I Vars:

_attice-based Data Structures
for Deterministic Parallel
and Distributed Programming

Lindsey Kuper
~Indiana University

Microsoft Research Silicon Valley
January 27,2014

”?h\”

IS

I

[
|

— e
. —-»-
_Vars.
attice-based Data Structures

V

for Deterministic Parallel

Liﬂdsey Kuper SAT SUN MON TUES WED THU

Indiana University Il
35° 40° 6° 8° 24° 32°

Microsoft Research Silicon Valley
January 27,2014

S —

I Vars:

_attice-based Data Structures
for Deterministic Parallel
and Distributed Programming

Lindsey Kuper
~Indiana University

Microsoft Research Silicon Valley
January 27,2014

Distributed systems

Parallel systems

Deterministic Parallel Programming

(observably)

Deterministic Parallel Programming

\

\ \X X XY YWY AVA AV AVATAS
\ XYY A AYAYAAAAY
O & & 0 NNNINININAYAY ,
NSO OO O N NSO N
(SO OO O INISOSNNNTN
\ X OO D NSNS
\ X OO Y N
\//////////

data Item = Book | Shoes | ...

66 ¢ & NN,
& & ¢ G ONNNNNNNY,Y,
& O RN N 2%,
& O XN NN D aa",Y
OO DD OISO
OO OIS NN YN
OO NN NN N
OO ONNNNINNY

data Item = Book | Shoes | ...

p :: IO (Map Item Int)

66 ¢ & NN,
O 6 6 0 ONNNNNNNY,
& 0 NN N7,
OSSO OO OO ISNISON NN
OO0 SOMNNNN
OO OIS NN YN
OO NN NN N
O O NNNNNNNS

e

data Item = Book | Shoes | ...

:: IO (Map Item Int)
do cart <- newIORef empty

P
P

—-\
T —

\‘/////////////
\(/////////////
AR\ ¢ ¢ oXNVNININININAY Y,
\ RSO OO O NSO NN
\////////////

O OO OSSN N
OO IS INOSONMNNNYNY
//////////

data Item = Book | Shoes | ...

:: IO (Map Item Int)

Introduction to

do cart <- newIORef empty Lattices and order

Segond Edition

P
P

B.A. Davey
H.A. Priestley

VO 6 & 6 & 07NN,
& & 6 6L NN NINININY Y
& 6 0 aXANNNIN YA Y ,
CNOS O OO OO NSO NN
OO OO OISO
OGO NN Y YN
OO NN N YN
O O SIONNONNNNNY

data Item = Book | Shoes | ...

:: IO (Map Item Int)
do cart <- newIORef empty

P
P

T ——

Ry 77
Yyﬁ&ﬂvwﬁ7/4/

) ‘/"Q‘%QQQ@Q//////////.

‘.Q\@@.“/ PNININS
4 /
\ &A@o'a‘a’a(/ ////////

o o

data Item = Book | Shoes | ...
:: IO (Map Item Int)
do cart <- newIORef empty
async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))

P
P

AASAAAAAN
N N,
RO
//}""%‘ ¢ * CO000
\\ ‘»’6\»;,'(‘%@’ 066 6¢

)‘&QC'C‘G’A 04 AAYA

\

o o

data Item

Book | Shoes | ...

p :: IO (Map Item Int)
p = do cart <- newIORef empty
async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))
T —— e

\ ‘ / / / /
\ \ 2@?@3@3‘:’:’ A0 :///
‘9"0////ﬁ

(NSO

}6\‘»4\t00‘/ 06764
NN
X X XY YaTa"avavs

data Item

Book | Shoes | ...

p :: IO (Map Item Int)
p = do cart <- newIORef empty
async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))
T — |

\NOEERN 77

OO

REOO0OOOON4

QQQQ”/ NN N
/ ‘

\v&gw&ﬁéﬁy
\ «65‘0'6966966’4’/“6/ N

o o

data Item =

P
P

async

(\m -> (insert Book 1 m,

async

(\m -> (insert Shoes 1 m,

Book | Shoes | ...

IO (Map Item Int)
do cart <- newIORef empty

(atomicModifyIORef cart

())))
(atomicModifyIORef cart

())))

——

-_—

'I// /4"@'@”@’@"‘/ NG

oV

///}:’®‘Q‘f"”(:/:/:/:////
/) 0,’9%‘@’6’/ AARAN

\ “(" GQ'%A’ 0 A;‘ /v < W

\\ $_§‘ Q'CQéegvA’AQ/‘ AN

g/: ,

data Item = Book | Shoes | ...

:: IO (Map Item Int)
do cart <- newIORef empty
async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))
async (atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ())))
res <- async (readIORef cart)

P
P

T — EE—
-

S

C /l AANINN v

NN
}QQ@QQ(/////
SOOI
DPOOOS Y/ /I
OO 44
\ k‘AQO"\CQéeéra’A’f C/ { N

gf/: :

data Item = Book | Shoes | ...

p :: IO (Map Item Int)
p = do cart <- newIORef empty
async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))
async (atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ())))
res <- async (readIORef cart)
walit res
T — ———— -

e
\ Y2 v/v“‘.""v v
/ //bél%’?(‘u"@".////////////
//“0’069@ o0 AAK
OO
<‘?§}'\“0 A/ X
a ANRAAAN LA

Q‘)

e MO Terminal — bash — 90x27

| bash |

landin:lvar-examples lkuper$ make map-ioref-data-race

ghc -02 map-ioref-data-race.hs -rtsopts -threaded

[1 of 1] Compiling Main (map-ioref-data-race.hs, map-ioref-data-race.o)
Linking map-ioref-data-race ...

while true; do ./map-ioref-data-race +RTS -N2; done
[(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes,1)][(Book,1
), (Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1
)1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1
), (Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1
)1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1
), (Shoes,1)][(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes
,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Boo
k,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Sho
es,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Bo
ok,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(B
ook,1),(Shoes,1)][(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(
Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][
(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]
[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),
(Shoes,1)][(Book,1),(Shoes,1)][(Book,1)]1[(Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)
1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1)][(Book,1),(Shoes,1)
1[(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes
,1)1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book |§
,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Boo E
k,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe §

e MO Terminal — bash — 90x27

| bash |

landin:lvar-examples lkuper$ make map-ioref-data-race .
ghc -02 map-ioref-data-race.hs -rtsopts -threaded
[1 of 1] Compiling Main (map-ioref-data-race.hs, map-ioref-data-race.o)
L1nk1ng map-1oref -data-race ...
man_ioref-data-race +RTS -N2; done
(Book 1), (Shoes 1)]1R(Shoes,1)][(Book,1), (Shoes 1)]1[(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1
500K, 1), (Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1

)][(Book 1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1
), (Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1
)1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1
), (Shoes,1)][(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes
,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Boo
k,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Sho
es,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Bo
ok,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(B
ook,1),(Shoes,1)][(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(
Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][
(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]
[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),
(Shoes,1)][(Book,1),(Shoes,1)][(Book,1)]1[(Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)
1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1)][(Book,1),(Shoes,1)
1[(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes
,1)1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book [§
,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Boo E
k,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe §

oM O Terminal — bash — 90x27

| bash |
landin:lvar-examples lkuper$ make map-ioref-data-race .
ghc -02 map-ioref-data-race.hs -rtsopts -threaded

[1 of 1] Compiling Main (map-ioref-data-race.hs, map-ioref-data-race.o)
L1nk1ng map-1oref -data-race ...

man.1nraf t'|n+n_rlace +RTS _NZ donn
(Book 1), (Shoes 1) B(Shoes,1)]! (Book,1), (Shoes 1) [(Shoes,1)]l (Book,1),(Shoes,1)]1[(Book,1
SOUK , L), onves, 1) | [(Book,1),(Shoes, 1, (buuK, L), Shoes,1)][(Book,1),(Shoes,1

)][(Book 1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1
), (Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1
)1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1
), (Shoes,1)][(Shoes,1)][CRaok 11 (Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes
,1)]1[(Book,1),(Shoes,1) [(Shoes,1)] (Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1)]\ buuK, L), Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Boo
k,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Sho
es,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Bo
ok,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(B
ook,1),(Shoes,1)][(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(
Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][
(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]
[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),
(Shoes,1)][(Book,1),(Shoes,1)][(Book,1)]1[(Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)
ALCRaok 17 (Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1)][(Book,1),(Shoes,1)
" [(Shoes,1)] (Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes
»LJJL\DUUK, 1/, (Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1) CShoas ANIT(Book [i§
,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1) [(Shoes,1)] (Boo E
k,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1) \ booUR, L), Shoe ¥

oM O Terminal — bash — 90x27

| bash |
landin:lvar-examples lkuper$ make map-ioref-data-race .
ghc -02 map-ioref-data-race.hs -rtsopts -threaded

[1 of 1] Compiling Main (map-ioref-data-race.hs, map-ioref-data-race.o)
L1nk1ng map-1oref -data-race ...

man.1nraf t'|n+n_rlace +RTS _NZ donn
(Book 1), (Shoes 1) B(Shoes,1)]! (Book,1), (Shoes 1) [(Shoes,1)]l (Book,1),(Shoes,1)]1[(Book,1
SOUK , L), onves, 1) | [(Book,1),(Shoes, 1, (buuK, L), Shoes,1)][(Book,1),(Shoes,1

)][(Book 1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1
), (Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1
)1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1
), (Shoes,1)][(Shoes,1)][CRaok 11 (Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes
,1)]1[(Book,1),(Shoes,1) [(Shoes,1)] (Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1)]\ buuK, L), Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Boo
k,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Sho
es,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Bo
ok,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(B
ook,1),(Shoes,1)][(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(
Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][
(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]
[(Book,1),(Shoes,1)]1[(Book,1) LShae (Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),
(Shoes,1)][(Book,1),(Shoes,1)§[(Book,1)]R8 (Book,1),(Shoes,1)]LLShas (Book,1),(Shoes,1)
ALCRaok 17 (Shoes,1)][(Book,1),Csrnoes,)] [(Book,1),(Shoes,1)R[(Book,1)]8(Book,1),(Shoes,1)
" [(Shoes,1)] (Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Book;L), oes, 1)]1[(Book,1),(Shoes
»LJJL\DUUK, 1/, (Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1) CShoas ANIT(Book [i§
,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1) [(Shoes,1)] (Boo E
k,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1) \ booUR, L), Shoe ¥

data Item = Book | Shoes | ...

p :: IO (Map Item Int)
p = do cart <- newIORef empty
async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))
async (atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ())))
res <- async (readIORef cart)
wait res
T — ——— .

- EEDN
| ’///;‘tz%“’%‘v"{//// {
RO OO0
/ AN NS ¢

KOOOOOTSIS

;Q,‘QAO‘&‘O& S OARX

(VE V‘A Vv)

\ IMAARXAXRLY

Q‘)

data Item = Book | Shoes | ...

:: IO (Map Item Int)
do cart <- newIORef empty
async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))
async (atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ())))
res <- async (readIORef cart)
wait res

P
P

"/7?’&:“'@;*{;','4 NI oY
- ﬂ ‘r q
SOOI
/QQ@QQ,/ 2666
DOOOOONEF 4%
MO S
\ ¢ “0"‘6‘5‘;&*/ N/

g/: :

data Item = Book | Shoes | ...

:: IO (Map Item Int)
do cart <- newIORef empty
al <- async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))
async (atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ())))
res <- async (readIORef cart)
wait res

P
P

"/7?’&:“'@;*{;','4 NI oY
- ﬂ ‘r q
SOOI
/QQ@QQ,/ 2666
DOOOOONEF 4%
MO S
\ ¢ “0"‘6‘5‘;&*/ N/

g/: :

data Item = Book | Shoes | ...

:: IO (Map Item Int)
do cart <- newIORef empty
al <- async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))
a2 <- async (atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ())))
res <- async (readIORef cart)
wait res

P
P

"/7?’&:“'@;*{;','4 NI oY
- ﬂ ‘r q
SOOI
/QQ@QQ,/ 2666
DOOOOONEF 4%
MO S
\ ¢ “0"‘6‘5‘;&*/ N/

g/: :

data Item = Book | Shoes | ...

p :: IO (Map Item Int)
p = do cart <- newIORef empty
al <- async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))
a2 <- async (atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ())))
res <- async (do waitBoth al a2
wait res readIORef cart)
| ——
VRNAAG 7T
B R
OO IS
AAARXIAN RS

g/: :

data Item = Book | Shoes | ...

p :: IO (Map Item Int)
p = do cart <- newIORef empty
al <- async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))
a2 <- async (atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ())))
res <- async (do waitBoth al a2
readIORef cart)
wait res
| ——
VRNAAG 7T
e S
OO I
AAARXIAN RS

g/: :

p :: IO (Map Item Int)
p = do
cart <- newIORef empty
al <- async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))
a2 <- async (atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ())))
res <- async (do waitBoth al a2
readIORef cart)
walt res

main = do v <- p
putStr (show (toList v))

* *

Deterministic

= do

cart <- newIORef empty

al <- async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))

a2 <- async (atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ())))

res <- async (do waitBoth al a2

readIORef cart)

p :: IO (Map Item Int)
p

walit res

main = do v <- p
putStr (show (toList v))

T — EE— e

Deterministic...now

= do

cart <- newIORef empty

al <- async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))

a2 <- async (atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ())))

res <- async (do waitBoth al a2

readIORef cart)

p :: IO (Map Item Int)
p

walit res

main = do v <- p
putStr (show (toList v))

T — EE— e

Deterministic...now..we hope

o) IO (Map Item Int) p :: Par Det (IMap Item Int)
p = do p = do
cart <- newIORef empty cart <- newEmptyMap
al <- async (atomicModifyIORef cart fork (insert Book 1 cart)
(\m -> (insert Book 1 m, ()))) fork (insert Shoes 1 cart)
a2 <- async (atomicModifyIORef cart return cart
(\m -> (insert Shoes 1 m, ())))
res <- async (do waitBoth al a2 ' main = do
readIORef cart) putStr (show (toList (fromIMap
walt res (runParThenFreeze p))))
|
main = do v <- p — T —
putStr (show (toList v)) Deterministic by construction
T — 8 [Kuper and Newton, FHPC '| 3]
Deterministic...now..we hope Kuper et al, FOPL “14]

data Item = Book | Shoes | ...

p :: IO (Map Item Int)
p = do cart <- newIORef empty
async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))
async (atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ())))
res <- async (readIORef cart)
walit res
T — T— -

- EEDN
| ’///;‘tz%“’%‘v"{//// {
KOO0, K
/ AN NS ¢

KOOOOOTSIS

;Q,‘QAO‘&‘O& S OARX

(VE V‘A Vv)

\ IMAARXAXRLY

Q‘)

data Item = Book | Shoes | ...

p :: IO (Map Item Int)
p = do cart <- newIQRef empty ‘
async,{atomicModifyIORef cart
(\m" (insert Book 1 m, ()
async TEomicModiFyTORef cart
(\m (insert Shoes 1 m, (
res <- async (readIORef cart)
walit res
T — e —————

-_—

'// /vséﬁﬁ’{ INLNIAN A 4

SOOI
/3?????/////

O 00000 [y

Q/ Q’A‘“ /‘//
\ 066‘4”./ AN

g/: ,

data Item = Book | Shoes | ...
p :: IO (Map Item Int)
p = do cart <- newlQRef empty .
async,{atomicModifyIORef cart
(\m> (insert Book 1 m, ()
async 4atomicModifyIORef cart
(\m >>—(insert Shoes 1 m, (
res <- async (readIORef cart)
walit res
T T— ——— -
IVars: single writes, blocking (but exact) reads BT
[Arvind et al,, 1989] R O OADAANEGIN §

9000006 /)
\ ”‘//‘QA" :ez‘z“‘g/ 4/ 4 \ / / / \
\ VeTaTe » 444
\ *6‘%'6966&&”’/ Y,

gé :

data Item = Book | Shoes | ...

:: IO (Map Item Int)
do cart <- newlIQRef empty -
(atomicModifyIORef cart

(insert Book 1 m, ()
rtomicModifyIORef cart
lnsert Shoes 1 m,

g = —

res <- async (readIORef‘cart)
walt res

[Vars: single writes, blocking (but exact) reads BT
[Arvind et al., 1989] AT KK
AAXX
//’Q‘QQ@‘ () //////////1
OO T
\ \”“0"696%45‘}/ AN

q/: ,

P
P

data Item = Book | Shoes | ...

p :: IO (Map Item Int)
p = do cart <- newIQRef empty -
async(atomicModifyIORef cart
(\m™>=_(insert Book 1 m, (

{(dinsert Shoes 1 m, (
res <- async (readIORef cart)
walit res

T — e ——————
[Vars: single writes, blocking (but exact) reads
[Arvind et dl., 1989]

[Vars: multiple least-upper-bound writes,

blocking threshold reads
[Kuper and Newton, FHPC | 3]

V¢4 /.'?’4;."’@%','{ INONI N4

OO

7N

Qﬁéﬁ&*%é&j
(b0
\ R Y YY) A‘A‘/ N

o o

data Item = Book | Shoes | ...

: I0 (Map Item Int)

p :
p = do cart <- newIQRef empty S
AatomicModifyIORef cart

async,
(\m" ;\iggert Bogk 1 m, (

async
(\m >>—(insert Shoes 1 m, (
res <- async (readIORef cart)
walt res
T — TTTT—— -
IVars: single writes, blocking (but exact) reads BT
[Arvind et al,, 1989] R O OADAANEGIN §

//"‘Qelo.ép"‘//////////,

Lvars: multiple least-upper-bound writes, OO 18

blocking threshold reads (/: :
[Kuper and Newton, FHPC | 3]

* actually a bounded join-semilattice

Raises an error;since 3 U4 =T
num 1o
! fork (put num 3)
//\\\ fork (put num 4)
0123 4 .
\\ // Works fine,since 4 u 4 =4
. do
— T— fork (put num 4)

fork (put num 4)

w -

data Item = Book | Shoes | .

p = do
cart <- newEmptyMap
fork (insert Shoes 1 cart)
fork (insert Book 2 cart)
getKey Book cart -- returns 2

T — ——

10

A1
% data Item =

= Book | Shoes | ...

p = do
cart <- newEmptyMap
fork (insert Shoes 1 cart)
fork (insert Book 2 cart)
getKey Book cart -- returns 2

T — —

data Item = Book | Shoes | .

p = do
cart <- newEmptyMap
fork (insert Shoes 1 cart)
fork (insert Book 2 cart)
getKey Book cart -- returns 2

T — —

10

data Item = Book | Shoes | .

p = do
cart <- newEmptyMap
fork (insert Shoes 1 cart)
fork (insert Book 2 cart)
getKey Book cart -- returns 2

T — —

10

&;;7 data Item = Book | Shoes | ...
p = do
cart <- newEmptyMap
fork (insert Shoes 1 cart)
fork (insert Book 2 cart)
getKey Book cart -- returns 2

T — —

data Item = Book | Shoes | .

p = do
cart <- newEmptyMap
fork (insert Shoes 1 cart)
fork (insert Book 2 cart)
getKey Book cart -- returns 2

T — —

10

data Item = Book | Shoes | .

p = do
cart <- newEmptyMap
fork (insert Shoes 1 cart)
fork (insert Book 2 cart)
getKey Book cart -- returns 2

T — —

10

data Item = Book | Shoes | .

p = do
cart <- newEmptyMap
fork (insert Shoes 1 cart)
fork (insert Book 2 cart)
getKey Book cart -- returns 2

T — —

10

data Item = Book | Shoes | .

{(Book,l),(Book,Z),.”}- p = do

cart <- newEmptyMap

fork (insert Shoes 1 cart)
fork (insert Book 2 cart)
getKey Book cart -- returns 2

T — T ——

getItemCount Book

{(Book,l),(Book,Z),.”

data Item = Book | Shoes | .

p = do
cart <- newEmptyMap
fork (insert Shoes 1 cart)
fork (insert Book 2 cart)
getKey Book cart -- returns 2

T — ——

10

getItemCount Book 1

-

{(Book,l),(Book,Z),.”}

bairwise incompatible

data Item = Book | Shoes |

p = do
cart <- newEmptyMap
fork (insert Shoes 1 cart)
fork (insert Book 2 cart)
getKey Book cart -- returns 2

T — T ——

10

seen nodes

seen nodes

seen nodes

@

seen nodes

@

; @OO6
- 00O
HOCIC

; @OO6
- 00O
HOCIC

already seen

seen nodes

OIOIOIO,
OO
OIOC)

12

already seen

already seen

seen nodes

OIOIOIO,
OO
OIOC)

12

already seen

already seen

already seen

already seen

seen nodes

OIOIOIO,
OO
OIOC)

12

already seen

already seen

already seen

already seen

seen nodes

OIOIOIO,
OO
OIOC)

12

already seen

already seen

already seen

already seen

seen nodes

OIOIOIO,
OO
OIOC)

12

Events are updates that change an LVar's state

already seen

already seen

already seen

already seen

seen nodes

OIOIOIO,
OO
OIOC)

12

Events are updates that change an LVar's state

Event handlers listen for events and launch callbacks in response

already seen

already seen

already seen

already seen

seen nodes

OIOIOIO,
OO
OIOC)

12

Events are updates that change an LVar's state

Event handlers listen for events and launch callbacks in response

traverse g startNode = do

already seen

already seen

12

Events are updates that change an LVar's state

Event handlers listen for events and launch callbacks in response

traverse g startNode = do
seen <- newkEmptySet

already seen

already seen

12

Events are updates that change an LVar's state

Event handlers listen for events and launch callbacks in response

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)
return ())

— T

already seen

already seen

12

Events are updates that change an LVar's state

Event handlers listen for events and launch callbacks in response

2

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)

return ())

insert startNode seen

— T

already seen

already seen

Events are updates that change an LVar's state

Event handlers listen for events and launch callbacks in response

quiesce blocks until all callbacks launched by a given handler are done running

2

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)

return ())

insert startNode seen

— T

already seen

already seen

12

Events are updates that change an LVar's state

Event handlers listen for events and launch callbacks in response

quiesce blocks until all callbacks launched by a given handler are done running

2

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)
return ())
insert startNode seen
quiesce h

— T

already seen

already seen

12

Events are updates that change an LVar's state

Event handlers listen for events and launch callbacks in response

quiesce blocks until all callbacks launched by a given handler are done running

2

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)
return ())
insert startNode seen
quiesce h

I T

already seen

already seen

12

freeze: exact non-blocking read

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)
return ())
insert startNode seen
quiesce h

T — |

13

freeze: exact non-blocking read

Attempts to write to a frozen LVar raise a write-after-freeze exception

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)
return ())
insert startNode seen
quiesce h

T — B

13

freeze: exact non-blocking read

Attempts to write to a frozen LVar raise a write-after-freeze exception

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)
return ())
insert startNode seen
quiesce h
freeze seen

T — e ——

13

freeze: exact non-blocking read

Attempts to write to a frozen LVar raise a write-after-freeze exception
Two possible outcomes: erther the same final value or an exception

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)
return ())
insert startNode seen
quiesce h
freeze seen

T — B ——

13

freeze: exact non-blocking read

Attempts to write to a frozen LVar raise a write-after-freeze exception
Two possible outcomes: erther the same final value or an exception

Theorem 1 (Quasi-Determinism). If o0 —* ¢’ and 0 —* o, ‘o
and neither o' nor o'’ can take a step, then either:

] / !/ . .
. o' = o up to a permutation on locations w, or
2. o' = error or o’/ = error.

[Kuper et al, POPL'14] Insert v seen)
R —— : node)

return ())
insert startNode seen
quiesce h
freeze seen

T — |

13

freeze: exact non-blocking read

Attempts to write to a frozen LVar raise a write-after-freeze exception
Two possible outcomes: erther the same final value or an exception

Theorem 1 (Quasi-Determinism). If o0 —* ¢’ and 0 —* o, ‘o
and neither o' nor o'’ can take a step, then either:

] / !/ . .
. o' = o up to a permutation on locations w, or
2. o' = error or o’/ = error.

[Kuper et al, POPL'14] Insert v seen)
R ———— : node)

return ())
insert startNode seen
quiesce h
freeze seen

[(Book,1)]

[(Shoes,1)] T — ———————

13

freeze: exact non-blocking read

Attempts to write to a frozen LVar raise a write-after-freeze exception
Two possible outcomes: erther the same final value or an exception

Theorem 1 (Quasi-Determinism). If o0 —* ¢’ and 0 —* o, ‘o
and neither o' nor o'’ can take a step, then either:

] / !/ . .
. o' = o up to a permutation on locations w, or
2. o' = error or o’/ = error.

[Kuper et al, POPL'14] Insert v seen)
R —— : node)

return ())
[(Book,1),(Shoes,1)] insert startNode seen

w quiesce h
freeze seen

[(Shoes,1)] L — ———

13

freeze: exact non-blocking read

Attempts to write to a frozen LVar raise a write-after-freeze exception
Two possible outcomes: erther the same final value or an exception

Theorem 1 (Quasi-Determinism). If o0 —* ¢’ and 0 —* o, ‘o
and neither o' nor o'’ can take a step, then either:

] / !/ . .
. o' = o up to a permutation on locations w, or
2. o' = error or o’/ = error.

[Kuper et al, POPL'14] Insert v seen)
R ———— : node)

return ())
[(Book,1),(Shoes,1)] insert startNode seen

w quiesce h

freeze seen

T — B

13

freeze: exact non-blocking read

Attempts to write to a frozen LVar raise a write-after-freeze exception
Two possible outcomes: erther the same final value or an exception

Theorem 1 (Quasi-Determinism). If o0 —* ¢’ and 0 —* o, ‘o
and neither o' nor o'’ can take a step, then either:

] / !/ . .
. o' = o up to a permutation on locations w, or
2. o' = error or o’/ = error.

[Kuper et al, POPL'14] Insert v seen)
R ———— : node)

return ())
[(Book,1),(Shoes, 1) | NelasIage]s insert startNode seen

w quiesce h

freeze seen

T — B

13

Quasi-

Determinism

|4

Quasi-

Determinism

Strong
Local Quasl-
Confluence

0

/

0

/

é

*
[/

/N
sla\g /51

| 4

Independence

(S5 e) — (55 €)

(Slg S"; e) — (8" LUg S”; e’

Quasi-

Determinism

Strong
L ocal Quasi-
Confluence

0

/\

/
o — [

/N
sla\g /51

| 4

Frame rule

{p} c {4}

{pxr}ci{g*r}

[O'Hearn et al., 2001]

Independence

(S5 e) — (5"; €)

(SlUg S"; e) — (8" Ug S§"; ')

|5

Frame rule

{p} c {4}

{pxr}c{g*r}

[O'Hearn et al., 2001]

Independence

(S5 e) — (5"; €)

(Slg S"; e) — (S"Ug S"; €'

|5

freeze: exact non-blocking read

Attempts to write to a frozen LVar raise a write-after-freeze exception
Two possible outcomes: erther the same final value or an exception

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)
return ())
insert startNode seen
quiesce h
freeze seen

T — B ——

|6

freeze: exact non-blocking read

Attempts to write to a frozen LVar raise a write-after-freeze exception
Two possible outcomes: erther the same final value or an exception

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)
return ())

\freeze seep/

— = -

|6

freeze: exact non-blocking read

Attempts to write to a frozen LVar raise a write-after-freeze exception
Two possible outcomes: erther the same final value or an exception

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)

return ())
Let the system insert startNode seen

handle this for us: ——y/4ui

" N\freeze seep/

— = -

|6

freeze: exact non-blocking read

Attempts to write to a frozen LVar raise a write-after-freeze exception
Two possible outcomes: erther the same final value or an exception

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)

return ())
Let the system insert startNode seen

handle this for us: ——y/4ui

runParThenFreeze NoEE e

S = -

|6

[Vish

a Haskell library for parallel programming with [Vars

|7

[Vish

a Haskell library for parallel programming with [Vars

L Var operations run in Par computations

|7

[Vish

a Haskell library for parallel programming with [Vars

L Var operations run in Par computations
Lightweight threads

|7

[Vish

a Haskell library for parallel programming with [Vars

L Var operations run in Par computations
Lightweight threads

Par computations indexed by effect level

p ::

b

Par Det (IMap Item Int)

= do

cart <- newEmptyMap

fork (insert Book 1 cart)
fork (insert Shoes 1 cart)

return cart

|7

[Vish

a Haskell library for parallel programming with [Vars

L Var operations run in Par computations

nghtwelght threads p :: Par Det (IMap Item Int)
p = do
Par computations indexed by effect level cart <- newEmptyMap
fork (insert Book 1 cart)

freeze-after-writing idiom return cart

|7

[Vish

a Haskell library for parallel programming with [Vars

L Var operations run in Par computations

nghtwelght threads p :: Par Det (IMap Item Int)
p = do
Par computations indexed by effect level cart <- newEmptyMap
fork (insert Book 1 cart)

freeze-after-writing idiom return cart

main = do
putStr (show (toList (fromIMap
(runParThenFreeze p))))

|7

[Vish

a Haskell library for parallel programming with [Vars

L Var operations run in Par computations

nghtwelght threads p :: Par Det (IMap Item Int)
p = do
Par computations indexed by effect level cart <- newEmptyMap
fork (insert Book 1 cart)

freeze-after-writing idiom return cart

Efficient lock-free sets, maps, etc.

main = do
putStr (show (toList (fromIMap
(runParThenFreeze p))))

|7

[Vish

a Haskell library for parallel programming with [Vars

L Var operations run in Par computations

nghtwelght threads p :: Par Det (IMap Item Int)
p = do
Par computations indexed by effect level cart <- newEmptyMap
fork (insert Book 1 cart)

freeze-after-writing idiom return cart

Efficient lock-free sets, maps, etc.

main = do

Implement your own LVars, too putStr (show (tolList (fromIMap
(runParThenFreeze p))))

|7

[Vish

a Haskell library for parallel programming with [Vars

L Var operations run in Par computations

nghtwelght threads p :: Par Det (IMap Item Int)
p = do
Par computations indexed by effect level cart <- newEmptyMap
fork (insert Book 1 cart)

freeze-after-writing idiom return cart

Efficient lock-free sets, maps, etc.

main = do

Implement your own LVars, too putStr (show (tolList (fromIMap
(runParThenFreeze p))))

cabal install 1lvish today!

|7

Deterministic Parallel Programming

18

(observably)

Deterministic Parallel Programming

18

(observably) (irregular)

Deterministic Parallel Pro

oramming

S¢l

18

Case study:
kK-CFA static analysis parallelized wrth LVish

19

Case study:
kK-CFA static analysis parallelized with LVish

f
S s

[Earl et al, ICFP'12]
—

Case study:

kK-CFA static analysis parallelized with LVish

¢

[Earl

Speedup over one processor

12

10

— linear speedup
¥¢ notChain/lockfree

Parallel Speedup

O Dblur/lockfree
Zr notChain

Processors

19

Distributed systems

Parallel systems

20

Distributed systems

¥ Active Cables
< Future Cables

21

22

22

22

22

\ ,

.% l &R K
* -

getKey Book/

1

getKey Book

22

getKey Book

getKey Book

-

getKey Book

22

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

Amazon.com

ABSTRACT

Reliability at massive scale is one of the biggest challenges we
face at Amazon.com, one of the largest e-commerce operations in
the world; even the slightest outage has significant financial
consequences and impacts customer trust. The Amazon.com
platform, which provides services for many web sites worldwide,
is implemented on top of an infrastructure of tens of thousands of
servers and network components located in many datacenters
around the world. At this scale, small and large components fail
continuously and the way persistent state is managed in the face
of these failures drives the reliability and scalability of the
software systems.

This paper presents the design and implementation of Dynamo, a
highly available key-value storage system that some of Amazon’s
core services use to provide an “always-on” experience. To
achieve this level of availability, Dynamo sacrifices consistency
under certain failure scenarios. It makes extensive use of object
versioning and application-assisted conflict resolution in a manner
that provides a novel interface for developers to use.

Categories and Subject Descriptors

D.4.2 [Operating Systems]: Storage Management; D.4.5
[Operating Systems]: Reliability; D.4.2 [Operating Systems]:
Performance;

General Terms
Algorithms, Management, Measurement, Performance, Design,
Reliability.

1. INTRODUCTION

Amazon runs a world-wide e-commerce platform that serves tens
of millions customers at peak times using tens of thousands of
servers located in many data centers around the world. There are
strict operational requirements on Amazon’s platform in terms of
performance, reliability and efficiency, and to support continuous
growth the platform needs to be highly scalable. Reliability is one
of the most important requirements because even the slightest
outage has significant financial consequences and impacts
customer trust. In addition, to support continuous growth, the
platform needs to be highly scalable.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SOSP’07, October 14-17, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-591-5/07/0010...$5.00.

One of the lessons our organization has learned from operating
Amazon’s platform is that the reliability and scalability of a
system is dependent on how its application state is managed.
Amazon uses a highly decentralized, loosely coupled, service
oriented architecture consisting of hundreds of services. In this
environment there is a particular need for storage technologies
that are always available. For example, customers should be able
to view and add items to their shopping cart even if disks are
failing, network routes are flapping, or data centers are being
destroyed by tornados. Therefore, the service responsible for
managing shopping carts requires that it can always write to and
read from its data store, and that its data needs to be available
across multiple data centers.

Dealing with failures in an infrastructure comprised of millions of
components is our standard mode of operation; there are always a
small but significant number of server and network components
that are failing at any given time. As such Amazon’s software
systems need to be constructed in a manner that treats failure
handling as the normal case without impacting availability or
performance.

To meet the reliability and scaling needs, Amazon has developed
a number of storage technologies, of which the Amazon Simple
Storage Service (also available outside of Amazon and known as
Amazon S3), is probably the best known. This paper presents the
design and implementation of Dynamo, another highly available
and scalable distributed data store built for Amazon’s platform.
Dynamo is used to manage the state of services that have very
high reliability requirements and need tight control over the
tradeoffs between availability, consistency, cost-effectiveness and
performance. Amazon’s platform has a very diverse set of
applications with different storage requirements. A select set of
applications requires a storage technology that is flexible enough
to let application designers configure their data store appropriately
based on these tradeoffs to achieve high availability and
guaranteed performance in the most cost effective manner.

There are many services on Amazon’s platform that only need
primary-key access to a data store. For many services, such as
those that provide best seller lists, shopping carts, customer
preferences, session management, sales rank, and product catalog,
the common pattern of using a relational database would lead to
inefficiencies and limit scale and availability. Dynamo provides a
simple primary-key only interface to meet the requirements of
these applications.

Dynamo uses a synthesis of well known techniques to achieve
scalability and availability: Data is partitioned and replicated
using consistent hashing [10], and consistency is facilitated by
object versioning [12]. The consistency among replicas during
updates is maintained by a quorum-like technique and a
decentralized replica synchronization protocol. Dynamo employs

v ‘

[DeCandia et al,, SOSP '07]

23

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

Amazon.com

ABSTRACT

Reliability at massive scale is one of the biggest challenges we
face at Amazon.com, one of the largest e-commerce operations in
the world; even the slightest outage has significant financial
consequences and impacts customer trust. The Amazon.com
platform, which provides services for many web sites worldwide,
is implemented on top of an infrastructure of tens of thousands of
servers and network components located in many datacenters
around the world. At this scale, small and large components fail
continuously and the way persistent state is managed in the face
of these failures drives the reliability and scalability of the
software systems.

This paper presents the design and implementation of Dynamo, a
highly available key-value storage system that some of Amazon’s
core services use to provide an “always-on” experience. To
achieve this level of availability, Dynamo sacrifices consistency
under certain failure scenarios. It makes extensive use of object
versioning and application-assisted conflict resolution in a manner
that provides a novel interface for developers to use.

Categories and Subject Descriptors

One of the lessons our organization has learned from operating
Amazon’s platform is that the reliability and scalability of a
system is dependent on how its application state is managed.
Amazon uses a highly decentralized, loosely coupled, service
oriented architecture consisting of hundreds of services. In this
environment there is a particular need for storage technologies
that are always available. For example, customers should be able
to view and add items to their shopping cart even if disks are
failing, network routes are flapping, or data centers are being
destroyed by tornados. Therefore, the service responsible for
managing shopping carts requires that it can always write to and
read from its data store, and that its data needs to be available
across multiple data centers.

Dealing with failures in an infrastructure comprised of millions of
components is our standard mode of operation; there are always a
small but significant number of server and network components
that are failing at any given time. As such Amazon’s software
systems need to be constructed in a manner that treats failure
handling as the normal case without impacting availability or
performance.

To meet the reliahilitv ard scaling needs, Amazon has developed
s, of which the Amazon Simple

'tside of Amazon and known as

known. This paper presents the

ynamo, another highly available

since the application 1s aware of the data schema 1t 4 i amons parom

state of services that have very
*d need tight control over the

can decide on the contlict resolution method that 1s best suited for e cmemensm

¢ requirements. A select set of

its client’s experience. For instance, the application that maintains &8 i

chieve high availability and
st cost effective manner.

customer shopping carts can choose to “merge” the conflicting 5. o m o we
versions and return a single unified shopping cart.

DR ——

3. For many services, such as
sts, shopping carts, customer
sales rank, and product catalog,
lational database would lead to
vailability. Dynamo provides a

to meet the requirements of

personal or classroom use is granted withou T s of well known techniques to achieve
not made or distributed for profit or commercial advantage and that scalability and availability: Data is partitioned and replicated

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SOSP’07, October 14-17, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-591-5/07/0010...$5.00.

using consistent hashing [10], and consistency is facilitated by
object versioning [12]. The consistency among replicas during
updates is maintained by a quorum-like technique and a
decentralized replica synchronization protocol. Dynamo employs

-——

——
[DeCandia et al,, SOSP '07]

23

Conflict-Free Replicated Data Types*

Marc Shapiro*-®, Nuno Preguiga'?, Carlos Baguero®, and Marek Zawirski'+*

INRIA. Paris, France
* CITI, Universidade Nova de Lishoa, Portugal
* Universidade do Minho, Portugal
* UPMC, Paris, France
* LIP6. Paris, France

Abstract. Replicating data under Eventual Consistency (EC) allows
any replica to accept updates without remote synchronisation. This en-

wres performance and scalability in large-scale distributed systems (e.g..
clouds). However, published EC approaches are ad-hoc and error-prone.
Under a formal Strong Eventual Consistency (SEC) model, we study suf-
ficient conditions for convergence. A data type that satisfies these con-
ditions is called a Conflict-free Replicated Data Type (CRDT). Replicas
of any CRDT are guaranteed to converge in a self-stabilising manner,
despite any number of failures. This paper formalises two popular ap-
proaches (state- and operation-based) and their relevant sufficient con-
ditions. We study a number of useful CRDTs, such as sets with clean
semantics, supporting both add and remove operations, and consider in
depth the more complex Graph data type. CRDT types can be composed
to develop large-scale distributed applications, and have interesting the-
oretical properties.

Keywords: Eventual Consistency, Replicated Shared Objects, Large-
Scale Distributed Systems.

1 Introduction

Replication and consistency are essential features of any large distributed system,
such as the WWW, peer-to-peer, or cloud computing platforms. The standard
“strong consistency™ approach serialises updates in a global total order [10].
This constitutes a performance and scalability bottleneck. Furthermore, strong
consistency conflicts with availability and partition-tolerance [8].

When network delays are large or partitioning is an issue, as in delay-tolerant
networks, disconnected operation, cloud computing, or P2P systems, evenfual
consistency promises better availability and performance [17]21]. An update ex-
ecutes at some replica, without synchronisation: later, it is sent to the other

I —
[Shapiro et al.,, SSS "I]

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

Amazon.com

——

ABSTRACT

Reliability at massive scale is one of the biggest challenges we
face at Amazon.com, one of the largest e-commerce operations in
the world; even the slightest outage has significant financial
consequences and impacts customer trust. The Amazon.com
platform, which provides services for many web sites worldwide,
is implemented on top of an infrastructure of tens of thousands of
servers and network components located in many datacenters
around the world. At this scale, small and large components fail
continuously and the way persistent state is managed in the face
of these failures drives the reliability and scalability of the
software systems.

This paper presents the design and implementation of Dynamo, a
highly available key-value storage system that some of Amazon’s
core services use to provide an “always-on” experience. To
achieve this level of availability, Dynamo sacrifices consistency
under certain failure scenarios. It makes extensive use of object
versioning and application-assisted conflict resolution in a manner
that provides a novel interface for developers to use.

Categories and Subject Descriptors

nh 1s aware of the data schema it
n method that 1s best suited for
, the application that maintains
)se to “merge” the conflicting

ed shopping cart.

One of the lessons our organization has learned from operating
Amazon’s platform is that the reliability and scalability of a
system is dependent on how its application state is managed.
Amazon uses a highly decentralized, loosely coupled, service
oriented architecture consisting of hundreds of services. In this
environment there is a particular need for storage technologies
that are always available. For example, customers should be able
to view and add items to their shopping cart even if disks are
failing, network routes are flapping, or data centers are being
destroyed by tornados. Therefore, the service responsible for
managing shopping carts requires that it can always write to and
read from its data store, and that its data needs to be available
across multiple data centers.

Dealing with failures in an infrastructure comprised of millions of
components is our standard mode of operation; there are always a
small but significant number of server and network components
that are failing at any given time. As such Amazon’s software
systems need to be constructed in a manner that treats failure
handling as the normal case without impacting availability or
performance.

To meet the relinhilitv ard scaling needs, Amazon has developed
s, of which the Amazon Simple
'tside of Amazon and known as

own. This paper presents the
ynamo, another highly available
built for Amazon’s platform.
state of services that have very

*d need tight control over the
*@istency, cost-effectiveness and

has a very diverse set of
equirements. A select set of
ology that is flexible enough

e their data store appropriately
ieve high availability and
ost effective manner.

n’s platform that only need
». For many services, such as
, shopping carts, customer
les rank, and product catalog,
[g;ional database would lead to
ilability. Dynamo provides a
(o meet the requirements of

£

'S

personal or classroom use is grante 0 T own techniques to achieve
not made or distributed for profit or commercial advantage and that scalability and ava g is partitioned and replicated

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SOSP’07, October 14-17, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-591-5/07/0010...$5.00.

using consistent hashing [10], and consistency is facilitated by
object versioning [12]. The consistency among replicas during
updates is maintained by a quorum-like technique and a
decentralized replica synchronization protocol. Dynamo employs

——
[DeCandia et al,, SOSP '07]

23

Conflict-Free Replicated Data Types*

Mare Shapiro*®, Nuno Preguiga'?, Carlos Baguero®, and Marek Zawirski':

INRIA. Paris, France
* CITI, Universidade Nova de Lishoa, Portugal
* Universidade do Minho, Portugal
* UPMC, Paris, France
* LIP6. Paris, France

Abstract. Replicating data under Eventual Consistency (EC) allows
any replica to accept updates without remote synchronisation. This en-
sures performance and scalability in large-scale distributed systems (e.g..
clouds). However, published EC approaches are ad-hoc and error-prone.
Under a formal Strong Eventual Consistency (SEC) model, we study suf-
ficient conditions for convergence. A data type that satisfies these con-
ditions is called a Conflict-free Replicated Data Type (CRDT). Replicas
of any CRDT are guaranteed to converge in a self-stabilising manner,
despite any number of failures. This paper formalises two popular ap-
proaches (state- and operation-based) and their relevant sufficient con-
ditions. We study a number of useful CRDTs, such as sets with clean
semantics, supporting both add and remove operations, and consider in
depth the more complex Graph data type. CRDT types can be composed
to develop large-scale distributed applications, and have interesting the-
oretical properties.

Keywords: Eventual Consistency, Replicated Shared Objects, Large-
Scale Distributed Systems.

1 Introduction

Replication and consistency are essential features of any large distributed system,
such as the WWW, peer-to-peer, or cloud computing platforms. The standard
“strong consistency™ approach serialises updates in a global total order [10].
This constitutes a performance and scalability bottleneck. Furthermore, strong
consistency conflicts with availability and partition-tolerance [8].

When network delays are large or partitioning is an issue, as in delay-tolerant
networks, disconnected operation, cloud computing, or P2P systems, evenfual
consistency promises better availability and performance [17]21]. An update ex-
ecutes at some replica, without synchronisation: later, it is sent to the other

T —
[Shapiro et al.,, SSS "I]

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

Amazon.com

One of the lessons our organization has learned from operating
ABSTRACT * azon’s platform is that the reliability and scalability of a
em is dependent on how its application state is managed.
azon uses a highly decentralized, loosely coupled, service
nted architecture consisting of hundreds of services. In this
ironment there is a particular need for storage technologies
are always available. For example, customers should be able
iew and add items to their shopping cart even if disks are
ng, network routes are flapping, or data centers are being
iroyed by tornados. Therefore, the service responsible for
1aging shopping carts requires that it can always write to and
1 from its data store, and that its data needs to be available
ss multiple data centers.

ling with failures in an infrastructure comprised of millions of
1ponents is our standard mode of operation; there are always a
11 but significant number of server and network components
are failing at any given time. As such Amazon’s software
ems need to be constructed in a manner that treats failure
dling as the normal case without impacting availability or
‘ormance.

—

meet the reli~hilitv ard scaling needs, Amazon has developed
s, of which the Amazon Simple
'tside of Amazon and known as
own. This paper presents the
mo, another highly available
built for Amazon’s platform.
_state of services that have very

n 1s aware of the data schema it .

n method that is best suited for yi s
, the application that maintains it
)se to “merge” the conflicting

ed shopping cart.

ieve high availability and
ost effective manner.

n’s platform that only need
For many services, such as
, shopping carts, customer
les rank, and product catalog,
iational database would lead to
ilability. Dynamo provides a
meet the requirements of

personal or classroom use is grante
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SOSP’07, October 14-17, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-591-5/07/0010...$5.00.

own techniques to achieve
scalability and aval s partitioned and replicated
using consistent hashing [10], and consistency is facilitated by
object versioning [12]. The consistency among replicas during
updates is maintained by a quorum-like technique and a
decentralized replica synchronization protocol. Dynamo employs

T R———,
[DeCandia et al,, SOSP '07]

23

Threshold reads of CRDTs

Consistency choices at the granularity of queries,
not that of databases

Threshold reads of CRDTs

Consistency choices at the granularity of queries,
not that of databases

General Inflationary [Var updates
Non-idempotent, incrementable counters

Threshold reads of CRDTs

Consistency choices at the granularity of queries,
not that of databases

General Inflationary [Var updates
Non-idempotent, incrementable counters

Non-monotonic LVar updates
Encode using CRD T tombstones

Threshold reads of CRDTs

Consistency choices at the granularity of queries,
not that of databases

General Inflationary [Var updates
Non-idempotent, incrementable counters

Non-monotonic [Var updates
—ncode using CRDT tombstones

Distributed LVish
Distributed work-stealing, distributed GC

Threshold reads of CRDTs

Consistency choices at the granularity of queries,
not that of databases

General Inflationary [Var updates
Non-idempotent, incrementable counters

Non-monotonic [Var updates
—ncode using CRDT tombstones

Distributed LVish
Distributed work-stealing, distributed GC

Differential dataflow for LVars
—andling continuous input

Threshold reads of CRDTs

Consistency choices at the granularity of queries,

not that of databases

General Inflationary [Var updates
Non-idempotent, incrementable counters

Non-monotonic [Var updates
—ncode using CRDT tombstones

istributed LVish
istributed work-stealing, distributed GC

fferential dataflow for LVars
andling continuous Input

Joining Forces

Toward a Unified Account of LVars and Convergent Replicated Data Types

Lindsey Kuper

Ryan R. Newton

Indiana University
{Ikuper, rrnewton}@cs.indiana.edu

Abstract

LVars—shared memory locations whose semantics are defined
in terms of an application-specific lattice—offer a principled ap-
proach to deterministic-by-construction, shared-state parallel pro-
gramming: writes to an LVar take the join of the old and new values
with respect to the lattice, while reads from an LVar can observe
only that its contents have crossed a specified threshold in the lat-
tice. This semantics guarantees that programs have a deterministic
outcome, despite parallel execution and schedule nondeterminism.

LVars have a close cousin in the distributed systems literature:
convergent replicated data types (CVRDTs), which leverage lattice
properties to guarantee that all replicas of a distributed object (for
instance, in a distributed database) are eventually consistent. Unlike
LVars, in which all updates are joins, CvRDTs allow updates that
are inflationary with respect to the lattice but do not compute
a join. Moreover, CVRDTs differ from LVars in that they allow
intermediate states to be observed: if two replicas of an object are
updated independently, reads of those replicas may disagree until a
(least-upper-bound) merge operation takes place.

Although CvRDTs and LVars were developed independently,
LVars ensure determinism under parallel execution by leveraging
the same lattice properties that CvVRDTs use to ensure eventual
consistency. Therefore, a sensible next research question is: how
can we take inspiration from CvRDTs to improve the LVars model,
and vice versa? In this paper, we take steps toward answering
that question in both directions: we consider both how to extend
CvRDTs with LVar-style threshold reads and how to extend LVars
with CvRDT-style inflationary updates, and we advocate for the
usefulness of these extensions.

1. Introduction

Deterministic-by-construction parallel programming models en-
sure that all programs written using the model have the same ob-
servable behavior every time they are run, offering freedom from
subtle, hard-to-reproduce nondeterministic bugs in parallel code.
Ideally, a deterministic-by-construction parallel program will run
faster when more parallel resources are available, and so we do
not want our model to require that exact scheduling behavior is de-
terministic; only a program’s outcome should be preserved across
multiple runs. Indeed, we want to specifically allow tasks to be
scheduled dynamically and unpredictably, in order to handle ir-
regular parallel applications, but without allowing such schedule
nondeterminism to affect the outcome of a program.

In earlier work [9, 10], we proposed LVars as a principled ap-
proach to shared-state parallel programming that guarantees ob-
servably deterministic outcomes. An LVar is a memory location
that can be shared among multiple threads and accessed through
put (write) and get (read) operations. Unlike a typical shared mu-
table location, though, the values an LVar can take on are elements

of an application-specific lattice. This application-specific lattice
determines the semantics of the put and get operations that com-
prise the interface to LVars:

® put operations can only change an LVar’s state in a way that
is monotonically increasing with respect to the application-
specific lattice, because it updates the LVar to the join, or least
upper bound, of the old state and the new state.

get operations allow only limited observations of the state of
an LVar. A get operation requires the programmer to specify
a threshold set of minimum values that can be read from the
LVar, where every two elements in the threshold set must have
the lattice’s greatest element T as their join. A call to a get
operation blocks until the LVar in question reaches a (unique)
value in the threshold set, then unblocks and returns that value,
rather than the LVar’s exact contents.

Together, monotonically increasing writes via put and threshold
reads via get yield a deterministic-by-construction programming
model. That is, a program in which puts and gets on LVars are the
only side effects will have the same observable result on every run,
in spite of parallel execution and schedule nondeterminism [9].

Lattices for eventual consistency The problem of ensuring de-
terminism of parallel programs is closely related to the problem of
ensuring the eventual consistency [14] of replicated objects in a dis-
tributed system. Consider, for example, an object representing the
contents of a shopping cart, replicated across a number of physical
locations. If two replicas disagree on the contents of the cart—for
instance, if one replica sees only that item a has been added to
the cart, while another sees only item b—how do we know what
the “real” cart contents are? One option is to give every write a
timestamp and allow the last-written replica to overrule the others,
but such a “last-write-wins” policy does not necessarily make sense
from a semantic point of view [7]. In the particular case of the shop-
ping cart, we might instead want to resolve the conflict by taking
the set union {a, b} of the two replicas’ contents; for some other
application, a different policy might be more appropriate.

This notion of application-specific conflict resolution, long used
by, for instance, the Amazon Dynamo key-value store [7], has
recently been formalized in the setting of convergent replicated
data types (CVRDTS) [12, 13]. A CvRDT is a replicated object in
which the states that replicas can take on can be viewed as elements
of a join-semilattice. While at any given time, replicas may differ,
conflicts between replicas can always be deterministically resolved
by a merge operation that computes the join of the two replicas’
states. As long as all replicas merge with one another periodically,
eventual consistency is guaranteed.

Joining forces Although LVars and CvRDTs were developed in-
dependently, both models leverage the mathematical properties of
join-semilattices to ensure that a property of the model holds—

2014/1/10

T —

B

Thank you!

Email: kuper@cs.indiana.edu
Project repo: grithub.com/iu-parfunc/Ivars
Code from this talk: github.com/Ikuper/lvar-examples
Papers: cs.indiana.edu/~lkuper
Research blog: composition.al

25

e —2, &2

- = "tripwire”

X Can't see the exact, complete contents of the cart

26

2, &2

- = "tripwire”

X Can't see the exact, complete contents of the cart

& Can't iterate over the items in the cart

26

e —2, &2

- = "tripwire”

X Can't see the exact, complete contents of the cart
R Can't iterate over the items in the cart

® Can't determine if an item isn’t in the cart

26

e —2, &2

- = "tripwire”

X Can't see the exact, complete contents of the cart

& Can't iterate over the items in the cart

X Can't
X Can’

determine If an item isn't In the cart

t react to writes that we weren't expecting

26

e —2, &2

 _Jme=-—-———- - = "tripwire"

1 2 -

getItemCount Book

« Can see the exact, complete contents of the cart
« Can iterate over the items in the cart
« Can determine if an item isn’t in the cart

« Can react to writes that we weren't expecting

26

w'.r..‘
11|l —2 -

|
o-l eo e
c |
/
getItemCount Book | ! 1

-

« Can see the exact, complete contents of the cart
« Can iterate over the items in the cart
« Can determine if an item isn’t in the cart

« Can react to writes that we weren't expecting

handlers,

quiescence,

freezing

26

