
A Lattice-Based Approach to
Deterministic Parallelism
with Shared State

Lindsey Kuper and Ryan R. Newton
Indiana University
Bloomington, Indiana, USA

Aarhus University
14 September 2012

let = put l 3 in

let par v = get l

= put l 4
in v

What do we want?

What do we want?

■ A deterministic program is one that always
produces the same observable result on
multiple runs.

What do we want?

■ A deterministic program is one that always
produces the same observable result on
multiple runs.

■ A deterministic-by-construction programming
model is one that only allows deterministic
programs to be written.

What do we want?

■ A deterministic program is one that always
produces the same observable result on
multiple runs.

■ A deterministic-by-construction programming
model is one that only allows deterministic
programs to be written.
■ Examples: Kahn process networks, Intel Concurrent

Collections, Haskell’s monad-par, ...

let = put l 3 in

let par v = get l

= put l 4
in v

let = put l 3 in

let par v = get l

= put l 4
in v

Serialize?

let = put l 3 in

let par v = get l

= put l 4
in v

Serialize?

in
let

let = put l 3 in

let par v = get l

= put l 4
in v

Serialize?

let = put l 3 in

let par v = get l

= put l 4
in v

Disallow shared state?

let = put l 3 in

let par v = get l

= put l 4
in v

Disallow shared state?

let = put l 3 in

let par v = get l

= put l 4
in v

Disallow shared state?

let = put l 3 in

let par v = get l

= put l 4
in v

Disallow multiple assignment?

let = put l 3 in

let par v = get l

= put l 4
in v

Disallow multiple assignment?

A few single-assignment languages

A few single-assignment languages

■ Historically:
■ Compel (Tesler and Enea, 1968)

A few single-assignment languages

■ Historically:
■ Compel (Tesler and Enea, 1968)

■ Id, I-Structures and IVars (Arvind et al., 1989)

A few single-assignment languages

■ Historically:
■ Compel (Tesler and Enea, 1968)

■ Id, I-Structures and IVars (Arvind et al., 1989)

■ Today:
■ Intel Concurrent Collections (Budimlić et al., 2010)
■ Specifically, Featherweight CnC

A few single-assignment languages

■ Historically:
■ Compel (Tesler and Enea, 1968)

■ Id, I-Structures and IVars (Arvind et al., 1989)

■ Today:
■ Intel Concurrent Collections (Budimlić et al., 2010)
■ Specifically, Featherweight CnC

■ monad-par for Haskell (Marlow et al., 2011)

let = put l 3 in

let par v = get l

= put l 4
in v

Disallow multiple assignment?

Deterministic programs that single-assignment forbids

let = put l 3 in

let par v = get l

= put l 3
in v

Deterministic programs that single-assignment forbids

let = put l 3 in

let par v = get l

= put l 3
in v

let par = put l (4,⊥)
= put l (⊥, 3)

in let v = get l in v

Kahn process networks (Kahn, 1974)

C
5

C
4

C
3

C
1

C
2

Kahn process networks (Kahn, 1974)

in(C3) out(C3)
C
5

C
4

C
3

C
1

C
2

Kahn process networks (Kahn, 1974)

3in(C3) out(C3)
C
5

C
4

C
3

C
1

C
2

Kahn process networks (Kahn, 1974)

3
0

in(C3) out(C3)
C
5

C
4

C
3

C
1

C
2

Kahn process networks (Kahn, 1974)

3
5

0
in(C3) out(C3)

C
5

C
4

C
3

C
1

C
2

Kahn process networks (Kahn, 1974)

3
5

0 6in(C3) out(C3)
C
5

C
4

C
3

C
1

C
2

Kahn process networks (Kahn, 1974)

3
5

0
1 6in(C3) out(C3)

C
5

C
4

C
3

C
1

C
2

Kahn process networks (Kahn, 1974)

3
120

5
0

1 6in(C3) out(C3)
C
5

C
4

C
3

C
1

C
2

Kahn process networks (Kahn, 1974)

hist(in(C3)): [3, 0, 5, ...]

3
120

5
0

1 6in(C3) out(C3)
C
5

C
4

C
3

C
1

C
2

Kahn process networks (Kahn, 1974)

hist(in(C3)): [3, 0, 5, ...] hist(out(C3)): [6, 1, 120, ...]

3
120

5
0

1 6in(C3) out(C3)
C
5

C
4

C
3

C
1

C
2

Monotonicity

Monotonicity

yx

f(y)

f(x)f(y)

f(x)
yx

Monotonicity

f is monotonic iff x ≤ y ⟹ f(x) ≤ f(y)

yx

f(y)

f(x)f(y)

f(x)
yx

Monotonicity in KPNs

f is monotonic iff x ≤ y ⟹ f(x) ≤ f(y)

C
3

C
1

C
5

Monotonicity in KPNs

f is monotonic iff x ≤ y ⟹ f(x) ≤ f(y)

in(C3) out(C3)
C
3

C
1

C
5

Monotonicity in KPNs

f is monotonic iff x ≤ y ⟹ f(x) ≤ f(y)

35 0

in(C3) out(C3)
C
3

C
1

C
5

Monotonicity in KPNs

f is monotonic iff x ≤ y ⟹ f(x) ≤ f(y)

3 1205 0 1 6

in(C3) out(C3)
C
3

C
1

C
5

Monotonicity in KPNs

f is monotonic iff x ≤ y ⟹ f(x) ≤ f(y)

3 1205 0 1 6

in(C3) out(C3)

[3] prefix-of [3, 0] ⟹[6] prefix-of [6, 1]

[3, 0] prefix-of [3, 0, 5] ⟹[6, 1] prefix-of [6, 1, 120]
...

For KPNs, the ≤ relation is just prefix-of:

C
3

C
1

C
5

Monotonicity causes deterministic parallelism!

Back to single-assignment languages

Store:let = put l1 4 in

let = put l2 3 in

let par = put l4 3
= put l3 5

in get l4

Back to single-assignment languages

Store:
l1 4

let = put l1 4 in

let = put l2 3 in

let par = put l4 3
= put l3 5

in get l4

Back to single-assignment languages

Store:
l1 4
l2 3

let = put l1 4 in

let = put l2 3 in

let par = put l4 3
= put l3 5

in get l4

Back to single-assignment languages

Store:
l1 4
l2 3
l3 5

let = put l1 4 in

let = put l2 3 in

let par = put l4 3
= put l3 5

in get l4

Back to single-assignment languages

Store:
l1 4
l2 3
l3 5
l4 3

let = put l1 4 in

let = put l2 3 in

let par = put l4 3
= put l3 5

in get l4

Back to single-assignment languages

Store:
l1 4
l2 3
l3 5
l4 3

let = put l1 4 in

let = put l2 3 in

let par = put l4 3
= put l3 5

in get l4

For stores, the ≤ relation is ⊆:

{l1→4, l2→3} ⊆ {l1→4, l2→3, l3→5} ⟹
{l1→4, l2→3, l4→3} ⊆ {l1→4, l2→3, l3→5, l4→3}

Generalizing our notion of monotonicity

For stores, the ≤ relation is ⊆:

{l1→4, l2→3} ⊆ {l1→4, l2→3, l3→5} ⟹
{l1→4, l2→3, l4→3} ⊆ {l1→4, l2→3, l3→5, l4→3}

■ Given stores S and S’, we say that S ≤ S’ iff:
■ dom(S) ⊆ dom(S’), and

■ for all locations l in dom(S), S(l) = S’(l)

Generalizing our notion of monotonicity

For stores, the ≤ relation is ⊆:

{l1→4, l2→3} ⊆ {l1→4, l2→3, l3→5} ⟹
{l1→4, l2→3, l4→3} ⊆ {l1→4, l2→3, l3→5, l4→3}

■ Given stores S and S’, we say that S ≤ S’ iff:
■ dom(S) ⊆ dom(S’), and

■ for all locations l in dom(S), S(l) = S’(l)≤ user-specified

Idea: restrict reads to “threshold” reads

let = put l 3 in

let par v = get l 4
= put l 4

in v

Idea: restrict reads to “threshold” reads

let = put l 3 in

let par v = get l 4
= put l 4

in v

Idea: restrict reads to “threshold” reads

let = put l 3 in

let par v = get l 4
= put l 4

in v

let = put l 3 in

let par v = get l 4
= put l 4
= put l 5

in v

Idea: restrict reads to “threshold” reads

let = put l 3 in

let par v = get l 4
= put l 4

in v

let = put l 3 in

let par v = get l 4
= put l 4
= put l 5

in v

Idea: restrict reads to “threshold” reads

let = put l 3 in

let par v = get l 4
= put l 4

in v

let = put l 3 in

let par v = get l 4
= put l 4
= put l 5

in v

Idea: restrict reads to “threshold” reads

let = put l 3 in

let par v = get l 4
= put l 4

in v

let = put l 3 in

let par v = get l 4
= put l 4
= put l 5

in v

return 4

Monotonically increasing writes
+ threshold reads

= deterministic parallelism

Parameterizing our language: “LVars”

!

"

0 1 2 ...

IVar

!

"

(!, 0) (!, 1) ... (0, !) (1, !) ...

(0, 0) (0, 1) ... (1, 0) ...(1, 1)

Pair of IVars

!

"

1

2

#

3

Counter

getFst"tripwire"getSnd

Parameterizing our language: “LVars”

!

"

(!, 0) (!, 1) ... (0, !) (1, !) ...

(0, 0) (0, 1) ... (1, 0) ...(1, 1)

Pair of IVars

getFst"tripwire"getSnd

Parameterizing our language: “LVars”

!

"

(!, 0) (!, 1) ... (0, !) (1, !) ...

(0, 0) (0, 1) ... (1, 0) ...(1, 1)

Pair of IVars

Parameterizing our language: “LVars”

!

"

(!, 0) (!, 1) ... (0, !) (1, !) ...

(0, 0) (0, 1) ... (1, 0) ...(1, 1)

Pair of IVars

getFst"tripwire"getSnd

Parameterizing our language: “LVars”

!

"

(!, 0) (!, 1) ... (0, !) (1, !) ...

(0, 0) (0, 1) ... (1, 0) ...(1, 1)

Pair of IVars

getFst"tripwire"getSnd

let p = new in

let = put p {(⊥, 4)} in

let par v1 = getFst p

= put p {(3, 4)}
in . . . v1 . . .

Two take-aways

Monotonically increasing writes
+ threshold reads

= deterministic parallelism

Monotonicity causes deterministic parallelism

More in our paper draft

More in our paper draft

■ Complete syntax and semantics

More in our paper draft

■ Complete syntax and semantics

■ Proof of determinism
■ A “frame-rule-like” property

■ Location renaming is surprisingly tricky!

More in our paper draft

■ Complete syntax and semantics

■ Proof of determinism
■ A “frame-rule-like” property

■ Location renaming is surprisingly tricky!

■ Subsuming existing models
■ KPNs, CnC, monad-par

More in our paper draft

■ Complete syntax and semantics

■ Proof of determinism
■ A “frame-rule-like” property

■ Location renaming is surprisingly tricky!

■ Subsuming existing models
■ KPNs, CnC, monad-par

■ Support for controlled nondeterminism
■ “probation” state

Photo by kakadu on Flickr. Thanks!

Tak!

Email:
lkuper@cs.indiana.edu
Twitter: @lindsey
Web: cs.indiana.edu/~lkuper
Research group:
lambda.cs.indiana.edu

