FPGA Implementation of a People Counter for an
Ultra-Low-Power Wireless Camera Network Node

Leonardo Gasparini, Massimo Gottardi
and Nicola Massari
Smart Optical Sensors and Interfaces
Fondazione Bruno Kessler
Trento, Italy
Email: gasparini @fbk.eu

Abstract—Wireless Camera Network (WCN) nodes differ from
traditional Wireless Sensor Network (WSN) nodes because of the
huge amount of data generated by the sensing element. In order
to be able to operate on batteries for a long period, a WCN
node needs to extract the information contained into an image
and synthesize it into a short message that can be wirelessly
transmitted with a limited amount of power. Unfortunately, this
approach typically brings the power consumed by the processing
unit at the same level as the transceiver, known to be the major
source of power consumption in WSN. Thus, there is the need
to design efficient algorithms that can be implemented on low-
power devices. In this paper we propose the implementation of
a Dijkstra-based people counting algorithm for ultra-low-power
FPGAs. The developed code has been integrated on the prototype
of a WCN node that consumes as little as SmW.

I. INTRODUCTION

Wireless Sensor Network (WSN) nodes are able to work for
several months when powered with a couple of standard AA
batteries [1]. The employed sensors, such as temperature and
pressure sensors, typically generate a limited amount of data
at quite low rates. Thus, there is no need for high processing
capabilities within the node and an ultra-low-power device
is able to control the entire process (involving acquisition,
processing and wireless communication).

Things get different if we equip the node with a camera.
In [2], for example, the authors present a highly flexible,
high performance WCN node that can be used for several
applications. Nevertheless, in order to provide the system
with enough computational power, the node consumes several
hundreds of milliwatts, i.e. two orders of magnitude higher
than a standard WSN.

In [3] an ultra-low-power WCN node has been proposed
employing a smart imager [4] and a flash-based FPGA. The
sensor generates binary images where pixels with logic value
“1” (active) represent the high contrast points of the scene.
In practice we get an image that represents the edges of
the objects present in the scene. Moreover, the sensor may
also perform on-chip frame differencing to perform motion
detection. The FPGA is an Actel IGLOO [5] which controls
the sensor, buffers and processes the images. Two clock
domains are implemented in order to save power. One runs at a
low frequency (~ 15 KHz) and clocks the units responsible for

978-1-4244-9137-7/11/$26.00 ©2011 IEEE

Dario Petri
Dept. of Information Engineering
and Computer Science
University of Trento, Italy
Email: petri@disi.unitn.it

Roberto Manduchi
Dept. of Computer
Engineering
University of California
Santa Cruz, CA 95064, USA
Email: manduchi@soe.ucsc.edu

(@ (b)

Fig. 1. Camera node setup (a) and an acquired image representing a person
that moves upwards (b). Image (b) shows the two implemented VILs. Each
VIL can be on or off according to the number of non-zero pixels that it
contains.

controlling the system; the other one, mainly used to process
the images, runs at 10 MHz and is activated only when needed.

In this paper we propose the FPGA implementation of
a people counter [6] based on the Dijkstra algorithm [7].
Such algorithm has been designed on the basis of the images
provided by the aforementioned sensor. By exploiting the low-
power characteristics of the system, the entire system (FPGA
and sensor) consumes less than 5 mW when running the
algorithm at 30 fps.

This paper is organized as follows. In Sec. I we summarize
the algorithm for counting people, while in Sec. III we describe
the FPGA implementation of the algorithm. Conclusions are
drawn in Sec IV.

II. PEOPLE COUNTING ALGORITHM

The algorithm aims at counting people walking through a
door or a corridor. The camera node is placed on top of the
monitored area facing downwards, as shown in Fig. 1(a). Three
types (modes Mj) of events are considered:

¢ no people are crossing the area (M, one);

« one single person enters the scene, i.e. it moves from the

top to the bottom of image (M;,,);

« one single person exits, i.e. it walks upwards (M,¢).

The algorithm is based on the Virtual Inductive Loop (VIL)
mechanism defined by Viarani el al. in [8]. A VIL consists
on a portion of the image that assumes a binary state (on or
off) according to the absence/presence of foreground objects
within it. In our case, we have two VILs defined by two
non-overlapping rectangular windows which are as wide as

169

64501” “Sl]”

“510”

Fig. 2. An acquired sequence of images representing a person walking
upwards and the implemented VILs. The system state is represented by a
two-bit variable, describing the status of the VILs.

the monitored passage and are aligned along the direction of
movement; see Fig. 1(b). We detect the foreground by means
of the motion detection mechanism implemented on the sensor,
and the state of each VIL is determined by the number of
active pixels with respect to a threshold. By concatenating the
state of the VILs, we get a binary string that represents the
state S of the system for that frame, as shown in Fig. 2.
In this context, we define:

o segments as contiguous frames characterized by the same
state; a segment o is therefore entirely described by an
index j, a state S and a duration (in terms of frames) ¢:
ol = (87,9);

o intervals as groups of contiguous segments which repre-
sent/are classified as the same event, i.e. a person that
enters in the area, one that exits, or no one around; an
interval I is entirely described by an index ¢, a sequence
of segments Y, and by the mode M;, that it belongs to:
I' = (3%, M}).

We can classify intervals as belonging to one of the three
available modes by analyzing the state transitions. In fact,
according to our experiments, a person that walks in one
direction generates a sequence of states which is similar to the
one generated by other people moving in the same direction.
At the same time, such a sequence has very little in common
with the ones originated from people walking in opposite
direction. Moreover, we discovered that an event of mode M,
constituted by a sequence S = (S*,52,...,5%) is a Markov
process of the second order, i.e. its likelihood P(S|Mjy) is
such that:

N
P(S2[S"; My) - [] P(S™S™72, 8"~ My,).

n=3
(D
In practice this means that the n'" state in the sequence
depends just on the two previous states.

The people counter monitors the segments generated by
the flow of people and finds the combination of contiguous,
non-overlapping intervals that maximize the product of the
likelihoods. This is carried out by extracting all possible
intervals I° = (X% M) and determining their likelihood
P' = P(S*|Mj}). Then, the cost function P,y = []; P’ is
maximized under the following constraints: (a) all segments
must be covered by one and only one interval, and (b) each
interval cannot be longer than 7}, , currently set to 2 seconds.

In order to calculate the P%’s, we need to know the first-
and second-order transition probability maps P(S?|S'; M})
and P(S™|S"~2, 8"~ M) for each mode Mj. We estimate
them in a training phase.

P(S|My) =

th

observation window

..\p
PtotPIPI‘* = F

Ptol PI
;Y_/

path to node 0? ﬂ path to node o°

/ /-2

oo

I14v1 l34~3

Fig. 3. The image shows the process of insertion of a new node (o4) into
the graph. The first step requires to find the new edges (bold arrows) and
calculate their cost. Each edge is associated to an interval. For example, the
edge connecting o2 to o* represents the 723 interval, i.e. the interval that
includes segments o2 to o3. No edge can be drawn connecting o! to o
because the 113 interval does not fit int the T}y, q-wide observation window
(sketched with the dashed vertical lines at the top). Then, all the paths to the
current node have to be compared and only the one with maximum cost is
kept.

The problem can be represented through an oriented graph
in which we add a node for each segment and we draw an edge
for every interval that we take into account (we will then use
the terms node and segment and the terms edge and interval
interchangeably). More specifically, if the interval includes
the segments o¢,c'*!, ... o771 then the corresponding edge
I'7G=1 will connect the node o' to the node . No cost is
associated to the nodes, while the cost of each edge is given
by the likelihood P of the interval I° = (X% M?) that it
represents. The graph origins on an initial node o signifying
that the people counter has been activated, and ends on a final
node op created when a single segment longer than 7).,
occurs. The combination of intervals which is more likely to
have happened corresponds to the highest cost path from o to
or. This is found by using a modified version of the Dijkstra
algorithm, as following described with reference to Fig. 3.

At every state transition, a new segment o™*! is generated,
thus we insert a new node into the graph. Then, we create
edges to it, i.e., according to our representation, we find all
the possible intervals that end with the segment ™. Once we
have found the edges, we need to compare all the paths that
bring to node o"*! and keep only the one that maximizes
the cost. Since we keep track of the highest cost path to each
node o™ P, this task simply involves multiplying the cost of
each newly generated edge 1("~P)=" by the total cost of the
path up to o™~ P (which is the source node of that edge). At
the end, there will be only one edge directed inward for each
node, and all we need to remember about this edge is: its
source node, its cost and the mode associated to the interval
that it represents. When the system state does not change for
a period longer than 7),,,,, a o node is added to the graph.

170

P(n p)-n
processing (n-p)— Mrenl M/ Moy VILO (n
results tace Ppalh too"" s | s | o2 I
‘ VIL 1
' S
proces;ed{ O""H PtM"*”*"
nodes
(n—1)-n
> probabilty [—=_ % Pwm, (empty)
(empty) maps
P(n-1)-n
o M, 10
unprocessed
nodes N
doung P VMR ™R | ¢ [(n-2)
node under
-P -p)—> (n-1)
process | a’ | \ t, P-n /
'J t (mp)—(n-1) interval
acc / valid
. (n—p)—=(n-1) Y path toc""
processing) faoe L P o
inputs pln=p)=(n- I)‘ M pointer to the
Moo/ M, IM,,,

(a)

Fig. 4.
computing the path to node o™
the adder and the Ty qq-comparator. The edge memory is drawn in (c).

III. FPGA IMPLEMENTATION

In hardware, the algorithm described in the previous section
is carried out with the following architecture:

e an image processing unit, that extracts the current system
state from the acquired image;

e Look Up Tables (LUTs), containing the probability maps;

e a three cell memory, that keeps track of the states of the
last segments for LUT addressing;

e a timer, that measures the duration of segments, and
an associated adder to calculate the total duration of
intervals;

e a node First In, First Out (FIFO) memory, that keeps
track of the most recent nodes in the graph;

o a set of multipliers that calculate the likelihood of Mj,
intervals (edge multipliers) and the total cost of paths
(path multiplier);

e a set of comparators, used (1) to determine if a group
of contiguous segments is longer than 7},,,,, (2) to find
the mode that is more likely for a given a sequence of
contiguous segments, and (3) to extract the path with the
maximum cost;

e an edge FIFO memory, that stores the results;

o registers and multiplexers;

« a control unit, that manages the whole process.

Fig. 4 and Fig. 5 represent the block diagram for the ar-
chitecture. 8 bit fixed point representation is used for the
probabilities in the LUTs. The multipliers generate 16 bit fixed
point numbers. This is the format used in the FIFO memories,
also. Since numbers are always < 1.0, all the bits are dedicated
to the fractional part.

Every time a state transition occurs, we insert the node
o™ *1 in the graph and find the maximum cost path to it. Node
insertion is carried out by saving the VIL state in the three cell
memory and the timer value into a dedicated register before
resetting them for the next acquisition. Then, in order to build

previous interval

(b) (©)

FIFO memories and node insertion. In (a) the node memory is present; the figure shows its state in the middle of the processing phase, while
through a generic node o™ ~P. (b) depicts the architecture of the VILs, the three cell memory and the LUTs, the timer with

the first edge, we extract the last node contained in the node’s
memory (let’s call it node ¢~ 9). The node data is given by:

« the cumulative period of time ¢, 9~ ("~
the node itself up to node o™ !;

o the partial likelihoods P{; ¥~V of the M) intervals
that origin from the node and contain nodes up to the
o1 one;

o the cost of the maximum cost path from o to the node
o™~ 4 itself.

The partial likelihoods are stored in the node memory in
order to avoid to perform the same calculations at every node
insertion.

The adder sums the value provided by the timer to the cu-
mulative period and the result tfﬁc_ indl is then compared with
Tnaq- If it is greater, then the 0~ 7 node is discarded from the
node memory and the following node (the o™~ 9%1) is read.
Otherwise, the sequence of segments "~ 9,..., ¢" represents
a valid interval and we have to compute its likelihood for each
M. Therefore, we fetch the transition probabilities P("k D=
stored in the LUTs using the content of the three cell memory
for addressing. This is shown in Fig. 4(b).

Then, we multiply the so obtained transition probabilities by
the partial likelihoods to obtain the costs P(" DT of the in-
tervals that include the segments from o™~ 4 to ™. In the event
that one further segment is generated, the data about the o™~ 9
segment are written back to the node memory, with the updated
values for t,.. and the partial likelihoods. In the next step, the
three intervals are compared and only the most likely one is
kept into account. Its likelihood Pj; = maxy, (PI(VZ q)_m)
is multiplied with the cost of the path ‘to "4 by the interval
multiplier to achieve the cost of the path to ™"t The result
is temporarily stored in the last comparator’s output register,
along with the corresponding mode and the index ¢ that defines
the newly generated interval I("~9—"_ Fig. 5 describes the

hardware architecture that carries out these operations.

that includes

171

Lnfp)an_Pl p

|Prev

™

n p in >

N4 P(n—p)%n:PI o)
% M, M, ‘fS\ most likely interval f

Plo-tna v

!
Pl e—» P
P’P s ; max
——— e Mo ™
(same structure pin-p=n_pl
M, M., thto o" "
for M, and M, . g prathto o ' 4

I(n)

@ update path

Pnew path

prev path
P

Ppath too”

—

Pnew path

Fig. 5. Architecture of the processing elements that calculate the maximum cost path to a new node o™, The entire process requires: (1) to calculate the

most likely mode M}, for the interval constituted by the segments o™ 7P, ...

,0™; (2) to multiply the interval likelihood by the cost of the path from o to

o™ P to achieve the cost P™€¥ Path of the entire path to o™ through ™ P; (3) compare the so obtained cost with the temporary maximum cost PPTev path

resulting from the edges computed so far and, in case, overwrite it.

test events 156 163

errors 0.0% 0.1%

missed detections | 3.2% 3.1%

false alarms 0.0% 13.7%
TABLE I

CLASSIFICATION PERFORMANCE.

Then, the process starts over with a new node, the ohptl
thus generating a different path to node o™. Its cost Pm¢ path
is compared with the previous one PP™? P9 and of the
two, only the one with higher cost is kept. Iteratively, all the
nodes o” P, with 0 < p < g, that are contained within the
node memory are processed. One further interval is created,
consisting in the only o™ segment. At the end of the process,
the path comparator provides the data about the maximum
cost path. Its cost is saved into the node memory of Fig. 4(a)
along with the partial likelihoods and the timer’s value as a
new element, while the mode and the source of the last interval
in the path (i.e. the data about the last edge) are saved into
the edge memory present in Fig. 4(c). Then the system waits
for another segment.

When the timer exceeds 7,4, the process is interrupted and
the control unit can extract the intervals that are more likely
to have happened by reading the data from the edge memory.
Each element will contain the mode associated to the edge
and the pointer to the previous valid element in the memory.
This is like going back along the maximum cost path jumping
from the first segment of an interval to the one of the previous
interval.

This architecture, implemented on the Actel IGLOO FPGA,
has been tested with a clock running at 10 MHz. At such an
operating frequency, the system can safely acquire images at
10 fps. We tested the algorithm on Matlab, acquiring two long
movies each including more than 150 events. We exchanged
the movies in the role of training set and test set. The achieved
results are quite satisfactory, as shown in Tab. I. In fact, very
few errors occur, and few missed events are present. Only in
one situation the algorithm generates a great amount of false
alarms. This is due to the presence of long shadows in the
test movie which are not present in the one used for training.

Therefore, a person and its shadow are classified as two people
walking in a row in the same direction.

IV. CONCLUSION

The lack of ultra-low-power implementations of image
processing algorithms slows down the development of camera-
based smart WSN nodes. In this paper we demonstrated that
it is possible to implement a quite complex algorithm on an
ultra-low-power FPGA. The developed application is a people
counter based on the Dijkstra algorithm and runs smoothly on
an FPGA-based node clocked at 10 MHz and acquiring images
at 30 fps, with good classification performance. Despite the
intrinsic complexity of the application, the node consumes as
little as 5 mW. The key factors consist on the employment of
a smart vision sensor that performs pre-processing directly on
chip, and the implementation of an efficient architecture within
the FPGA that exploits its intrinsic multi-tasking nature.

REFERENCES
(1]

J. Polastre, R. Szewczyk, and D. Culler, “Telos: enabling ultra-low power
wireless research,” in Proceedings of the 4th international symposium on
Information processing in sensor networks. 1EEE Press, 2005, pp. 48—es.
P. Chen, P. Ahammad, C. Boyer, S. Huang, L. Lin, E. Lobaton, M. Mein-
gast, S. Oh, S. Wang, P. Yan et al., “CITRIC: A low-bandwidth wireless
camera network platform,” in Distributed Smart Cameras, 2008. ICDSC
2008. Second ACM/IEEE International Conference on. 1EEE, 2008, pp.
1-10.

L. Gasparini, R. Manduchi, M. Gottardi, and D. Petri, “Performance
analysis of a wireless camera network node,” in Instrumentation and
Measurement Technology Conference (I2MTC), 2010 IEEE. 1EEE, 2010,
pp. 1331-1336.

M. Gottardi, N. Massari, and S. Jawed, “A 100uw 128 X 64 pixels
contrast-based asynchronous binary vision sensor for sensor networks
applications,” Solid-State Circuits, IEEE Journal of, vol. 44, no. 5, pp.
1582 1592, may 2009.

“Igloo low-power flash fpgas datasheet,” http://www.actel.com/techdocs/-
ds/low-power-fpgas.aspx#igloo, Actel Corporation, Mountain View, CA
94043 USA, 2009.

L. Gasparini, R. Manduchi, and M. Gottardi, “An ultra-low-power
contrast-based integrated camera node and its application as a people
counter,” in Advanced Video and Signal Based Surveillance (AVSS), 2010
Seventh IEEE International Conference on, 29 aug - 1 sep 2010, pp. 547
—554.

E. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269-271, 1959.

E. Viarani, “Extraction of traffic information from images at deis,”
in Image Analysis and Processing, 1999. Proceedings. International
Conference on, 1999, pp. 1073 -1076.

(2]

(3]

(4]

[5]

(6]

(7]
(8]

172

