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■ A deterministic program is one that always 
produces the same observable result on 
multiple runs.

■ A deterministic-by-construction programming 
model is one that only allows deterministic 
programs to be written.
■ Examples: Kahn process networks, Intel Concurrent 

Collections, Haskell’s monad-par, ...
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A few single-assignment languages

■ Historically:
■ Compel (Tesler and Enea, 1968)

■ Id, I-Structures and IVars (Arvind et al., 1989)

■ Today:
■ Intel Concurrent Collections (Budimlić et al., 2010)
■ Specifically, Featherweight CnC

■ monad-par for Haskell (Marlow et al., 2011)
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= put l 4
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Deterministic programs that single-assignment forbids

let = put l 3 in

let par v = get l

= put l 3
in v

let par = put l (4,⊥)
= put l (⊥, 3)

in let v = get l in v
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Kahn process networks (Kahn, 1974)

hist(in(C3)): [3, 0, 5, ...] hist(out(C3)): [6, 1, 120, ...]
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Monotonicity in KPNs

f is monotonic iff x ≤ y ⟹ f(x) ≤ f(y)

3 1205 0 1 6

in(C3) out(C3)

[3] prefix-of [3, 0] ⟹[6] prefix-of [6, 1]

[3, 0] prefix-of [3, 0, 5] ⟹[6, 1] prefix-of [6, 1, 120]
...

For KPNs, the ≤ relation is just prefix-of:
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Monotonicity causes deterministic parallelism!
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Store:
l1 4
l2 3
l3 5
l4 3

let = put l1 4 in

let = put l2 3 in

let par = put l4 3
= put l3 5

in get l4

For stores, the ≤ relation is ⊆:

{l1→4, l2→3} ⊆ {l1→4, l2→3, l3→5} ⟹
{l1→4, l2→3, l4→3} ⊆ {l1→4, l2→3, l3→5, l4→3}
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Generalizing our notion of monotonicity

For stores, the ≤ relation is ⊆:

{l1→4, l2→3} ⊆ {l1→4, l2→3, l3→5} ⟹
{l1→4, l2→3, l4→3} ⊆ {l1→4, l2→3, l3→5, l4→3}

■ Given stores S and S’, we say that S ≤ S’ iff:
■ dom(S) ⊆ dom(S’), and

■  for all locations l in dom(S), S(l) = S’(l)≤ user-specified
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Idea: restrict reads to “threshold” reads

let = put l 3 in

let par v = get l 4
= put l 4

in v

let = put l 3 in

let par v = get l 4
= put l 4
= put l 5

in v

return 4



Monotonically increasing writes
+ threshold reads

= deterministic parallelism
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Parameterizing our language: “LVars”

!

"

(!, 0) (!, 1) ... (0, !) (1, !) ...

(0, 0) (0, 1) ... (1, 0) ...(1, 1)

Pair of IVars

getFst"tripwire"getSnd

let p = new in

let = put p {(⊥, 4)} in

let par v1 = getFst p

= put p {(3, 4)}
in . . . v1 . . .



Two take-aways

Monotonically increasing writes
+ threshold reads

= deterministic parallelism

Monotonicity causes deterministic parallelism
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More in our paper draft

■ Complete syntax and semantics

■ Proof of determinism
■ A “frame-rule-like” property

■ Location renaming is surprisingly tricky!

■ Subsuming existing models
■ KPNs, CnC, monad-par

■ Support for controlled nondeterminism
■ “probation” state
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