es of the Rust object system:
extension, overriding, and self

Lindsey Kuper
Mozilla Research
| August 18,201 |

Me and how | got here

Me and how | got here

= Graduated college (CS
and music) in 2004

Me and how | got here

= Graduated college (CS
and music) in 2004

= Web development at a
(failed) startup, 2004—2006

Me and how | got here

= Graduated college (CS
and music) in 2004

= Web development at a
(failed) startup, 2004—2006

= Perl plumbing at a
publishing company, 2006—
2008

Me and how | got here

= Graduated college (CS
and music) in 2004

= Web development at a
(failed) startup, 2004—2006

= Perl plumbing at a
publishing company, 2006—
2008

= butin 2007, | moved in with
a couple of Haskell hackers...

Me and how | got here

= Graduated college (CS
and music) in 2004

= Web development at a
(failed) startup, 2004—2006

= Perl plumbing at a
publishing company, 2006—
2008

= butin 2007, | moved in with
a couple of Haskell hackers...

= Ph.D. student at Indiana
studying PL since fall 2008

Me and how | got here

= Graduated college (CS
and music) in 2004

= Web development at a
(failed) startup, 2004—2006

= Perl plumbing at a
publishing company, 2006—
2008

= butin 2007, | moved in with
a couple of Haskell hackers...

= Ph.D. student at Indiana
studying PL since fall 2008

= and then | saw a job posting
for Rust...

What’s Rust?

a systems language
pursuing the trifecta:
safe, concurrent, fast

You're working on the what system?!

You’re working on the what system?!

= | was intrigued by the idea of a classless object
model and flexible prototype-style objects

You’re working on the what system?!

= | was intrigued by the idea of a classless object
model and flexible prototype-style objects

= and was told,"None of that’s implemented yet; go for it!”

You’re working on the what system?!

= | was intrigued by the idea of a classless object
model and flexible prototype-style objects
= and was told,"None of that’s implemented yet; go for it!”

= No object extension, method overriding, or self-dispatch

You’re working on the what system?!

= | was intrigued by the idea of a classless object
model and flexible prototype-style objects

= and was told,"None of that’s implemented yet; go for it!”

= No object extension, method overriding, or self-dispatch

= During my internship, | implemented those things

You’re working on the what system?!

= | was intrigued by the idea of a classless object
model and flexible prototype-style objects

= and was told, “‘None of that’s implemented yet; go for it!”
= No object extension, method overriding, or self-dispatch
= During my internship, | implemented those things

= and learned that they interact with each other in
Interesting ways

Self-dispatch

Self-dispatch

}
}
let shortcat = cat();
assert (shortcat.zzz() == meow);
T — —

Obj Cat() {
tn aCk() -> str {
ret "ack’;
}
fn meow() -> str {
ret "meow;
}

fn zzz() -> str {
ret self.meow();

Self-dispatch + object extension

obj cat() {

fn ack() -> str {
ret "ack’;

}

fn meow() -> str {
ret "meow ;

}

fn zzz() -> str {
ret self.meow();

}
}
let shortcat = cat();
T ——
assert (shortcat.zzz() == mecow');
T — e —

Self-dispatch + object extension

obj cat() {
fn ack() -> str {

ret "ack’ -

}

fn meow() -> str
ret "meow ;

}

fn zzz() -> str {

}
}

let shortcat = cat();

assert (shortcat.zzz(

ret self.meow(); };

let longcat = obj() {
fn lol() -> str {
ret "lol";

}
{ fn nyan() -> str {
ret "nyan’;
}

with shortcat

r

T ——
) == "meow)7
D |

T —

assert (longcat.zzz() == |

A brainteaser...

obj cat() { let longcat = obj() {
fn ack() -> str { fn lol() =-> str {
ret H ret ’
} }
fn meow() -> str { fn nyvan() -> str {
ret ’ ret ’
} }
fn zzz() -> str { with shortcat
ret self.meow(); };
}
}

assert (longcat.zzz() ==) ;

let shortcat = cat();

assert (shortcat.zzz() ==

On my first attempt,
this returned “1o01".

Why!?

A brainteaser...

obj cat() {
fn ack() =-> str {
ret "ack";

}

fn meow() -> str {
ret "meow";

}

fn zzz() -> str {
ret self.meow();

}
}

let shortcat = cat();

assert (shortcat.zzz() == "meo

let longcat = obj() {
fn lol() -> str {
ret "lol";
}
fn nyvan() -> str {
ret "nyan”;

}
with shortcat
}i
assert (longcat.zzz() == "meow');

longcat’s vtable

A brainteaser...

ob] () A let longcat = obj() {
fn : () => str { fn lol() -> str {
ret H ret ’
} }
fn 1 () => str { fn nyan() -> str {
ret H ret ’
} }
fn () —> str { with shortcat
ret self.meow(); };
}
} assert (longcat.zzz() ==) ;
let shortcat = cat(); |
’ longcat’s vtable
assert (shortcat.zzz() ==
0 ack forward to shortcat.ack()
shortcat’s vtable |1 lol ret “lol”
0 ack ret *“ack” 2 meow forward to shortcat.meow()
| meow ret “meow” 3 nyan ret “nyan”
2 zzz ret self.meow() 4 zzz forward to shortcat.zzz()

How to fix it

obj () {
fn . () => str {
ret ;
}
fn 1 () => str {
ret ;
}
fn () => str {
ret self.meow();
}
}

let shortcat = cat();

let longcat = obj() {
fn lol() -> str {
ret ;
}
fn an() => str {
ret ;
}

}i

assert (longcat.zzz(

with shortcat

)

~ longcat’s vtable
assert (shortcat.zzz() ==
0 ack forward to shortcat.ack()
shortcat’s vtable | 1ol ret “lol”
0 ack ret *“ack” 2 meow forward to shortcat.meow()
| meow ret “meow” 3 nyan ret “nyan”
2 zzz ret self.meow() 4 zzz forward to shortcat.zzz()

How to fix it

ob] () A let longcat = obj() {
fn () => str { fn () => str {
retc ’ ret :
i }
fn () => str { fn () => str {
ret ; ret .
i }
fn () => str { with shortcat
ret self meow(). }s
shortcat’s backwarding vtable
O |ack |backward to longcat.ack() @ssert (longcat.zzz() ==) ;

| |meow |backward to longcat .meow|() i

longcat’s vtable

2 |zzz |backward to longcat.zzz()

0 ack forward to shortcat. ack ()

shortcat’s vtable | 1ol ret “lol”

0 ack ret “ack” meow forward to shortcat.meow()

2
| meow ret “meow” 3 nyan ret “nyan”
4

2 zzz ret self.meow() zzz | forward to shortcat.zzz()

Self-dispatch + object extension + overriding

obg cat() {
fn ack() -> str {
ret "ack ;
}
fn meow() -> str {
ret me -
}

fn zzz() -> str {
ret self.meow();

}
}

let shortcat = cat();

assert (shortcat.zzz() == "ne) ;

— —

Self-dispatch + object extension + overriding

obj cat() {
fn ack() -> str {

ret "ack -

}

fn meow() -> str {
ret "meow’;

}

fn zzz() -> str {
ret self.meow();

}

let shortcat = cat();

assert (shortcat.zzz() == mecow);

— -

T —— ——
}

Self-dispatch + object extension + overriding

fn zzz() -> str {
ret self.meow();

} |

obj cat() { let longercat = obj() {
fn ack() -> str { fn meow() -> str {
ret "ack”; ret "zzz";
} }
fn meow() -> str { with shortcat
ret "meow ; };
}

assert (longercat.zzz() == zz=z ’

T ——
}

let shortcat = cat();

assert (shortcat.zzz() == "meow');

T — e —

-

Self-dispatch + object extension + overriding

obj cat() { let longercat = obj() ({
fn ack() -> str { fn meow() -> str {
ret ; retc ;
} }
fn meow() -> str { with shortcat
ret ; };
}
fn zzz() -> str { assert (longercat.zzz() ==) 3
ret self.meow();
} T —— ‘
}
let shortcat = cat();
assert (shortcat.zzz() ==) ;

longercat’s vtable

0 ack forward to shortcat.ack()

meow ret “zzz"

2 zzz forward to shortcat.zzz()

Self-dispatch + object extension + overriding

obj cat() {

fn ack() -> str {
ret ;

}

fn meow() -> str {
ret ;

}

fn zzz() -> str {

ret self.meow();

}

let shortcat = cat();

assert (shortcat.zzz() ==

shortcat’s vtable

0O ack ret “ack”
| meow ret “meow”
2 zzz ret self.meow()

let longercat = obj() {

fn meow() -> str {
ret -
}
with shortcat
}i
assert (longercat.zzz() ==) ;

) ;

longercat’s vtable
0 ack forward to shortcat.ack()
| meow ret “zzz”
2 zzz forward to shortcat.zzz()

Self-dispatch + object extension + overriding

obj cat() { let longercat = obj() {
fn ack() -> str { fn meow() -> str {
ret ; ret -
} }
fn meow() -> str { with shortcat
ret ; };
}
fn zzz() -> str { assert (longercat.zzz() ==) ;
ret self meow().
shortcat’s backwarding vtable . ——
O |ack |backward to longcat.ack()
| |meow |backward to longcat .meow|()
2 |zzz |backward to longcat.zzz()) ;
shortcat’s vtable longercat’s vtable
0 ack ret *“ack” 0 ack forward to shortcat.ack()
| meow ret “meow” | meow ret “zzz”
2 zzz ret self.meow() 2 zzz forward to shortcat.zzz()

Self-dispatch + object extension + overriding

fn zzz() -> str {
ret self.meow();

} |

obj cat() { let longercat = obj() {
fn ack() -> str { fn meow() -> str {
ret "ack”; ret "zzz";
} }
fn meow() -> str { with shortcat
ret "meow ; };
}

assert (longercat.zzz() == zz=z ’

T ——
}

let shortcat = cat();

assert (shortcat.zzz() == "meow');

T — e —

-

Self-dispatch + object extension + overriding

obj cat() { let longercat = obj() {
fn ack() =-> str { fn meow() -> str {
ret "ack’; ret "zzz";
} }
fn meow() -> str { with shortcat
ret "meow ; };
}
fn zzz() -> str { assert (longercat.zzz() == "zz2");
ret self.meow();
}

let shortcat = cat(

assert (shortcat.zz:

—

Self-dispatch + object extension + overriding

assert (shortcat.zz:

P— };

obj cat() { let longercat = obj() {
fn ack() =-> str { fn meow() -> str {
ret "ack”; ret "zzz";
} }
fn meow() -> str { with shortcat
ret "meow ; };
}
fn zzz() -> str { assert (longercat.zzz() == "zz2");
ret self.meow();
}
let shortcat = cat(let evenlongercat = obj() {
fn meow() -> str {

assert (evenlongercat.zzz() ==

ret "zzzzzz ;

}

with longercat

'222222");

—

Go check it out!

http://rust-lang.org

http://rust-lang.org
http://rust-lang.org

Life goal achieved!

- @ryanqgnorth

@shaver @lindsey @pcwalton as near as i
can tell all the best people are at Mozilla,
measuring "bestness" by "good at twitter"
at least!

Favorite t31 Undo Retweet © Reply

R — T

Questions?

TS

Me: lkuper@cs.indiana.edu; @lindsey
Rust: http://rust-lang.org

@@ Photo by jamesrbowe on Flickr. Thanks! 12

mailto:lkuper@cs.indiana.edu
mailto:lkuper@cs.indiana.edu
http://rust-lang.org
http://rust-lang.org

