A Lattice-Based Approach
to Deterministic Parallelism

Lindsey Kuper and Ryan R. Newton
Indiana University

MPI-SWS
30 January 2013

What does this program evaluate to?

let _=put!{ 0 in
let par v = get [
_=putl 8

N v

Disallow multiple writes?

let _=put!{ 0 in
let par v = get {
_=putl 8

N v

Disallow multiple writes?

N v

Tesler and Enea, 1968 // IV //
| ars

Arvind et al., 1989

Deterministic programs that single-assignment forbids

let _=put/ 3 in
let par v = get [
_=putl3

N v

Deterministic programs that single-assignment forbids

let _=nputl 3 i
et pu N let par _ = pUtl (47 J—)

_=put!l (L,3)
in get [

let par v = get [
_=putl3

N v

Deterministic programs that single-assignment forbids

let _=put/ 3 in
let par v = get [
_=putl3

let par - = put [(4, L)
_=put! (L,3)

| in get [
in v

let par _ = insert [1111"

_=insert ! "71100”
in get [

-\
§RA§1 j‘JME

cma sueAR

R '
ADLISIND) 690
o ves

From Concurrent Collections...

Concurrent Collections

Zoran Budimli¢' Michael Burke' Vincent Cavé' Kathleen Knobe®
Geoff Lowney’ Ryan Newton’ Jens Palsberg® David Peixotto'
Vivek Sarkar' Frank Schlimbach® Sagnak Tagirlar'

'Rice University “Intel Corporation *UCLA

Abstract
We introduce the Concurrent Collections (CnC) programming model.
CnC supports fexible combinations of task and data parallelism while
retaining determinism. CnC is implicitly parallel, with the user provid.
ing high-level operations along with semantic ordering constraints that
together form a CnC graph.

We formally describe the execution semantics of CaC and prove
that the model guarantees deterministic computation. We evaluate the
performance of CnC implementations on several applications and show
that CnC offers performance and scalability equivalent to or better than
that offered by lower-level parallel programming models.

1 Introduction

With multicore processors, parallel computing is going mainstream. Yet most
software is still written in traditional serial languages with explicit threading.
High-level parallel programming models, after four decades of proposals, have
still not seen widespread adoption. This is beginning to change. Systems like
MapReduce are succeeding based on implicit parallelism. Other systems like
Nvidia CUDA are partway there, providing & restricted programming model to
the user but also exposing too many of the hardware details. The payoff for a
high-level programming model is clear—it can provide semantic guarantees and
can simplify the understanding, debugging, and testing of a parallel program.
In this paper we introduce the Concurrent Collections (CnC) programming
model, built on past work on TStreams [13]. CnC falls into the same family
as dataflow and stream-processing languages & program is a graph of kernels,
communicating with one another. In CnC, those computations are called steps,
and are related by control and data dependences. CnC is provably determin-
istic. This limits CnC’s scope, but compared to its more narrow counterparts
{StreamIT, NP-Click, ete), CnC is suited for many applications—incorporating
static and dynamic forms of task, data, loop, pipeline, and tree parallelism.
Truly mainstream parallelism will require reaching the large community of
non-professional programmers—scientists, animators, and financial analysts
but reaching them requires & separation of concerns between application logic
and parallel implementation. We say that the former is the concern of the
domain ezxpert and the latter of the performance tuning erpert. The tuning
expert is given the maximum possible freedom to map the computation onto the
target architecture and is not required to have an understanding of the domain.
A strength of CnC is that it is simultaneously a datafiow-like parallel model

Budimlic et al., 2010

From Concurrent Collections...

Concurrent Collections

Zoran Budimli¢' Michael Burke' Vincent Cavé' Kathleen Knobe®
Geoff Lowney’ Ryan Newton’ Jens Palsberg® David Peixotto'
Vivek Sarkar' Frank Schlimbach® Sagnak Tagirlar'

'Rice University “Intel Corporation *UCLA

Abstract

We introduce the Concurrent Collections (CnC) programming model.
CnC supports fexible combinations of task and data parallelism while
retaining determinism. CnC is implicitly parallel, with the user provid

ing high-level operati nlong with semantic ordering constraints that
together form a CnC gr

ST i icc . Lemma 3.2. (Monotonicity) If o — o', then o < o’.

that the model guarantees deterministic computation. We evaluate the
performance of CnC implementations on several applications and show

that CnC offers performance and scalability equivalent to or better than "
e e e e e ww_ A — m

1 Introduction

With multicore processors, parallel computing is going mainstream. Yet most
software is still written in traditional serial languages with explicit threading.
High-level parallel programming models, after four decades of proposals, have
still not seen widespread adoption. This is beginning to change. Systems like
MapReduce are sucoeedire hec~i an imolicit paralleliem 0<% - cvetoms like
Nvidia CUDA are par
the user but also expe
high-level programmin

ity e e The key language feature that enables determinism is the single assignment

s condition. The single assignment condition guarantees monotonicity of the data
swrvwas collection A. We view A as a partial function from integers to integers and the

el gingle assignment condition guarantees that we can establish an ordering based

and parallel implen
domain ezxpert and 1

weiaeio 0N the non-decreasing domain of A.

target architecture a
DR e — e ——— Y

A strength of CnC

Budimlic et al., 2010

Monotonicity

A

f is monotonic iff, for a given <, f(y)+

x <y == f(x) <f(y) frx)+

...to KPNs

Kahn, 1974

INFORMATION PROCESSING 74 — NORTH-HOLLAND PUBLISHING COMPANY (1974)

THE SEMANTICS OF A SIMPLE LANGUAGE FOR PARALLEL PROGRAMMING

Gilles KAHN

IRIA-Laboria, Domaine de Voluceau, 78150
Rocquencourt, France

and

Commissariat a I'Energie Atomique, France

In this paper, we describe a simple language for parallel programming. Its semantics is studied thor-
oughly. The desirable properties of this language and its deficiencies are exhibited by this theoret-
ical study. Basic results on parallel program s.hemata are given. We hope in this way to make a case
for a more formal (i.e. mathematical) approach tc-the design of languages for systems programming and

the design of operating systems.

. There is a wide disagreement among systems designers

as to what are the best primitives for writing sys-
tems programs. In this paper, we describe a simple
language for parallel programming and study its
mathematical properties.

1. A SIMPLE LANGUAGE FOR PARALLEL PROGRAMMING.

The features of our mini-language are exhibited on
the sample program S on fig.l. The conventions are
close to Algol and we only insist upon the new
features. The program S consists of a set of decla-
rations and a body. Variables of type integer
channel are declared at 'line (1), and for ary simple
type o (bcolean, real, etc...) we could have decla-
red a o ch 1. Then pr f, g and h are
declared, much like procedures. Aside from usual
parameters (passed by value in this example, like
INIT at line (3)), we can declare in the heading of
the process how it is linked to other processes : at
line (2) f is stated to communicate via two input

* lines that can carry integers, and one similar out-

put line.

The body of a process is an usual Algol program except
for invocation of wait onan input line (e.g. at (4))
or send a variable on a line of compatible type
(e.g. at (5)). The process stays blocked on a wait
until something is being sent on this line by ano-
ther process, but nothing can prevent a process
from performing a send on a line.

In other words, processes communicate via first-in
first-out (fifo) queues.

Calling instances of the processes is done in the

. body of the main program at line (6) where the

actual names of the channels are bound to the formal
parameters of the processes. The infix operator par
initiates the concurrent activation of the processes.
Such a style of programming is close to may systems
using EVENT mechanisms ((1],02],03],04]). A picto-
rial representation of the program is the schema P
on fig.2,, where the nodes represent processes and
the arcs communication channels between these pro-
cesses. :

What sort of things would we like to prove on a
program like S ? Firstly, that all processes in §
run forever. Secondly, more precisely, that S prints
out (at line (7)) an alternating sequence of O's

and 1's forever. Third, that if one of the processes
were to stop at some time for an extraneous reason,
the whole system would stop.

The ability to state formally this kind of property
of a parallel program and to prove them within a
formal logical framework is the central motivation
for the theoretical study of the next sections.

2. PARALLEL COMPUTATION.

Informally speaking, a parallel computation is orga-
nized in the following way : some autonomous compu-
ting stations are connected to each other in a net-
work by communication lines. Computing stations
exchange information through these lines. A given
station computes on data coming along its input lines,

Begin
(1) Integer channel X, Y, 2, T, T2 ;
(2) Process f(integer in U,V; integer out W) ;
Begin integer 1 ; logical B ;
B := true ;
Repeat Begin

%) 1 := if B then wait(V) else wait(V) ;
) print (1) ;
(s) gend T on W ;

B =B ;

end :

3

;
Process g(integer in U ; integer out V, W) ;
Begin integer 1 ; logical B ; .
B := true ;
Repeat Begin
1 := wait (U) ;
if B then send 1 on V else send T on W ;
B :=TB ;
End ;

End ;
(3) Process h(integer in U;integer out V; integer INIT);
Begin integer 1 ;
send INIT on V ;
Repeat Begin
I := wait (V) ;
send TonV ;
End ;
End ;

Camment : body of mainprogram ;

(6) £(Y,2,X) par g(X,T1,T2) pa h(T),¥,0) par h(T2,Z,1’
End ;

Fig.l. Sample parallel program S.

Fig.2. The schema P for the program S.

...to KPNs

INFORMATION PROCESSING 74 — NORTH-HOLLAND PUBLISHING COMPANY (1974)

THE SEMANTICS OF A SIMPLE LANGUAGE FOR PARALLEL PROGRAMMING

Gilles KAHN

IRIA-Laboria, Domaine de Voluceau, 78150
Rocquencourt, France

and

Commissariat a I'Energie Atomique, France

In this paper, we describe a simple language for parallel programming. Its semantics is studied thor-

Monotonicitz means that receiving more input at
a computing station can only provoke it to send more

output. Indeed this a crucial property since it
allows parallel operation : a machine need not have

R

all of its ingut to start comggtingz ince future
lnput concerns onlz future putput.

e e— —

is line by ano-
ther process, but not! n prevent a process
from performing a send on a line.
In other words, processes communicate via first-in
first-out (fifo) queues.
Calling instances of the processes is done in the

. body of the main program at line (6) where the

actual names of the channels are bound to the formal
parameters of the processes. The infix operator par
2aipsan . e amniyan .t Ryl

fon

The kind of parallel programming.we have studied in
this paper is severely limited :
determinate programs.

DS e —— = = -

_ m:ne Cencedl motivation
- the next sections.
2. PARALLEL COMPUTATION.

Informally speaking, a parallel computation is orga-
nized in the following way : some autonomous compu-
ting stations are connected to each other in a net-
work by communication lines. Computing stations
exchange information through these lines. A given
station computes on data coming along its input lines,

Kahn, 1974

it can produce only-=

"+~ deficiencies are exhibited by this theoret-
ven. We hope in this way to make a case
f languages for systems programming and

n
‘teger channel X, Y, 2, T1, T2 ;
2cess f(integer 1in U,V; integer out W) ;
7in integer 1 ; logical B ;
B := true ;
Repeat Begin
1 := if B then wait(U) else wait(V) ;
print (1) ;
send Ton VW ;
B =3B ;
5. ;
L
88 g(integer in U ; integer out V, W) ;
7in integer I ; logical B ; .
3 i= true ;
lepeat Begin .
I := wait (U) ;
if B then send I on V else send T on W ;
B :=TMB ;
. End ;
5
88 h(integer in U;integer out V; integer INIT);
‘n integer 1 ;
:nd INIT on V ;
2peat Begin
I := watt(V) ;
send 1 onV ;
End ;
End ;

Comment : body of mainprogram ;
(6) £(Y,2,X) par g(X,T1,T2) pa h(T),¥,0) par h(T2,Z,1’
End ;
Fig.l. Sample parallel program S.

v /) ¢z
59
Tl\y‘rz,

Fig.2. The schema P for the program S.

Monotonicity enables deterministic parallelism!

Parameterizing our language: LVars

/\\\

(0, 0) (1,0) (1,1) 3

AN BN |
V4 N\

IVar Pair of IVars Counter

v—‘_

Parameterizing our language: LVars

N\

(O, O (1,0) (1,1)

V4

Pair of IVars

Parameterizing our language: LVars

N\

(O, O (1,0) (1,1)

V4

Pair of IVars

Parameterizing our language: LVars

(0, o) (0, 1 (1 0) (1,1)
(L0 (L 1) b)) (1)
etSnd ”tripv;//re

Pair of IVars

Parameterizing our language: LVars

T

0,
let _=putp {(L,4)}in
let par v; = getFst p // S
_ =putp {(3,4)} (L,0) (L,1) .. i(o, 1) (1, 1)

)
"tripwire"

I — T— Pair of IVars

Parameterizing our language: LVars

T

et _ = put p {(L,4)} in I

let par v; = getFst p // /
C=putp {(3,4)) Lo (L i) L

(O,

getSnd | "tripwire” 1 getFst
IR — — Pair of IVars
T — B ——

o

s getFst p = get p {(n,L1) | neN}

P bz
ETNOLDS BROTHER®
3

Two take-aways

Monotonicity enables deterministic parallelism

Monotonically increasing writes
+ threshold reads
= deterministic parallelism

Determinism for A\yar

0

Determinism / \
]

/ I
O —

Determinism for A\yar

Diamond O O

o

Determinism / \
]

/ I
O —

Determinism for A\yar

Diamond 0, 0y

0

“Independence” Determinism / \
* *
o

/ I
O —

Why we need Independence

To show: There exists o such that
<S3 €y €2>

a2; 6a1 602> <Sb1u5 SbQ; 6b1 652>

\c/

C

<Sa1u55

e — S

Why we need Independence

By induction hypothesis, there exist Ops O,

(S; 61> (S'; 62>

/ N\ / N\
a13 6a1> <5513 €b1> <Sa23 6a2> <5523 6[,2>

o, o,

(= <Scl; e) or error) (= (S

“

, such that

(S

)i € ‘32> or error)

| e —

To show: There exists o such that
<S§ €y €2>

<Sa1|_|5 Sag; €4, 602> <Sb1u5 Sb2; €, 6b2>

\c/

C

L — S ——

Determinism for A\yar

/N
Diamond % %
N/
OC
Independence 7
(S5 &) s (S': &) Determinism / \
(Slg S"; e) — (S g S"; ') o = o

Independence

Independence

(S5 e) — (5'; €)

<S q S,/; €> SN <S/ 5 S//; €/>

Independence

“That looks kind of like a frame rule.”
— Amal, March 2012

Independence

(S;) — (S'; €)
<S q S//; €> SN <S/ 5 S//; €/>

Independence

Frame

{p} c {4}

{pxr}ci{g*r}

Independence

(S5 e) — (5'; €)

<S q S,/; €> SN <S/ 5 S//; €/>

More In our TR

= Complete syntax and semantics
= Proof of determinism

= Subsuming existing models
= KPNs, monad-par

= Support for controlled nondeterminism

= “probation” state

LATTICE-BASED
DETERMINISTIC PARALLELISM

Thanks!
Email: kuper@cs.indiana.edu | e b
-

Twitter: @lindsey

Web: cs.indiana.edu/~lkuper
Research group:
lambda.soic.indiana.edu

/;4.‘%,,
Y 0. %>
A ";/"# l
l‘/)' L4

. “)st-'
: l” Ji'S

ll"‘e

/11114
/(/(;' |

1‘/'

e

LATTICE BASED
DETERMINISTIC PARALLELISM

