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p :: IO (Map Item Int)
p = do 
  cart <- newIORef empty
  a1 <- async $ atomicModifyIORef cart 
        (\c -> (insert Book 1 c, ()))
  a2 <- async $ atomicModifyIORef cart
        (\c -> (insert Shoes 1 c, ()))
  res <- async $ do waitBoth a1 a2
                    readIORef cart
  wait res

main = do v <- p
          putStr $ show $ toList v

Deterministic,
but only because we put the waits
in the right places

p :: Par Det s (IMap Item s Int)
p = do
  cart <- newEmptyMap
  fork $ insert Book 1 cart
  fork $ insert Shoes 1 cart
  return cart

main = do
  putStr $ show $ toList $
    fromIMap $ runParThenFreeze p

Deterministic by construction
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Works fine, since 4 ⊔ 4 = 4 
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Event handlers listen for events and launch callbacks in response

traverse g startNode = do
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Events are updates that change an LVar’s state
Event handlers listen for events and launch callbacks in response

traverse g startNode = do
  seen <- newEmptySet
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Events are updates that change an LVar’s state
Event handlers listen for events and launch callbacks in response

traverse g startNode = do
  seen <- newEmptySet
  h <- newHandler seen
       (\node -> do
           mapM (\v -> insert v seen)
             (neighbors g node)
           return ())
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Events are updates that change an LVar’s state
Event handlers listen for events and launch callbacks in response

traverse g startNode = do
  seen <- newEmptySet
  h <- newHandler seen
       (\node -> do
           mapM (\v -> insert v seen)
             (neighbors g node)
           return ())
  insert startNode seen
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Events are updates that change an LVar’s state
Event handlers listen for events and launch callbacks in response

quiesce blocks until all callbacks launched by a given handler are done running

traverse g startNode = do
  seen <- newEmptySet
  h <- newHandler seen
       (\node -> do
           mapM (\v -> insert v seen)
             (neighbors g node)
           return ())
  insert startNode seen
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Events are updates that change an LVar’s state
Event handlers listen for events and launch callbacks in response

quiesce blocks until all callbacks launched by a given handler are done running

traverse g startNode = do
  seen <- newEmptySet
  h <- newHandler seen
       (\node -> do
           mapM (\v -> insert v seen)
             (neighbors g node)
           return ())
  insert startNode seen
  quiesce h
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Events are updates that change an LVar’s state
Event handlers listen for events and launch callbacks in response

quiesce blocks until all callbacks launched by a given handler are done running

traverse g startNode = do
  seen <- newEmptySet
  h <- newHandler seen
       (\node -> do
           mapM (\v -> insert v seen)
             (neighbors g node)
           return ())
  insert startNode seen
  quiesce h
  ...



freeze: exact non-blocking read

traverse g startNode = do
  seen <- newEmptySet
  h <- newHandler seen
       (\node -> do
           mapM (\v -> insert v seen)
             (neighbors g node)
           return ())
  insert startNode seen
  quiesce h
  ...
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Attempts to write to a frozen LVar raise a write-after-freeze exception
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Attempts to write to a frozen LVar raise a write-after-freeze exception
Two possible outcomes: either the same final value or an exception
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  h <- newHandler seen
       (\node -> do
           mapM (\v -> insert v seen)
             (neighbors g node)
           return ())
  insert startNode seen
  quiesce h
  ...  freeze seen

tion. For instance, to instantiate a model called nat, where the
application-specific lattice is the natural numbers with max as the
least upper bound, one writes:

(define-LVish-language nat downset-op max natural)

where downset-op is separately defined. Here, downset-op and
max are Racket procedures. natural is a Redex pattern that has no
meaning to Racket proper, but because define-LVish-language
is a macro, natural is not evaluated until it is in the context of
Redex.

5. Quasi-Determinism for LVish
Our proof of quasi-determinism for LVish formalizes the claim
we make in Section 1: that, for a given program, although some
executions may raise exceptions, all executions that produce a final
result will produce the same final result.

In this section, we give the statements of the main quasi-
determinism theorem and the two most important supporting lem-
mas. The statements of the remaining lemmas, and proofs of all
our theorems and lemmas, are included in the companion technical
report [20].

5.1 Quasi-Determinism and Quasi-Confluence
Our main result, Theorem 1, says that if two executions starting
from a configuration σ terminate in configurations σ� and σ��, then
σ� and σ�� are the same configuration, or one of them is error.

Theorem 1 (Quasi-Determinism). If σ �−→∗ σ� and σ �−→∗ σ��,
and neither σ� nor σ�� can take a step, then either:

1. σ� = σ�� up to a permutation on locations π, or
2. σ� = error or σ�� = error.

Theorem 1 follows from a series of quasi-confluence lemmas.
The most important of these, Strong Local Quasi-Confluence
(Lemma 2), says that if a configuration steps to two different con-
figurations, then either there exists a single third configuration to
which they both step (in at most one step), or one of them steps to
error. Additional lemmas generalize Lemma 2’s result to multiple
steps by induction on the number of steps, eventually building up
to Theorem 1.

Lemma 2 (Strong Local Quasi-Confluence). If σ ≡ �S; e� �−→
σa and σ �−→ σb, then either:

1. there exist π, i, j and σc such that σa �−→i σc and σb �−→j

π(σc) and i ≤ 1 and j ≤ 1, or
2. σa �−→ error or σb �−→ error.

5.2 Independence
In order to show Lemma 2, we need a “frame property” for LVish
that captures the idea that independent effects commute with each
other. Lemma 3, the Independence lemma, establishes this prop-
erty. Consider an expression e that runs starting in store S and steps
to e�, updating the store to S�. The Independence lemma allows us
to make a double-edged guarantee about what will happen if we run
e starting from a larger store S �S S��: first, it will update the store
to S��S S

��; second, it will step to e� as it did before. Here S�S S
��

is the least upper bound of the original S and some other store S��

that is “framed on” to S; intuitively, S�� is the store resulting from
some other independently-running computation.

Lemma 3 (Independence). If �S; e� �−→ �S�; e�� (where �S�; e�� �=
error), then we have that:

�S �S S��; e� �−→ �S� �S S��; e��,
where S�� is any store meeting the following conditions:

• S�� is non-conflicting with �S; e� �−→ �S�; e��,

• S� �S S�� =frz S, and
• S� �S S�� �= �S .

Lemma 3 requires as a precondition that the stores S� �S S�� and
S are equal in status—that, for all the locations shared between
them, the status bits of those locations agree. This assumption
rules out interference from freezing. Finally, the store S�� must be
non-conflicting with the original transition from �S; e� to �S�; e��,
meaning that locations in S�� cannot share names with locations
newly allocated during the transition; this rules out location name
conflicts caused by allocation.

Definition 4. Two stores S and S� are equal in status (written
S =frz S

�) iff for all l ∈ (dom(S) ∩ dom(S�)),
if S(l) = (d, frz ) and S�(l) = (d�, frz �), then frz = frz �.

Definition 5. A store S�� is non-conflicting with the transition
�S; e� �−→ �S�; e�� iff (dom(S�)− dom(S)) ∩ dom(S��) = ∅.

6. Implementation
We have constructed a prototype implementation of LVish as a
monadic library in Haskell, which is available at

http://hackage.haskell.org/package/lvish

Our library adopts the basic approach of the Par monad [24],
enabling us to employ our own notion of lightweight, library-
level threads with a custom scheduler. It supports the program-
ming model laid out in Section 3 in full, including explicit han-
dler pools. It differs from our formal model in following Haskell’s
by-need evaluation strategy, which also means that concurrency in
the library is explicitly marked, either through uses of a fork func-
tion or through asynchronous callbacks, which run in their own
lightweight thread.

Implementing LVish as a Haskell library makes it possible to
provide compile-time guarantees about determinism and quasi-
determinism, because programs written using our library run in our
Par monad and can therefore only perform LVish-sanctioned side
effects. We take advantage of this fact by indexing Par computa-
tions with a phantom type that indicates their determinism level:

data Determinism = Det | QuasiDet

The Par type constructor has the following kind:8

Par :: Determinism → ∗ → ∗
together with the following suite of run functions:

runPar :: Par Det a → a

runParIO :: Par lvl a → IO a

runParThenFreeze :: DeepFrz a ⇒ Par Det a → FrzType a

The public library API ensures that if code uses freeze, it is marked
as QuasiDet; thus, code that types as Det is guaranteed to be fully
deterministic. While LVish code with an arbitrary determinism
level lvl can be executed in the IO monad using runParIO, only Det

code can be executed as if it were pure, since it is guaranteed to be
free of visible side effects of nondeterminism. In the common case
that freeze is only needed at the end of an otherwise-deterministic
computation, runParThenFreeze runs the computation to comple-
tion, and then freezes the returned LVar, returning its exact value—
and is guaranteed to be deterministic.9

8 We are here using the DataKinds extension to Haskell to treat
Determinism as a kind. In the full implementation, we include a second
phantom type parameter to ensure that LVars cannot be used in multiple runs
of the Par monad, in a manner analogous to how the ST monad prevents an
STRef from being returned from runST.
9 The DeepFrz typeclass is used to perform freezing of nested LVars,
producing values of frozen type (as given by the FrzType type function).



freeze: exact non-blocking read

Attempts to write to a frozen LVar raise a write-after-freeze exception
Two possible outcomes: either the same final value or an exception

traverse g startNode = do
  seen <- newEmptySet
  h <- newHandler seen
       (\node -> do
           mapM (\v -> insert v seen)
             (neighbors g node)
           return ())
  insert startNode seen
  quiesce h
  ...  freeze seen

tion. For instance, to instantiate a model called nat, where the
application-specific lattice is the natural numbers with max as the
least upper bound, one writes:

(define-LVish-language nat downset-op max natural)

where downset-op is separately defined. Here, downset-op and
max are Racket procedures. natural is a Redex pattern that has no
meaning to Racket proper, but because define-LVish-language
is a macro, natural is not evaluated until it is in the context of
Redex.

5. Quasi-Determinism for LVish
Our proof of quasi-determinism for LVish formalizes the claim
we make in Section 1: that, for a given program, although some
executions may raise exceptions, all executions that produce a final
result will produce the same final result.

In this section, we give the statements of the main quasi-
determinism theorem and the two most important supporting lem-
mas. The statements of the remaining lemmas, and proofs of all
our theorems and lemmas, are included in the companion technical
report [20].

5.1 Quasi-Determinism and Quasi-Confluence
Our main result, Theorem 1, says that if two executions starting
from a configuration σ terminate in configurations σ� and σ��, then
σ� and σ�� are the same configuration, or one of them is error.

Theorem 1 (Quasi-Determinism). If σ �−→∗ σ� and σ �−→∗ σ��,
and neither σ� nor σ�� can take a step, then either:

1. σ� = σ�� up to a permutation on locations π, or
2. σ� = error or σ�� = error.

Theorem 1 follows from a series of quasi-confluence lemmas.
The most important of these, Strong Local Quasi-Confluence
(Lemma 2), says that if a configuration steps to two different con-
figurations, then either there exists a single third configuration to
which they both step (in at most one step), or one of them steps to
error. Additional lemmas generalize Lemma 2’s result to multiple
steps by induction on the number of steps, eventually building up
to Theorem 1.

Lemma 2 (Strong Local Quasi-Confluence). If σ ≡ �S; e� �−→
σa and σ �−→ σb, then either:

1. there exist π, i, j and σc such that σa �−→i σc and σb �−→j

π(σc) and i ≤ 1 and j ≤ 1, or
2. σa �−→ error or σb �−→ error.

5.2 Independence
In order to show Lemma 2, we need a “frame property” for LVish
that captures the idea that independent effects commute with each
other. Lemma 3, the Independence lemma, establishes this prop-
erty. Consider an expression e that runs starting in store S and steps
to e�, updating the store to S�. The Independence lemma allows us
to make a double-edged guarantee about what will happen if we run
e starting from a larger store S �S S��: first, it will update the store
to S��S S

��; second, it will step to e� as it did before. Here S�S S
��

is the least upper bound of the original S and some other store S��

that is “framed on” to S; intuitively, S�� is the store resulting from
some other independently-running computation.

Lemma 3 (Independence). If �S; e� �−→ �S�; e�� (where �S�; e�� �=
error), then we have that:

�S �S S��; e� �−→ �S� �S S��; e��,
where S�� is any store meeting the following conditions:

• S�� is non-conflicting with �S; e� �−→ �S�; e��,

• S� �S S�� =frz S, and
• S� �S S�� �= �S .

Lemma 3 requires as a precondition that the stores S� �S S�� and
S are equal in status—that, for all the locations shared between
them, the status bits of those locations agree. This assumption
rules out interference from freezing. Finally, the store S�� must be
non-conflicting with the original transition from �S; e� to �S�; e��,
meaning that locations in S�� cannot share names with locations
newly allocated during the transition; this rules out location name
conflicts caused by allocation.

Definition 4. Two stores S and S� are equal in status (written
S =frz S

�) iff for all l ∈ (dom(S) ∩ dom(S�)),
if S(l) = (d, frz ) and S�(l) = (d�, frz �), then frz = frz �.

Definition 5. A store S�� is non-conflicting with the transition
�S; e� �−→ �S�; e�� iff (dom(S�)− dom(S)) ∩ dom(S��) = ∅.

6. Implementation
We have constructed a prototype implementation of LVish as a
monadic library in Haskell, which is available at

http://hackage.haskell.org/package/lvish

Our library adopts the basic approach of the Par monad [24],
enabling us to employ our own notion of lightweight, library-
level threads with a custom scheduler. It supports the program-
ming model laid out in Section 3 in full, including explicit han-
dler pools. It differs from our formal model in following Haskell’s
by-need evaluation strategy, which also means that concurrency in
the library is explicitly marked, either through uses of a fork func-
tion or through asynchronous callbacks, which run in their own
lightweight thread.

Implementing LVish as a Haskell library makes it possible to
provide compile-time guarantees about determinism and quasi-
determinism, because programs written using our library run in our
Par monad and can therefore only perform LVish-sanctioned side
effects. We take advantage of this fact by indexing Par computa-
tions with a phantom type that indicates their determinism level:

data Determinism = Det | QuasiDet

The Par type constructor has the following kind:8

Par :: Determinism → ∗ → ∗
together with the following suite of run functions:

runPar :: Par Det a → a

runParIO :: Par lvl a → IO a

runParThenFreeze :: DeepFrz a ⇒ Par Det a → FrzType a

The public library API ensures that if code uses freeze, it is marked
as QuasiDet; thus, code that types as Det is guaranteed to be fully
deterministic. While LVish code with an arbitrary determinism
level lvl can be executed in the IO monad using runParIO, only Det

code can be executed as if it were pure, since it is guaranteed to be
free of visible side effects of nondeterminism. In the common case
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• S� �S S�� �= �S .

Lemma 3 requires as a precondition that the stores S� �S S�� and
S are equal in status—that, for all the locations shared between
them, the status bits of those locations agree. This assumption
rules out interference from freezing. Finally, the store S�� must be
non-conflicting with the original transition from �S; e� to �S�; e��,
meaning that locations in S�� cannot share names with locations
newly allocated during the transition; this rules out location name
conflicts caused by allocation.

Definition 4. Two stores S and S� are equal in status (written
S =frz S

�) iff for all l ∈ (dom(S) ∩ dom(S�)),
if S(l) = (d, frz ) and S�(l) = (d�, frz �), then frz = frz �.

Definition 5. A store S�� is non-conflicting with the transition
�S; e� �−→ �S�; e�� iff (dom(S�)− dom(S)) ∩ dom(S��) = ∅.

6. Implementation
We have constructed a prototype implementation of LVish as a
monadic library in Haskell, which is available at

http://hackage.haskell.org/package/lvish

Our library adopts the basic approach of the Par monad [24],
enabling us to employ our own notion of lightweight, library-
level threads with a custom scheduler. It supports the program-
ming model laid out in Section 3 in full, including explicit han-
dler pools. It differs from our formal model in following Haskell’s
by-need evaluation strategy, which also means that concurrency in
the library is explicitly marked, either through uses of a fork func-
tion or through asynchronous callbacks, which run in their own
lightweight thread.

Implementing LVish as a Haskell library makes it possible to
provide compile-time guarantees about determinism and quasi-
determinism, because programs written using our library run in our
Par monad and can therefore only perform LVish-sanctioned side
effects. We take advantage of this fact by indexing Par computa-
tions with a phantom type that indicates their determinism level:

data Determinism = Det | QuasiDet

The Par type constructor has the following kind:8

Par :: Determinism → ∗ → ∗
together with the following suite of run functions:

runPar :: Par Det a → a

runParIO :: Par lvl a → IO a

runParThenFreeze :: DeepFrz a ⇒ Par Det a → FrzType a

The public library API ensures that if code uses freeze, it is marked
as QuasiDet; thus, code that types as Det is guaranteed to be fully
deterministic. While LVish code with an arbitrary determinism
level lvl can be executed in the IO monad using runParIO, only Det

code can be executed as if it were pure, since it is guaranteed to be
free of visible side effects of nondeterminism. In the common case
that freeze is only needed at the end of an otherwise-deterministic
computation, runParThenFreeze runs the computation to comple-
tion, and then freezes the returned LVar, returning its exact value—
and is guaranteed to be deterministic.9

8 We are here using the DataKinds extension to Haskell to treat
Determinism as a kind. In the full implementation, we include a second
phantom type parameter to ensure that LVars cannot be used in multiple runs
of the Par monad, in a manner analogous to how the ST monad prevents an
STRef from being returned from runST.
9 The DeepFrz typeclass is used to perform freezing of nested LVars,
producing values of frozen type (as given by the FrzType type function).
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Two possible outcomes: either the same final value or an exception

traverse g startNode = do
  seen <- newEmptySet
  h <- newHandler seen
       (\node -> do
           mapM (\v -> insert v seen)
             (neighbors g node)
           return ())
  insert startNode seen
  quiesce h
  ...  freeze seen

tion. For instance, to instantiate a model called nat, where the
application-specific lattice is the natural numbers with max as the
least upper bound, one writes:

(define-LVish-language nat downset-op max natural)

where downset-op is separately defined. Here, downset-op and
max are Racket procedures. natural is a Redex pattern that has no
meaning to Racket proper, but because define-LVish-language
is a macro, natural is not evaluated until it is in the context of
Redex.

5. Quasi-Determinism for LVish
Our proof of quasi-determinism for LVish formalizes the claim
we make in Section 1: that, for a given program, although some
executions may raise exceptions, all executions that produce a final
result will produce the same final result.

In this section, we give the statements of the main quasi-
determinism theorem and the two most important supporting lem-
mas. The statements of the remaining lemmas, and proofs of all
our theorems and lemmas, are included in the companion technical
report [20].

5.1 Quasi-Determinism and Quasi-Confluence
Our main result, Theorem 1, says that if two executions starting
from a configuration σ terminate in configurations σ� and σ��, then
σ� and σ�� are the same configuration, or one of them is error.

Theorem 1 (Quasi-Determinism). If σ �−→∗ σ� and σ �−→∗ σ��,
and neither σ� nor σ�� can take a step, then either:

1. σ� = σ�� up to a permutation on locations π, or
2. σ� = error or σ�� = error.

Theorem 1 follows from a series of quasi-confluence lemmas.
The most important of these, Strong Local Quasi-Confluence
(Lemma 2), says that if a configuration steps to two different con-
figurations, then either there exists a single third configuration to
which they both step (in at most one step), or one of them steps to
error. Additional lemmas generalize Lemma 2’s result to multiple
steps by induction on the number of steps, eventually building up
to Theorem 1.

Lemma 2 (Strong Local Quasi-Confluence). If σ ≡ �S; e� �−→
σa and σ �−→ σb, then either:

1. there exist π, i, j and σc such that σa �−→i σc and σb �−→j

π(σc) and i ≤ 1 and j ≤ 1, or
2. σa �−→ error or σb �−→ error.

5.2 Independence
In order to show Lemma 2, we need a “frame property” for LVish
that captures the idea that independent effects commute with each
other. Lemma 3, the Independence lemma, establishes this prop-
erty. Consider an expression e that runs starting in store S and steps
to e�, updating the store to S�. The Independence lemma allows us
to make a double-edged guarantee about what will happen if we run
e starting from a larger store S �S S��: first, it will update the store
to S��S S

��; second, it will step to e� as it did before. Here S�S S
��

is the least upper bound of the original S and some other store S��

that is “framed on” to S; intuitively, S�� is the store resulting from
some other independently-running computation.

Lemma 3 (Independence). If �S; e� �−→ �S�; e�� (where �S�; e�� �=
error), then we have that:

�S �S S��; e� �−→ �S� �S S��; e��,
where S�� is any store meeting the following conditions:

• S�� is non-conflicting with �S; e� �−→ �S�; e��,

• S� �S S�� =frz S, and
• S� �S S�� �= �S .

Lemma 3 requires as a precondition that the stores S� �S S�� and
S are equal in status—that, for all the locations shared between
them, the status bits of those locations agree. This assumption
rules out interference from freezing. Finally, the store S�� must be
non-conflicting with the original transition from �S; e� to �S�; e��,
meaning that locations in S�� cannot share names with locations
newly allocated during the transition; this rules out location name
conflicts caused by allocation.

Definition 4. Two stores S and S� are equal in status (written
S =frz S

�) iff for all l ∈ (dom(S) ∩ dom(S�)),
if S(l) = (d, frz ) and S�(l) = (d�, frz �), then frz = frz �.

Definition 5. A store S�� is non-conflicting with the transition
�S; e� �−→ �S�; e�� iff (dom(S�)− dom(S)) ∩ dom(S��) = ∅.

6. Implementation
We have constructed a prototype implementation of LVish as a
monadic library in Haskell, which is available at

http://hackage.haskell.org/package/lvish

Our library adopts the basic approach of the Par monad [24],
enabling us to employ our own notion of lightweight, library-
level threads with a custom scheduler. It supports the program-
ming model laid out in Section 3 in full, including explicit han-
dler pools. It differs from our formal model in following Haskell’s
by-need evaluation strategy, which also means that concurrency in
the library is explicitly marked, either through uses of a fork func-
tion or through asynchronous callbacks, which run in their own
lightweight thread.

Implementing LVish as a Haskell library makes it possible to
provide compile-time guarantees about determinism and quasi-
determinism, because programs written using our library run in our
Par monad and can therefore only perform LVish-sanctioned side
effects. We take advantage of this fact by indexing Par computa-
tions with a phantom type that indicates their determinism level:

data Determinism = Det | QuasiDet

The Par type constructor has the following kind:8

Par :: Determinism → ∗ → ∗
together with the following suite of run functions:

runPar :: Par Det a → a

runParIO :: Par lvl a → IO a

runParThenFreeze :: DeepFrz a ⇒ Par Det a → FrzType a

The public library API ensures that if code uses freeze, it is marked
as QuasiDet; thus, code that types as Det is guaranteed to be fully
deterministic. While LVish code with an arbitrary determinism
level lvl can be executed in the IO monad using runParIO, only Det

code can be executed as if it were pure, since it is guaranteed to be
free of visible side effects of nondeterminism. In the common case
that freeze is only needed at the end of an otherwise-deterministic
computation, runParThenFreeze runs the computation to comple-
tion, and then freezes the returned LVar, returning its exact value—
and is guaranteed to be deterministic.9

8 We are here using the DataKinds extension to Haskell to treat
Determinism as a kind. In the full implementation, we include a second
phantom type parameter to ensure that LVars cannot be used in multiple runs
of the Par monad, in a manner analogous to how the ST monad prevents an
STRef from being returned from runST.
9 The DeepFrz typeclass is used to perform freezing of nested LVars,
producing values of frozen type (as given by the FrzType type function).

or error.
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Figure 6. Parallel speedup for the “blur” and “notChain” bench-
marks. Speedup is normalized to the sequential times for the
lock-free versions (5.21s and 9.83s, respectively). The normalized
speedups are remarkably consistent for the lock-free version be-
tween the two benchmarks. But the relationship to the original,
purely functional version is quite different: at 12 cores, the lock-
free LVish version of “blur” is 202× faster than the original, while
“notChain” is only 1.6× faster, not gaining anything from sharing
rather than copying stores due to a lack of fan-out in the state graph.

Our scalable implementation is not yet carefully optimized, and at
one and two cores, our lock-free k-CFA is 38% to 43% slower
than the reference implementation on the “blur” benchmark. But
the effect of scalable data structures is quite visible on a 12-core
machine.17 Without them, “blur” (replicated 8×) stops scaling and
begins slowing down slightly after four cores. Even at four cores,
variance is high in the reference implementation (min/max 0.96s /
1.71s over 7 runs). With lock-free structures, by contrast, perfor-
mance steadily improves to a speedup of 8.14× on 12 cores (0.64s
at 67% GC productivity). Part of the benefit of LVish is to allow
purely functional programs to make use of lock-free structures, in
much the same way that the ST monad allows access to efficient
in-place array computations.

8. Related Work
Monotonic data structures: traditional approaches LVish builds
on two long traditions of work on parallel programming models
based on monotonically-growing shared data structures:
• In Kahn process networks (KPNs) [18], as well as in the more

restricted synchronous data flow systems [21], a network of pro-
cesses communicate with each other through blocking FIFO
channels with ever-growing channel histories. Each process
computes a sequential, monotonic function from the history of
its inputs to the history of its outputs, enabling pipeline paral-
lelism. KPNs are the basis for deterministic stream-processing
languages such as StreamIt [16].

• In parallel single-assignment languages [32], “full/empty” bits
are associated with heap locations so that they may be written
to at most once. Single-assignment locations with blocking read
semantics—that is, IVars [1]—have appeared in Concurrent ML
as SyncVars [30]; in the Intel Concurrent Collections system
[7]; in languages and libraries for high-performance computing,
such as Chapel [9] and the Qthreads library [33]; and have even

to Haskell’s laziness and the GHC compiler’s assumptions regarding refer-
ential transparency. But we lack the space to detail these improvements.
17 Intel Xeon 5660; full machine details available at https://portal.
futuregrid.org/hardware/delta.

been implemented in hardware in Cray MTA machines [3].
Although most of these uses incorporate IVars into already-
nondeterministic programming environments, Haskell’s Par

monad [24]—on which our LVish implementation is based—
uses IVars in a deterministic-by-construction setting, allowing
user-created threads to communicate through IVars without re-
quiring IO, so that such communication can occur anywhere
inside pure programs.

LVars are general enough to subsume both IVars and KPNs: a
lattice of channel histories with a prefix ordering allows LVars to
represent FIFO channels that implement a Kahn process network,
whereas an LVar with “empty” and “full” states (where empty <
full ) behaves like an IVar, as we described in Section 2. Hence
LVars provide a framework for generalizing and unifying these two
existing approaches to deterministic parallelism.

Deterministic Parallel Java (DPJ) DPJ [4, 5] is a deterministic
language consisting of a system of annotations for Java code. A so-
phisticated region-based type system ensures that a mutable region
of the heap is, essentially, passed linearly to an exclusive writer,
thereby ensuring that the state accessed by concurrent threads is
disjoint. DPJ does, however, provide a way to unsafely assert that
operations commute with one another (using the commuteswith

form) to enable concurrent mutation.
LVish differs from DPJ in that it allows overlapping shared state

between threads as the default. Moreover, since LVar effects are
already commutative, we avoid the need for commuteswith anno-
tations. Finally, it is worth noting that while in DPJ, commutativ-
ity annotations have to appear in application-level code, in LVish
only the data-structure author needs to write trusted code. The ap-
plication programmer can run untrusted code that still enjoys a
(quasi-)determinism guarantee, because only (quasi-)deterministic
programs can be expressed as LVish Par computations.

More recently, Bocchino et al. [6] proposed a type and ef-
fect system that allows for the incorporation of nondeterminis-
tic sections of code in DPJ. The goal here is different from ours:
while they aim to support intentionally nondeterministic computa-
tions such as those arising from optimization problems like branch-
and-bound search, LVish’s quasi-determinism arises as a result of
schedule nondeterminism.

FlowPools Prokopec et al. [29] recently proposed a data structure
with an API closely related to ideas in LVish: a FlowPool is a bag
that allows concurrent insertions but forbids removals, a seal op-
eration that forbids further updates, and combinators like foreach
that invoke callbacks as data arrives in the pool. To retain deter-
minism, the seal operation requires explicitly passing the expected
bag size as an argument, and the program will raise an exception if
the bag goes over the expected size.

While this interface has a flavor similar to LVish, it lacks the
ability to detect quiescence, which is crucial for supporting exam-
ples like graph traversal, and the seal operation is awkward to
use when the structure of data is not known in advance. By con-
trast, our freeze operation is more expressive and convenient, but
moves the model into the realm of quasi-determinism. Another im-
portant difference is the fact that LVish is data structure-generic:
both our formalism and our library support an unlimited collection
of data structures, whereas FlowPools are specialized to bags. Nev-
ertheless, FlowPools represent a “sweet spot” in the deterministic
parallel design space: by allowing handlers but not general freez-
ing, they retain determinism while improving on the expressivity
of the original LVars model. We claim that, with our addition of
handlers, LVish generalizes FlowPools to add support for arbitrary
lattice-based data structures.
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