For a proposed direction in the space of Laplacian matrices, X ∈ LAP±(n)

• Compute min(eigs(MT
u (m)XMu(m))) and min(min(eigs(X)), 0)

(columns of Mu(m) are eigenvectors of A of eigenvalue < λm+1(A)).

• If (1−εA(m)
2
) min(eigs(MT

u (m)XMu(m)))+εA(m)
2
min(min(eigs(X)), 0) ≥

0 then direction is “safe”

Actually determines if all Y having X ≤LAP Y win game.
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MOTION TEST ALGORITHM

Given proposed motion by an individual robot, compute lower bound
on instantaneous rate of change of Laplacian matrix. If the actual (un-
known) rate of change is Y , we want X (known) having X ≤LAP Y .

If each robot moves in a direction such that the associated Laplacian
rate of change satisfies eigenvalue test, then fλ2

(L(G)) does not drop be-
low λ+.
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MOTION PROJECTION ALGORITHM

Combine this with a root finder on the space of physical directions of
robot motion.

Gives an algorithm which finds valid directions.
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Example 1 : Rendezvous

Without connectivity constraints

Sim

http://www.soe.ucsc.edu/~mds/talks/2007o_December-CDC-Mike/test.html
http://www.soe.ucsc.edu/~mds/talks/2007o_December-CDC-Mike/rendezvous.html
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Example 2 : Flocking

Sim

http://www.soe.ucsc.edu/~mds/talks/2007o_December-CDC-Mike/flocking.html
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Example 3 : Multiple control directives

Sim

http://www.soe.ucsc.edu/~mds/talks/2007o_December-CDC-Mike/multi_cont.html
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Conclusions

Connectivity constraints are realizable

• In a more flexible setting than previously thought.

• Without explicit global transfer of information

• In a manner which can be coupled with a wide set of algorithms

Work presented in
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Intelligent and Robotic Systems, 2008. Special issue on ”Special Issue on Unmanned Autonomous Vehicles.” Submitted

Also see M. D. Schuresko. CCLsim. a simulation environment for robotic networks, 2008. Electronically available at

http://www.soe.ucsc.edu/˜mds/cclsim.
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Future work

• Understanding when IDEALIZED MOTION TEST ALGORITHM causes agents
to lock up.

• Understanding when MOTION TEST ALGORITHM causes agents to lock
up and IDEALIZED MOTION TEST ALGORITHM does not.

• Either improving “agents lock up” problem with MOTION TEST ALGO-
RITHM or characterizing conditions on tcmm, vmax and the agent com-
munication radius which reduce lock-up to an acceptable level.


