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Abstract. We introduce an algorithm to estimate the optimal exposure
parameters from the analysis of a single, possibly under- or over-exposed,
image. This algorithm relies on a new quantitative measure of exposure
quality, based on the average rendering error, that is, the difference be-
tween the original irradiance and its reconstructed value after processing
and quantization. In order to estimate the exposure quality in the pres-
ence of saturated pixels, we fit a log-normal distribution to the brightness
data, computed from the unsaturated pixels. Experimental results are
presented comparing the estimated vs. “ground truth” optimal exposure
parameters under various illumination conditions.
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1 Introduction

Correct image exposure is critical for virtually any computer vision application.
If the image is under- or over-exposed, features or texture are lost, colors are
washed out, and the overall perceptual quality of the image is decreased. Correct
exposure means that the best possible use is made of the quantization levels
provided by the digitization system – in other words, that the rendering error due
to the non-ideal imaging system is minimized, where the rendering error is the
difference between the true irradiance at a pixel and what can be reconstructed
based on the measured brightness.

In this paper we propose a quantitative measure for the quality of exposure,
along with an algorithm to estimate the optimal exposure based on single, possi-
bly under- or over-exposed, image. By using only one image (rather than several
images taken at different exposures) our algorithm enables a fast mechanism for
exposure control, a useful characteristic in many contexts. For example, vision
system mounted on mobile robots need to adapt quickly to new scenes imaged as
the robots moves around. Surveillance systems require prompt response to sud-
den changes in illumination, such as a light turned on or off. Likewise, through-
the-lens (TTL) digital cameras systems for the consumer or professional market
may benefit from fast and accurate exposure control.

Our definition of exposure quality requires estimation of the rendering error
and of its expected behavior with varying exposure parameters. Unfortunately,
the rendering error can only be computed if the original, unprocessed irradiance
data is available - a luxury that is not usually available. In particular, if some
of the pixels are saturated, their value and thus their rendering error is simply
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unknown. We note in passing that, in general, a correctly exposed image contains
a certain amount of saturated pixels: an exposure control strategy that simply
avoids saturation is usually sub-optimal. We propose a procedure to estimate the
rendering error for saturated pixels based on a prior statistical model of the image
brightness. Basically, we fit a parametric distribution model to the unsaturated
data; the “tail” of this distribution tells us what to expect beyond the saturation
point. Computing this model boils down to a problem of parameter estimation
from right-censored data, a well-studied statistical technique. Combined with
the brightness histogram of the unsaturated data, the model-based distribution
for the saturated data allows us to predict how the rendering error changes as
one increases or decreases the exposure time, and thus to estimate the optimal
exposure, as the one that minimizes the rendering error.

This paper is organized as follows. After presenting related work in Sec. 2,
we introduce our quantitative definition of exposure quality in Sec. 3. Next
Sec. 4 shows how the exposure quality can be evaluated from a single image,
and introduces our parametric statistical model for the unobserved (saturated)
pixels. This concept is brought forward in Sec. 5, where we describe how to
estimate the rendering error for various exposures from observation of an image
at a fixed exposure, enabling a mechanism for estimating the optimal exposure.
Quantitative experiments are described in Sec. 6.

2 Related Work

Much of the existing literature for automatic exposure control appears as patents
(e.g. [1–3]). A common theme in all these works is the use of some scene eval-
uation heuristics. Scene evaluation can range from relatively simple goals such
identifying back-lit and front-lit scenes [4] to the complex task of face detection
[5]. Once the most important areas of the scene are determined, exposure con-
trol is adjusted so that some statistic of these pixels, such as the mean, reaches
a desired value, often near the middle of the pixel range (e.g. 128 for an 8-bit
image). Adjustment is normally achieved via dynamic control algorithms [6–8].

A per-pixel control algorithm where the objective function is based on a
model of the camera’s response function is given in [9]. The goal of this system
is to modify the exposure of each pixel (or, in this case, the transmittance of
a coupled spatial light modulator) so that the irradiant energy is just below
saturation. If the pixel is unsaturated, then the next exposure is computed triv-
ially. If the pixel is saturated, then the exposure is decreased by a large constant
fraction.

Schulz et al. [10] measure the goodness of exposure by the integral of the
brightness histogram within the bounds of the camera’s dynamic range (from
the minimum brightness above noise level to the maximum brightness before
saturation). Although this measure of goodness may resemble the one proposed
in this paper, it lacks a sound theoretical justification, and may give very different
results from ours.
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Recent work on high-dynamic range (HDR) imaging has addressed the is-
sue of how to efficiently combine low-dynamic range(LDR) images into an HDR
stack (see e.g. [11]). The goal is to find a minimal image-bracketing set that
covers all of the scene dynamics. In order to minimize the acquisition time, one
needs an efficient strategy for selecting the exposure of the next LDR image to
take. Barakat et al. [12] propose three different approaches: Blind acquisition;
Clairvoyant acquisition; and Blind acquisition with feedback. Under this termi-
nology, our proposed approach can be defined as a blind acquisition system that
tries to best capture the scene dynamics after observation of just one previous
image.

3 Exposure Quality: A Quantitative Definition

A pixel in a camera’s focal plane converts irradiant energy into a number (bright-
ness). For a given exposure time (or, concisely, exposure) T , the irradiant energy
IT is a function of the irradiant power integrated over the pixel’s surface1, I:

IT = I · T (1)

Note that the irradiant power I is approximately a linear function of the iris
aperture area, especially for pixels near the center of the image, which adds one
multiplicative factor in (1). We will assume constant iris aperture in this paper.

Conversion from irradiant energy IT to brightnessBT normally comprises two
steps: (a) transformation of IT into electrical charge; (b) quantization of a voltage
signal that is a function of this charge. For the sake of simplicity, subsequent
operations on the digital data (such as white balancing, gamma correction, or
sub-quantization) are neglected in this work. We note that, at least for cameras
in the higher market segments, these operations can usually be overridden by
proper configuration setting.

Formally, this conversion can be represented as follows:

BT = Q (f(IT )) (2)

The sensor’s characteristic f can usually be modeled as an invertible noisy
function, and can be estimated using standard methods (see e.g. [13, 14]). The
inverse function of f will be denoted by g: g(f(IT )) = IT . Note that embedded
in the sensor’s characteristic f is also the variable gain amplification, which can
be also used as an exposure parameter.

The non-invertible quantization operator Q maps values of f(IT ) into num-
bers between 0 and 2N − 1, where N is the number of bits. Using a mid-tread
model [15], the quantization operation can be formalized as follows:

Q(x) =
{

round(x/∆) , x < (2N − 1)∆
2N − 1 , x ≥ (2N − 1)∆ (3)

1 Without loss of generality, it will be assumed that the pixel has unit area in an
appropriate scale.
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where ∆ is the quantization step. In practice, values of IT within an equivalent
bin [∆(i), ∆(i + 1)], where ∆(i) = g(i∆), are mapped to BT = i (see Fig. 1).
Values of IT above g((2N − 1)∆) are saturated to 2N − 1. Note that in the case
of linear sensor characteristic (f(x) = ax), increasing the exposure by a factor
of k (T → kT ) is completely equivalent to reducing the quantization step by the
same factor (∆→ ∆/k).
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Fig. 1. Conversion of irradiant energy IT into brightness BT .

We define by rendering error eT at a pixel the difference between the true
irradiant power, I, and the best reconstruction from the brightness BT :

eT = I − g(BT∆)/T (4)

The irradiant power I is independent of the exposure setting (for constant iris
aperture) and thus represents a more natural domain for the definition of render-
ing error eT than the radiant energy IT . Note that the dependence of eT on T as
we analyze it is only due to the presence of the quantizer (but see Appendix B).
When IT < g((2N − 1)∆), the signal is said to be in the granular region.

If the equivalent quantization bins are small enough that the sensor’s charac-
teristic f(IT ) has constant slope within each individual bin, then one easily sees
that, when IT is within the i-th equivalent bin, the error eT is confined between
−α(i)∆/2 and α(i)∆/2, where α(i) = g′((i+ 1/2)∆). When IT > g((2N − 1)∆),
the signal is said to be in the overload region, generating an unbounded error
(meaning that the pixel is saturated).

In order to assess the effect of quantization, we can define a positive measure
of the rendering error L(eT (m)) at each pixel m, and average it over the whole
image:

ET =
N∑
m=1

L(eT (m))/M (5)

where M is number of pixels in the image. The optimal exposure for a particular
scene is the value of the exposure T that minimizes the associated error ET .
The goal of exposure control is thus one of finding the optimal exposure, given
the observations (images) available. In this paper, we describe an algorithm that
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attempts to find the optimal exposure from analysis of a single image, taken
with a known (and presumably suboptimal) exposure T0.

Our definition of exposure quality promotes a “good” balance between the
overload error due to saturation and the granular error for unsaturated pixels.
The optimal exposure depends on the chosen error measure L. One may choose,
for example, L(eT ) = |eT |p for an appropriate value of the exponent p. Larger
values of p penalize the overload error more (since it can grow unbounded). For
example, in Fig. 2 we show the error ET for p = 0.5, 1 and 2 as a function of T
using 8-bit pixel depth for a particular scene. (For this and other experiments we
synthesized 8-bit images from a 12-bit image as discussed in Appendix A, and
used data from the 12-bit image as “ground truth”). Optimally exposed images
for the three measures chosen (corresponding to the minimizers of the curves)
are also shown in the image. Note that using p = 0.5, a brighter image with more
saturated pixels (1.4% of the image) is obtained, while p = 2 allows for much
fewer saturated pixels only. Other error measures (e.g. robust measures such as
Tukey’s biweight function) could also be considered. For all experiments in this
paper, we used the measure L(eT ) = |eT |.

4 Evaluating Exposure Quality

Computation of (5) is only feasible if the irradiance I is known for each pixel,
an unrealistic assumption in any practical situation. Instead, one may estimate
ET by means of the expected error measure over a suitable probability density.
More precisely, we model the values of irradiant power at the pixels as samples
independently drawn from a density p(I). Thus, the expected value ET of L(eT )
can be written as:

ET =
∫ ∞

0

L(eT )p(I) dI = EgT + EoT (6)

EgT =
2N−2∑
i=0

∫ ∆(i+1)/T

∆(i)/T

L(eT )p(I) dI ; EoT =
∫ ∞
g((2N−1)∆)/T

L(eT )p(I) dI (7)

In the following analysis we only consider the effect of quantization noise. While
the overall level and variance of photon noise can be significant, in Appendix B we
argue that this has little effect on the optimum exposure value Topt, especially
compared to the effect of changing L in (5) or changes in the distribution of
irradiance at the sensor.

If the density p(I) can be considered constant within each equivalent bin
(“high rate” assumption [15]), and still assuming that the sensor characteristic
has linear slope within each equivalent bin, the granular error is uniformly dis-
tributed within −α(i)∆/2T and α(i)∆/2T . This enables easy computation of
the granular error EgT . The dependence of EgT on T is normally complex, except
when the sensor has a linear characteristic f(IT ), in which case the following
identity holds:

EgT = ΦT · Prob(I < (2N − 1)∆/T ) (8)
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Fig. 2. The error ET as a function of exposure T for an 8-bit system with L(eT ) = |eT |p.
Blue circles: p = 2. Magenta squares: p = 1. Red triangles: p = 0.5. The minimizer
of each curve represents the optimal exposure Topt for the corresponding measure.
The optimally exposed image for the each measures are also shown, along with the
percentage of saturated pixels Psat.

where ΦT is a quantity that decreases with T but does not depend on the density
p(I). For example, if L(eT ) = |eT |p, then ΦT = (∆/T )2/12 for p = 2, ΦT = ∆/4T
for p = 1, and ΦT =

√
2∆/T/3 for p = 0.5.

Eq. (8) formalizes a very intuitive concept, termed “Expose to the right”
(ETTR) in the photography community [16]: increasing the exposure time im-
proves the rendering quality for the non-saturated pixels. At the same time,
increasing the exposure leads to more saturated pixels as well as to higher over-
load error for the saturated pixels.

4.1 Modeling the Irradiance Distribution

What is a good model for the density p(I)? Suppose for a moment that all pixels
in the image, taken at exposure T , are unsaturated. Let us define the “continuous
domain” histogram as the piecewise constant function hT (x) representing the
proportion of pixels with BT = round(x). Note that hT (2N−1) is the proportion
of saturated pixels in the image. The continuous domain histogram hT (x) can be
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used to model the density p(I) by means of the auxiliary function h̄T (I), defined
by (9) where f ′ is the dervative of f .

h̄T (I) = hT (f(IT )/∆) · f ′(IT ) · T/∆ (9)

But what if the image has saturated pixels? The brightness value of these
pixels is not observed, and thus the histogram provides only partial informa-
tion. For these case, we propose to model p(I) by means of a parametric func-
tion, with parameters learned from the unsaturated pixels. Parameter estimation
from “right-censored” data is a well studied methodology, and standard meth-
ods exist [17, 18]. In our experiments, we used the Matlab function mle.m which
performs ML parameter estimation with right-censored data for a variety of
parametric distributions.

We decided to use the lognormal parametric function for representing the
marginal probability density function (pdf) of the irradiance data.This choice
was suggested by the theoretical and experimental analysis of Richards [19] and
Ruderman [20]. In particular, Richards [19] observed that random variables
modeling distributions of important contributors to scene brightness, such as
illumination sources and angles, surface reflectance, and the viewing angle for
non-Lambertian surfaces, affect recorded brightness in a multiplicative fashion.
Thus, the logarithm of brightness should be distributed as a sum of random vari-
ables, which the central limit theorem approximates as a normal distribution. It
should be clear that any choice for a prior distribution of the brightness data is
bound to fail in certain instances. For example, the presence of a strong illumina-
tor, or even of the sky in an image, generates a peak in the brightness histogram
that cannot be easily accounted for by a parametric distribution, especially if
these peaks belong to the saturated region. Still, we believe that the chosen fit
provides a simple and, in most cases, realistic estimation of the behavior of the
irradiance even for the pixels that are saturated. An example of parametric fit
is shown in Fig. 3 for two different scenes. Note that in both cases the 8-bit
image saturates; the irradiance values for the saturated pixels are modeled by
the lognormal fit.

Let qT (B) be the parametric model learned from the right-censored bright-
ness data taken with exposure T . Similarly to (9), a model q̄T (I) for p(I) based
on qT (B) can be defined as by:

q̄T (I) = qT (f(IT )/∆) · f ′(IT )T/∆ (10)

At this point, we have two different representations for p(I): the histogram-
based function h̄T (I), which is the best model for the unsaturated data; and the
parametric density function q̄T (I), which models the saturated and thus unob-
servable data. We propose a “composite” model p̄T (I) for p(I) that combines
the two models above:

p(I) ≈ p̄T (I) =
{

h̄T (I) , I < g((2N − 1)∆)/T
q̄T (I) KT , I ≥ g((2N − 1)∆)/T (11)
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Fig. 3. The histogram function h̄T (I) for the “ground truth” 12-bit image (blue) and
for a derived synthetic 8-bit image (red) are shown along with the lognormal density
q̄T (I) fitted to the right-censored data from the 8-bit image for two different scenes.
Note that the 8-bit images saturates for I = g((28 − 1)∆)/T .

where KT is a normalization constant:

KT = hT (2N − 1)/
∫ ∞
g((2N−1)∆)/T

q̄T (I) dI (12)

where we used the fact that hT (2N − 1) is the proportion of saturated pixels in
the image. Basically, the image histogram is used to model p(I) for values of the
radiant power I that do not generate saturation. For larger values (the “tail”
part), the parametric model is used. Note that if all pixels are unsaturated, then
the tail part of the density vanishes because KT = 0. Note that, ideally, p̄T (I)
should not change with T . The dependence of p̄T (I) on T is due to the fact that
both histogram and fitting distribution are computed from a single image taken
at exposure T .

Using the density p̄T (I) as an approximation to p(I), one may compute the
expected error ET for a given image, taken at exposure T , as by (6). Note that,
in the case of linear sensor characteristic, term ΦT in the expression (8) of the
granular error component EgT can be pre-computed, as it does not depend on
the data. The term Prob(I < 2N∆/T ) in (8) simply represents the portion
of non-saturated pixels, and can be easily computed from the histogram. The
overload error can be computed by integration of the parametric function qT (I)
via numerical or Monte Carlo methods.

5 Predicting the Optimal Exposure

In the previous section we showed how to estimate the expected rendering error
for a given image. Now we extend our theory to the prediction of the expected
error when T varies. Formally, we will try to predict the exposure error ET at
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any value of T based on the observation of just one image taken with (known)
exposure T0. We will do so by modeling p(I) with our composite model p̄T0(I)
in (11). Then, the expected error at any value of exposure T can be estimated
via (6).

Here are some details about our prediction algorithm (see also Fig. 4). We
begin by considering values of T larger than T0. The granular component EgT
is easily computed from (7) or (8). The overload component EoT is equal to the
sum of two terms. The first term represents the “projection” of the histogram
h̄T0 into the overload area, that is, for I between g(2N∆)/T and g(2N∆)/T0.
Integration of L(eT )p̄T (I) over this segment amounts to a sum using histogram
values. The second term is obtained by integration of the error weighed by the
parametric density q̄T (I) for values of I above g(2N∆)/T0. This term can be
computed offline and stored in a look-up table for various parameters of the
parametric function used.

I
!/T0

pT (I)

!/T
I

pT (I)

!/T
I

pT (I)

T = T0 T > T0 T < T0

Fig. 4. A representation of the composite density function p̄T (I), under three different
exposures. The shaded are represents the granular region. The area of the density
within the shaded ares represents Prob(I < (2N − 1)∆/T ).

The predicted values for the granular and overload error components, ĒgT
and ĒoT , can be expressed in a relatively simple form if the sensor’s characteristic
f(IT ) is linear. In this case, the following identities hold:

T < T0 : ĒgT =
[
(1− hT0(2N − 1)) +KT

∫ (2N−1)/T

(2N−1)/T0
q̄T0(I) dI

]
ΦT

ĒoT = KT

∫∞
(2N−1)/T

L(I − (2N − 1)/T ) q̄T0(I) dI

T > T0 : ĒgT =
[∑floor((2N−1)T0/T )

m=0 hT0(m)
]
ΦT

ĒoT =
∑2N−2
m=ceil((2N−1)T0/T ) L(m/T0 − (2N − 1)/T ) hT0(m)

+KT

∫∞
(2N−1)/T0

L(I − (2N − 1)/T ) q̄T0(I) dI

(13)

At this point, one may sample the estimated error ĒT = ĒgT + ĒoT for various
values of T in order to find the estimated optimal exposure T̄opt.

6 Experiments

We have used synthetically generated 8-bit images from a “ground truth” 12-
bit image as discussed in the Appendix. The 12-bit images were taken with a
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Dragonfly 2 camera from Point Grey that has a very linear sensor characteristic
f(IT ) [13, 14, 21]. The ground-truth 12-bit image is used for the computation of
the ground-truth error ET and of the optimal exposure Topt that minimizes ET .
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Fig. 5. The ground-truth error ET (black thick line) and the estimated errors ĒT

starting from different values of T0 (thin colored lines, one line per choice of T0) for
two different scenes. For each ĒT plot, the large ’+’ signs is placed at T0: the whole
plot is built from the analysis of the image at T0. The large circles within each line
represent the minimum of the plot, corresponding to the optimal exposure.

Fig. 5 shows a number of estimated error plots ĒT as a function of exposure
T . Each plot corresponds to a different starting point T0. The thick black line is
the “ground-truth” error ET . Note that the left part of ET has linear 45◦ slope
in log-log space. This is because, for our choice of L(eT ) = |eT |, the expected
granular error is equal to ∆/4T as mentioned in Sec. 4. However, for very small
values of T , the granular error characteristic is not linear anymore, due to the
fact that the “high rate” assumption does not hold true in these cases. The
estimated error curves ĒT are generally good when the starting point T0 is in
a location with few saturated pixels. The more challenging (and interesting)
situations are for larger T0, chosen when a considerable portion of the image is
saturated. In these cases, the estimated ĒT may fail to represent ET in some
areas, possibly leading to errors in the estimation of Topt.

Results showing the quality of estimation of the optimal exposure from an
image taken at exposure T0 for different values of the “start” exposure T0 are
shown in Fig. 6 for various scenes. The optimal exposure Topt for each scene was
computed as discussed in Sec. 3. The plots in Fig. 6 show the ratio T̄opt/Topt,
which is indicative of the quality of the algorithm (values equal to 1 indicate cor-
rect estimation). Note that the different scenes had different optimal exposures
Topt. In most situations, our algorithm predicts the optimal exposure with good
accuracy. However, when T0 is much smaller or higher than Topt, the estimate
may become incorrect. Small values of T0 mean that the histogram has little
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Fig. 6. Experiments with the proposed algorithm for estimating the optimal exposure
Topt from a single image. Each color represents a different scene. For each scene, the
image exposed at T0 was used to find the estimate T̄opt using the algorithm in (13).
The ratio T̄opt/Topt is shown for each image with varying T0. A value of T̄opt/Topt equal
to 1 means that the algorithm found the optimal exposure correctly.

information due to high quantization step. Large values of T0 mean that the
“start” image had a considerable number of saturated pixels.

7 Conclusion

We have presented a technique to estimate the optimal exposure from analysis
of a single image. This approach relies on a definition of exposure quality based
on the expected rendering error. Predicting the exposure quality for varying
exposure times requires accessing the saturated (and thus unobservable) pixels.
We proposed the use of a parametric distribution that fits the observable data,
and allows reasoning about the saturated data. Our experiments show that this
model enables accurate one-shot estimation of the correct exposure as long as
the image being analyzed does not contain too many saturated pixels, or is not
too under-exposed.

One main limitation of our approach is that we do not consider sensor noise
and the use of gain as an exposure parameter. Future work will address both
these issues, along with the possibility of using more accurate models for the dis-
tribution of irradiance in the image. Eventually, our algorithm will be integrated
in a dynamic loop for real-time exposure control in video applications.
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Appendix A

This Appendix describes the process used to generate synthetic 8-bit images
at different exposure T starting from a 12-bit image. We used a Dragonfly 2



One-Shot Optimal Exposure Control 13

camera from Point Grey that has a very linear sensor characteristic f(IT ) [13,
14, 21] and provides images both at 12-bit and 8-bit pixel depth. Images were
taken at 12 bits, carefully choosing the exposure T0 so as to best exploit the
camera’s dynamic range while avoiding saturation. Images with more than 0.1%
pixels saturated were discarded. The brightness data BT0,12 was dithered by
adding white noise with uniform distribution between 0.5 and 0.5, then divided
by 212−8 = 16. This quantity is multiplied by T0/T and then quantized with
∆ = 1 in order to obtain the equivalent 8-bit image for exposure T , named
BT,12. In this way, multiple 8-bit synthetic images can be obtained for different
exposure value T .

In order to assess the error that should be expected with this processing,
we took a number of real 8-bit images (BT,8) of a static scene with various
exposures T , and then compared them with their synthetic counterparts obtained
by synthesis from a 12-bit image of the same scene. The results, in terms of
standard deviation of the error BT,8−BT,12, are plotted in Fig. 7. As expected,
the error increases with increasing exposure T (remember that the dithered
12-bit image is multiplied by T/T0). Note that for most of the exposure, the
standard deviation stays below 1 (PSNR = 48 dB), and it reaches a maximum
of about 2.5 (PSNR = 40 dB).
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Fig. 7. The standard deviation of the error BT,8 − BT,12 between the synthetic and
the real 8-bit images as a function of the exposure T .

Appendix B

In this Appendix we consider the effect of photon noise in the determination of
the optimal exposure. For a given value of irradiant power I and of exposure T ,
the variance of the rendering error due to photon noise is equal to σ2

pht = qI/T ,
where q is the electrical charge of an electron, and I is measured in terms of
photoelectronic current [22]. Let Nsat be the full well capacity of the sensor. It is
reasonable to assume that (in the absence of amplification gain), the quantizer
saturates when the sensor saturates, that is, ∆(2N − 1) = qNsat.
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When computing the optimal exposure, both quantization and photon noise
should be considered. Unfortunately, the resulting rendering error depends on
the characteristics of the irradiance distribution. For example, one can easily
derive the expression of the quadratic norm of the granular error under the
assumption of linear sensor characteristic:

EgT =
q2Nsat

T 2

(
Nsat

12(2N − 1)2
+
TE[I]
qNsat

)
(14)

where E[I] is the average value of the irradiant power. The second term within
the parenthesis is a number that represents the “average degree of saturation”.
In particular, when no pixel is saturated, then TE[I]/qNsat < 1. Note that for
(14), the relative effect of the term due to photon noise is increased as Nsat

decreases. Unfortunately, computation of the average error under different met-
rics (in particular, L(eT ) = |eT |, which is the metric considered in this paper)
requires knowledge of the probability density function of the irradiance I.
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Fig. 8. Monte Carlo simulation of Topt for L(eT ) = |eT |, red: photon noise and quanti-
zation noise considered, green: quantization noise only, triangles: σ = 0.5, plus marks:
σ = 1, dots: σ = 1.5, circles: σ = 2.0

Fig. 8 shows results of a Monte Carlo simulation to find Topt for L(eT ) = |eT |,
assuming a log-normal distribution with parameters µ and σ. Fixed parameters
in the simulation are Nsat = 6000 (representing a sensor with a relatively small
well capacity) and bit depth N = 8. Two million points are sampled to generate
error values for each T used in the search for Topt. Results shown in Fig. 8 suggest
that the ratio of Topt with photon noise considered, relative to Topt where it is
not, is a small positive value. Topt appears more sensitive to a choice of L or
change in the irradiance distribution at the sensor than to the consideration of
photon noise.


