P e\

¥

» - N -y |3 et NS ¥ - W A
AT - A N Ry 3 M < oy
. : AN Ay, - T AT T v ey N :
g . . 4 N : R il N0 - " N - . @
' . P - e : - S e - g
- . . e =8 Tt oY o - . 2 f
A" . AN P ol .y .
. p . Low L - > f > >
R W . " w " - a
e 5 -~ -

Quasi-Deterministic
Parallel Programming with LVars

Lindsey Kuper
Aaron Turon
Neelakantan R. Krishnaswami

Ryan R. Newton

Freeze After Writing

8 | Vars

8 Quasl-Deterministic
Parallel Programming

‘\ f\\

\

\

\ \ X X Y XY A A A R
AR ¢ ¢ ¢ 6 VNN NIN/NYNY Y,
O & O QXN NNNININ A2,
OSSO OO OO ISNISON NN
OO OO0 SONNNN
\ N\ OO NN
Y 070766767Y,
\ O OSNNNNNNG

data Item = Book | Shoes | ...
deriving (Show, Ord, Eq)

o 6 6 6 & NNINININIA,
O 6 6 6 oNNONINININYANY Y,
& 6 O NNNNINN 2,7,
& O XN NN D aa",Y
OO OO O N INOSONNN
O OO NSNS NN
OO NS NNNN
O OSSN

o o

data Item = Book | Shoes |
deriving (Show, Ord, Eq)

p :: IO (Map Item Int)

INAARR R,

O 6 6 6 oNNONINININYANY Y,
& 6 O NNNNINN 2,7,
& O XN NN D aa",Y
OO OO O N ISISONNNY
O OO OSSN N
OO SN NNNN
OO OSNNNNNNY

o o

data Item = Book | Shoes | ...
deriving (Show, Ord, Eq)

:: IO (Map Item Int)
do cart <- newIORef empty

S
P

.\\

N\ N\

\ '\
\
— — \‘/////////////
\(/////////////
AR\ ¢ ¢ oXNVNININININAY Y,
\ RSO OO O NSO NN
\ YOO OO A A NISNNINS

O OO OSSN N
OO IS INOSONMNNNYNY
//////////

data Item = Book | Shoes | ..
deriving (Show, Ord, Eq)

p ¢:: IO (Map Item Int)
P do cart <- newIORef empty

Introduction to
Lattices and Order

Segond Edition

B.A. Davey
H.A. Priestley

VO 6 & 6 & 07NN,
X X XSO OO N NN
& & XN N7,
XSO OO O NN N
OO OO OISO
OGO NN Y YN
OO SN NN

O O SIONNONNNNNY

data Item = Book | Shoes | ..
deriving (Show, Ord, Eq)

:: IO (Map Item Int)
do cart <- newIORef empty

p
p

x

%%%@ij}%x
XXX Y
"5»;‘00/////

5 d 4744
%QC 6‘6’5 (NN //

data Item = Book | Shoes | ...
deriving (Show, Ord, Eq)

:: IO (Map Item Int)
do cart <- newIORef empty
async $ atomicModifyIORef cart
(\m -> (insert Book 1 m, ()))

S
P

-

\\ AARA AN
\ X /%{%@i‘?””///@//////
\ ///}Q’Q‘Q“‘ ¢ (//////////
) e 4}‘@’@’/ 2746747
\\ ¢ éé,‘(‘.’ ’(/////// /
\ «65‘6'6‘0% AARAX

o o

data Item = Book | Shoes | ...
deriving (Show, Ord, Eq)

:: IO (Map Item Int)
do cart <- newIORef empty
async $ atomicModifyIORef cart
(\m -> (insert Book 1 m, ()))

S
P

\ x / / / ,
\ \ 2@?@3@3‘:’:’ IR :///
0\‘§<\Q¢’$’/ ///////'

‘é»! ‘/////
6467477
ACCCA/////

data Item = Book | Shoes | ...
deriving (Show, Ord, Eq)
p ¢:: IO (Map Item Int)
p = do cart <- newIORef empty
async $ atomicModifyIORef cart
(\m -> (insert Book 1 m, ()))
.f\
T — E— N OO0

\natateded
\ /Q’QQQ’/ OSONN
OO0 4
\\(9h 88 006 000
\ fﬁ‘ 30000006

o o

data Item = Book | Shoes | ...
deriving (Show, Ord, Eq)

:: IO (Map Item Int)
do cart <- newIORef empty
async $ atomicModifyIORef cart
(\m -> (insert Book 1 m, ()))
async $ atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ()))

S
P

Ve

SASA A AN 4
OO

/
///ﬁ’@‘é““”(///////////
VOO0 TS
OO %
\\ ("6@’“"“/‘ < 64
k\\ Qw‘690"\6966946’}/‘ ‘/ { l

q/: ,

data Item = Book | Shoes | ...
deriving (Show, Ord, Eq)

:: IO (Map Item Int)
do cart <- newIORef empty
async $ atomicModifyIORef cart
(\m -> (insert Book 1 m, ()))
async $ atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ()))
res <- async $ readIORef cart

S
P

-

NAININNS

,////){"éﬁ‘?’ XD

/}0,\0%‘@’6’/ 276 6 &4l
AV E S ¢
MAANKXAR XIS

o o

data Item = Book | Shoes | ...
deriving (Show, Ord, Eq)

p ¢:: IO (Map Item Int)
p = do cart <- newIORef empty
async $ atomicModifyIORef cart
(\m -> (insert Book 1 m, ()))
async $ atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ()))
res <- async $ readIORef cart
wait res
T — T ———

-

V4 //}v@@vﬁ‘"@"'/ NGOV o4

///}:‘f’QQ’Q“’(:/:/i/:/;//
/}0,\0%‘@»’@’/ 276 6 &4l
OO TS 4
\ ?jAQ.‘v“Qééé‘Q‘Qf AN

g/: :

e MO Terminal — bash — 90x27

| bash |

landin:lvar-examples lkuper$ make map-ioref-data-race

ghc -02 map-ioref-data-race.hs -rtsopts -threaded

[1 of 1] Compiling Main (map-ioref-data-race.hs, map-ioref-data-race.o)
Linking map-ioref-data-race ...

while true; do ./map-ioref-data-race +RTS -N2; done
[(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes,1)][(Book,1
), (Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1
)1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1
), (Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1
)1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1
), (Shoes,1)][(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes
,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Boo
k,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Sho
es,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Bo
ok,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(B
ook,1),(Shoes,1)][(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(
Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][
(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]
[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),
(Shoes,1)][(Book,1),(Shoes,1)][(Book,1)]1[(Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)
1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1)][(Book,1),(Shoes,1)
1[(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes
,1)1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book |§
,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Boo E
k,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe §

e MO Terminal — bash — 90x27

| bash |

landin:lvar-examples lkuper$ make map-ioref-data-race .
ghc -02 map-ioref-data-race.hs -rtsopts -threaded
[1 of 1] Compiling Main (map-ioref-data-race.hs, map-ioref-data-race.o)
L1nk1ng map-1oref -data-race ...
man_ioref-data-race +RTS -N2; done
(Book 1), (Shoes 1)]1R(Shoes,1)][(Book,1), (Shoes 1)]1[(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1
500K, 1), (Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1

)][(Book 1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1
), (Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1
)1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1
), (Shoes,1)][(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes
,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Boo
k,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Sho
es,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Bo
ok,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(B
ook,1),(Shoes,1)][(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(
Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][
(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]
[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),
(Shoes,1)][(Book,1),(Shoes,1)][(Book,1)]1[(Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)
1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1)][(Book,1),(Shoes,1)
1[(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes
,1)1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book [§
,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Boo E
k,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe §

oM O Terminal — bash — 90x27

| bash |
landin:lvar-examples lkuper$ make map-ioref-data-race .
ghc -02 map-ioref-data-race.hs -rtsopts -threaded

[1 of 1] Compiling Main (map-ioref-data-race.hs, map-ioref-data-race.o)
L1nk1ng map-1oref -data-race ...

man.1nraf t'|n+n_rlace +RTS _NZ donn
(Book 1), (Shoes 1) B(Shoes,1)]! (Book,1), (Shoes 1) [(Shoes,1)]l (Book,1),(Shoes,1)]1[(Book,1
SOUK , L), onves, 1) | [(Book,1),(Shoes, 1, (buuK, L), Shoes,1)][(Book,1),(Shoes,1

)][(Book 1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1
), (Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1
)1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1
), (Shoes,1)][(Shoes,1)][CRaok 11 (Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes
,1)]1[(Book,1),(Shoes,1) [(Shoes,1)] (Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1)]\ buuK, L), Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Boo
k,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Sho
es,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Bo
ok,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(B
ook,1),(Shoes,1)][(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(
Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][
(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]
[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),
(Shoes,1)][(Book,1),(Shoes,1)][(Book,1)]1[(Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)
ALCRaok 17 (Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1)][(Book,1),(Shoes,1)
" [(Shoes,1)] (Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes
»LJJL\DUUK, 1/, (Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1) CShoas ANIT(Book [i§
,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1) [(Shoes,1)] (Boo E
k,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1) \ booUR, L), Shoe ¥

oM O Terminal — bash — 90x27

| bash |
landin:lvar-examples lkuper$ make map-ioref-data-race .
ghc -02 map-ioref-data-race.hs -rtsopts -threaded

[1 of 1] Compiling Main (map-ioref-data-race.hs, map-ioref-data-race.o)
L1nk1ng map-1oref -data-race ...

man.1nraf t'|n+n_rlace +RTS _NZ donn
(Book 1), (Shoes 1) B(Shoes,1)]! (Book,1), (Shoes 1) [(Shoes,1)]l (Book,1),(Shoes,1)]1[(Book,1
SOUK , L), onves, 1) | [(Book,1),(Shoes, 1, (buuK, L), Shoes,1)][(Book,1),(Shoes,1

)][(Book 1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1
), (Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1
)1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1
), (Shoes,1)][(Shoes,1)][CRaok 11 (Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes
,1)]1[(Book,1),(Shoes,1) [(Shoes,1)] (Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1)]\ buuK, L), Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Boo
k,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Sho
es,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Bo
ok,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(B
ook,1),(Shoes,1)][(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(
Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][
(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]
[(Book,1),(Shoes,1)]1[(Book,1) LShae (Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),
(Shoes,1)][(Book,1),(Shoes,1)§[(Book,1)]R8 (Book,1),(Shoes,1)]LLShas (Book,1),(Shoes,1)
ALCRaok 17 (Shoes,1)][(Book,1),Csrnoes,)] [(Book,1),(Shoes,1)R[(Book,1)]8(Book,1),(Shoes,1)
" [(Shoes,1)] (Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Book;L), oes, 1)]1[(Book,1),(Shoes
»LJJL\DUUK, 1/, (Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1) CShoas ANIT(Book [i§
,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1) [(Shoes,1)] (Boo E
k,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1) \ booUR, L), Shoe ¥

data Item = Book | Shoes | ...
deriving (Show, Ord, Eq)

p :: IO (Map Item Int)
P do cart <- newIORef empty
async $ atomicModifyIORef cart
(\m -> (insert Book 1 m, ()))
async $ atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ()))
res <- async $ readIORef cart

walt res -
-
T — T ————————= \ NN Y X /
R
ARG

« INCN(N a4 4

‘ (’0:6:‘%:\0?‘*% $4°¢ ¢ \
) - ¢ & |
\}* ARAAAARAY

g/: :

data Item = Book | Shoes | ...
deriving (Show, Ord, Eq)

:: IO (Map Item Int)
do cart <- newIORef empty
async $ atomicModifyIORef cart
(\m -> (insert Book 1 m, ()))
async $ atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ()))
res <- async $ readIORef cart
walit res

S
P

WAANAARRRN
XX
\ ’0’0‘&0’9’9{ OXRXX

OO %
-\ ("6,\’Q$:‘f’./\ XSA4

OO0

\ Vo W
\\\ ATATY R SAMAT T/

g/: ,

data Item = Book | Shoes | ...
deriving (Show, Ord, Eq)

:: IO (Map Item Int)
do cart <- newIORef empty
al <- async $ atomicModifyIORef cart
(\m -> (insert Book 1 m, ()))
async $ atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ()))
res <- async $ readIORef cart
walit res

S
P

WAANAARRRN
XX
\ ’0’0‘&0’9’9{ OXRXX

OO %
-\ ("6,\’Q$:‘f’./\ XSA4

OO0

\ Vo W
\\\ ATATY R SAMAT T/

g/: ,

data Item = Book | Shoes | ...
deriving (Show, Ord, Eq)

:: IO (Map Item Int)
do cart <- newIORef empty
al <- async $ atomicModifyIORef cart
(\m -> (insert Book 1 m, ()))
a2 <- async $ atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ()))
res <- async $ readIORef cart
walit res

S
P

WANIANA RN 4
XX
\ ’0’0‘&0’9’9{ OXRXX

OO %
-\ ‘«_’é‘éi’f"Agg L

A

\ Vo W
\\\ ATATY R SAMAT T/

g/: ,

data Item = Book | Shoes | ...
deriving (Show, Ord, Eq)

p ¢:: IO (Map Item Int)
p = do cart <- newIORef empty
al <- async $ atomicModifyIORef cart
(\m -> (insert Book 1 m, ()))
a2 <- async $ atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ()))
res <- async $ do waitBoth al a2
walit res readIORef cart
s
T — T — (_0;6;3*;0.09;6.4 200

\ INNYNNNANNARY,

o o

data Item = Book | Shoes | ...
deriving (Show, Ord, Eq)

p ¢:: IO (Map Item Int)
p = do cart <- newIORef empty
al <- async $ atomicModifyIORef cart
(\m -> (insert Book 1 m, ()))
a2 <- async $ atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ()))
res <- async $ do waitBoth al a2
readIORef cart
wait res f/m
a1
T — T ————— %@ﬁ}foﬁo AR ‘/:/,/

\ INNYNNNANNARY,

o o

p :: IO (Map Item Int)
p = do
cart <- newIORef empty
al <- async $ atomicModifyIORef cart

(\c -> (insert Book 1 c, ()))
a2 <- async $ atomicModifyIORef cart
(\c -> (insert Shoes 1 ¢, ()))

res <- async $ do waitBoth al a2
readIORef cart
wait res

main = do v <- p
putStr $ show $ toList v

T — B

Deterministic,
but only because we put the waits
in the right places

P IO (Map Item Int) ' p :: Par Det s (IMap Item s Int)
p = do p = do
cart <- newIORef empty cart <- newEmptyMap
al <- async $ atomicModifyIORef cart | fork $ insert Book 1 cart
(\c¢ -> (insert Book 1 ¢, ())) fork $ insert Shoes 1 cart
a2 <- async $ atomicModifyIORef cart return cart
(\c -> (insert Shoes 1 ¢, ()))
res <- async $ do waitBoth al a2 main = do
readIORef cart putStr $ show $ toList $
walt res | fromIMap $ runParThenFreeze p
main = do v <- p T T ——
putStr $ show $ toList v Deterministic by construction
1 — B |

Deterministic,
but only because we put the waits
in the right places

Freeze After Writing

8 [Vars

8 Quasl-Deterministic
Parallel Programming

data Item = Book | Shoes | ...
deriving (Show, Ord, Eq)

p ¢:: IO (Map Item Int)
p = do cart <- newIORef empty
async $ atomicModifyIORef cart
(\m -> (insert Book 1 m, ()))
async $ atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ()))
res <- async $ readIORef cart
wait res
T — T ———

'//r@%%“V/////

’/Q@Q‘Q‘//////

/A’ ¢ NSO
//Q Q‘@fQ'Q‘,{///// o6
RO
\“ﬂﬂﬁﬂﬂﬁﬂﬁﬂﬂ’

g/: :

data Item = Book | Shoes | ...
deriving (Show, Ord, Eq)
p ¢:: IO (Map Item Int)
p = do cart <- newIORef empty o
async S~ atomicModifyIORef cari;j>
(\m >=_(()1~
async $—atomicModifylORef cart -
(\m™>=_(insert Shoes 1 m, 4-4;
res <- async $ readIORef cart
walt res -—
\ N
T — T — OO

VO X X0

NN
WO

\ \(’ QQ%A‘Q’ O X ///

\\ \“«6“0’6‘669‘5”’/ ‘/ N

q/: %

data Item = Book | Shoes | ...
deriving (Show, Ord, Eq)
p ¢:: IO (Map Item Int)
p = do cart <- newIORef empty .
async S~ atomicModifyIORef cart
(\m >=_(insert Book 1 m, ();;j>
async S—atomicModityIORet cart -
(\m >=_(insert Shoes 1 m,,L4;:>
res <- async $ readIORef cart
walt res -—
-
T — T — OO

¢\ 4 /
///:’f‘:.‘.’.’{:/i/:/:/:/
OO
RN I
\\\4 A .V‘v 5‘9“‘}’/‘/ //

q/: %

[Vars: single writes, blocking (but exact) reads
[Arvind et al., 1989]

\; .\ \
\
\

data Item = Book | Shoes | ...
deriving (Show, Ord, Eq)

p ¢:: IO (Map Item Int)
p = do cart <- newIORef empty -
async S~atomicModifyIORef cart -
(\m’~s<;nsert Book 1 m, ();;j>
async S—atomicModifyIORet cart -
(\m >=_(insert Shoes 1 m,,LE;;>
res <- async $ readIORef cart
wait res
T — e ———————

[Vars: single writes, blocking (but exact) reads
[Arvind et al., 1989]

\\\‘\// /,'%Vé‘yﬁvﬁv’v{ NN v

4 AR s

\//»Q“.’{ OO
/

DOOOOOTFTS
\adeletetebety K
.5&4\559.}9‘5/ /

A°A 4

\)\A ANAAAN

data Item = Book | Shoes | ...
deriving (Show, Ord, Eq)

p ¢:: IO (Map Item Int)
p = do cart <- newIORef empty -
async S~ atomicModifyIORef cari;j>
(\m >=_(())
async S$—atomicModifyIORef cart -
res <- async $ readIORef cart
wait res
T —

[Vars: single writes, blocking (but exact) reads
[Arvind et al., 1989]

LVars: multiple least-upper-bound writes,
blocking threshold reads

\ RA AN 4
\ W N \'\7
\//”é@ééﬁ‘ﬁ”’{/ /////////
\//>"‘Q’{/////
\ /’.é"’/////,
N800 (1
\\ 0080086, /7

IAX0CK

\)A Y YO "A’/‘///

o o

data Item = Book | Shoes | ...
deriving (Show, Ord, Eq)

p ¢:: IO (Map Item Int)
p = do cart <- newIORef empty -
async S~ atomicModifyIORef cari;j>
(\m >=_(())
async S$—atomicModifyIORef cart -
(\m™>=_(insert Shoes 1 m, JD
res <- async $ readIORef cart
wait res
T — ——

[Vars: single writes, blocking (but exact) reads
[Arvind et al., 1989]

LVars: multiple least-upper-bound writes,
blocking threshold reads

\\\‘\// /)'fs"éwﬁv%'"{ A ———

900000 (10

QQ@\‘*Q’/ 26466
\oteta bbbt XX
OO0

NYYY Y Y N araYs

>y

\//»Q“.’{ OO
/

* actually a bounded join-semilattice

num

Raises an error;since 3 U4 =T

do
fork (put num 3)
fork (put num 4)

T — —
Works fine,since 4 u 4 = 4
do

fork (put num 4)
fork (put num 4)

- —

data Item = Book | Shoes
deriving (Show, Ord, Eq)

p = do
cart <- newEmptyMap
fork $ insert Shoes 1 cart
fork $ insert Book 2 cart
getKey Book cart -- returns 2

T — T ——

data Item = Book | Shoes
deriving (Show, Ord, Eq)

p = do
cart <- newEmptyMap
fork $ insert Shoes 1 cart
fork $ insert Book 2 cart
getKey Book cart -- returns 2

15— e ——=

data Item = Book | Shoes
deriving (Show, Ord, Eq)

p = do
cart <- newEmptyMap
fork $ insert Shoes 1 cart
fork $ insert Book 2 cart
getKey Book cart -- returns 2

15— e ——=

data Item = Book | Shoes
deriving (Show, Ord, Eq)

p = do
cart <- newEmptyMap
fork $ insert Shoes 1 cart
fork $ insert Book 2 cart
getKey Book cart -- returns 2

15— e ——=

data Item = Book | Shoes
deriving (Show, Ord, Eq)

p = do
cart <- newEmptyMap
fork $ insert Shoes 1 cart
fork $ insert Book 2 cart
getKey Book cart -- returns 2

15— e ——=

data Item = Book | Shoes
deriving (Show, Ord, Eq)

p = do
cart <- newEmptyMap
fork $ insert Shoes 1 cart
fork $ insert Book 2 cart
getKey Book cart -- returns 2

15— e ——=

data Item = Book | Shoes
deriving (Show, Ord, Eq)

p = do
cart <- newEmptyMap
fork $ insert Shoes 1 cart
fork $ insert Book 2 cart
getKey Book cart -- returns 2

15— e ——=

data Item = Book | Shoes
deriving (Show, Ord, Eq)

p = do
cart <- newEmptyMap
fork $ insert Shoes 1 cart
fork $ insert Book 2 cart
getKey Book cart -- returns 2

15— e ——=

data Item = Book | Shoes
deriving (Show, Ord, Eq)
{(Book,l),(Book,Z),.”}
p = do
cart <- newEmptyMap
fork $ insert Shoes 1 cart
fork $ insert Book 2 cart
getKey Book cart -- returns 2

T — —

getItemCount Book 1

T — data Item = Book | Shoes

deriving (Show, Ord, Eq)
{(Book,l),(Book,Z),.”}
p = do
cart <- newEmptyMap
fork $ insert Shoes 1 cart
fork $ insert Book 2 cart
getKey Book cart -- returns 2

T — T ——

.

getItemCount Book 1

-

{(Book,l),(Book,Z),.”}

bairwise incompatible

ﬁi»zﬁﬁbeq
—————— - = "tripwire”
&2
data Item = Book | Shoes

deriving (Show, Ord, Eq)

p = do
cart <- newEmptyMap
fork $ insert Shoes 1 cart
fork $ insert Book 2 cart
getKey Book cart -- returns 2

I — e —

e —2, &2

- = "tripwire”

X Can't see the exact, complete contents of the cart

2, &2

- = "tripwire”

X Can't see the exact, complete contents of the cart

& Can't iterate over the items in the cart

e —2, &2

- = "tripwire”

X Can't see the exact, complete contents of the cart
R Can't iterate over the items in the cart

® Can't determine if an item isn’t in the cart

2, &2

- = "tripwire”

X Can't see the exact, complete contents of the cart
R Can't iterate over the items in the cart

® Can't determine if an item isn’t in the cart

& Can't react to writes that we weren't expecting

—1, &1 —1, &2 =2, 2
_________ == ----#--"tripwire"
|
1 2] - L[S (2
/
getItemCount Book | ! 1
|
-

« Can see the exact, complete contents of the cart
« Can iterate over the items in the cart
« Can determine Iif an item isn’t in the cart

« Can react to writes that we weren't expecting

1, 1] (B, 2| 2, 2, &2

i - = "tripwire”

v
!
4
I
N

getItemCount Book

« Can
« Can
« Can

« Can

-

see the exact, complete contents of the cart
'terate over the items In the cart
determine If an item isn't in the cart

react to writes that we weren't expecting

handlers,
quiescence,
freezing

Freeze After Writing

8 | Vars

8 Quasl-Deterministic
Parallel Programming

seen nodes

seen nodes

seen nodes

@

seen nodes

@

; @OO6
- 00O
HOCIC

; @OO6
- 00O
HOCIC

already seen

seen nodes

OIOIOIO,
OO
OIOC)

already seen

already seen

seen nodes

OIOIOIO,
OO
OIOC)

already seen

already seen

already seen

already seen

seen nodes

OIOIOIO,
OO
OIOC)

already seen

already seen

already seen

already seen

seen nodes

OIOIOIO,
OO
OIOC)

already seen

already seen

already seen

already seen

seen nodes

OIOIOIO,
OO
OIOC)

Events are updates that change an LVar's state

already seen

already seen

already seen

already seen

seen nodes

OIOIOIO,
OO
OIOC)

Events are updates that change an LVar's state

Event handlers listen for events and launch callbacks in response

already seen

already seen

already seen

already seen

seen nodes

OIOIOIO,
OO
OIOC)

Events are updates that change an LVar's state

Event handlers listen for events and launch callbacks in response

traverse g startNode = do

already seen

already seen

Events are updates that change an LVar's state

Event handlers listen for events and launch callbacks in response

traverse g startNode = do
seen <- newkEmptySet

already seen

already seen

Events are updates that change an LVar's state

Event handlers listen for events and launch callbacks in response

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)
return ())

— T

already seen

already seen

Events are updates that change an LVar's state

Event handlers listen for events and launch callbacks in response

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)

return ())

insert startNode seen

— T

already seen

already seen

Events are updates that change an LVar's state

Event handlers listen for events and launch callbacks in response

quiesce blocks until all callbacks launched by a given handler are done running

2

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)

return ())

insert startNode seen

— T

already seen

already seen

Events are updates that change an LVar's state

Event handlers listen for events and launch callbacks in response

quiesce blocks until all callbacks launched by a given handler are done running

2

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)
return ())
insert startNode seen
quiesce h

— T

already seen

already seen

Events are updates that change an LVar's state

Event handlers listen for events and launch callbacks in response

quiesce blocks until all callbacks launched by a given handler are done running

2

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)
return ())
insert startNode seen
quiesce h

I T

already seen

already seen

freeze: exact non-blocking read

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)
return ())
insert startNode seen
quiesce h

T — |

freeze: exact non-blocking read

Attempts to write to a frozen LVar raise a write-after-freeze exception

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)
return ())
insert startNode seen
quiesce h

T — B

freeze: exact non-blocking read

Attempts to write to a frozen LVar raise a write-after-freeze exception

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)
return ())
insert startNode seen
quiesce h
freeze seen

T — B

freeze: exact non-blocking read

Attempts to write to a frozen LVar raise a write-after-freeze exception
Two possible outcomes: erther the same final value or an exception

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)
return ())
insert startNode seen
quiesce h
freeze seen

T — B ——

freeze: exact non-blocking read

Attempts to write to a frozen LVar raise a write-after-freeze exception
Two possible outcomes: erther the same final value or an exception

Theorem 1 (Quasi-Determinism). If o0 —* ¢’ and 0 —* o, 40
and neither o' nor o'’ can take a step, then either:

] / !/ . .
. o' = o up to a permutation on locations w, or
2. o' = error or o’/ = error.

nsert v seen)
DR —— -—w node)

return ())
insert startNode seen
quiesce h
freeze seen

v *

freeze: exact non-blocking read

Attempts to write to a frozen LVar raise a write-after-freeze exception
Two possible outcomes: erther the same final value or an exception

Theorem 1 (Quasi-Determinism). If o0 —* ¢’ and 0 —* o, ‘o
and neither o' nor o'’ can take a step, then either:

] / !/ . .
. o' = o up to a permutation on locations w, or
2. o' = error or o’/ = error.

nsert v seen)
w—'—'——'- — ‘—w node)

return ())
insert startNode seen
quiesce h
freeze seen

[(Shoes,1)] L — ———

[(Book,1)]

freeze: exact non-blocking read

Attempts to write to a frozen LVar raise a write-after-freeze exception
Two possible outcomes: erther the same final value or an exception

Theorem 1 (Quasi-Determinism). If o0 —* ¢’ and 0 —* o, ‘o
and neither o' nor o'’ can take a step, then either:

] / !/ . .
. o' = o up to a permutation on locations w, or
2. o' = error or o’/ = error.

nsert v seen)
w—'—'——'- — ‘—w node)

return ())
[(Book,1),(Shoes,1)] insert startNode seen

w quiesce h
freeze seen

[(Shoes,1)] L — ———

freeze: exact non-blocking read

Attempts to write to a frozen LVar raise a write-after-freeze exception
Two possible outcomes: erther the same final value or an exception

Theorem 1 (Quasi-Determinism). If o0 —* ¢’ and 0 —* o, ‘o
and neither o' nor o'’ can take a step, then either:

] / !/ . .
. o' = o up to a permutation on locations w, or
2. o' = error or o’/ = error.

nsert v seen)
DR —— -—-—N node)

return ())
[(Book,1),(Shoes,1)] insert startNode seen

w quiesce h

freeze seen

T — B

freeze: exact non-blocking read

Attempts to write to a frozen LVar raise a write-after-freeze exception
Two possible outcomes: erther the same final value or an exception

Theorem 1 (Quasi-Determinism). If o0 —* ¢’ and 0 —* o, ‘o
and neither o' nor o'’ can take a step, then either:

] / !/ . .
. o' = o up to a permutation on locations w, or
2. o' = error or o’/ = error.

nsert v seen)
DR —— -—-—N node)

return ())
[(Book,1),(Shoes, 1) | NelasIage]s insert startNode seen

w quiesce h

freeze seen

T — B

a Has II(LlraglyGfor y ram@n WI

A sl
[Vish

aHa?ggIltL?rar%for 8 ram@n with LVars
% |}

L Var operations run inside a Par monad

AR st o
LVisn

aHa?ggllL?rar%for o ram@m with LVars
x|}

L Var operations run inside a Par monad

Library-level threads

[Vish

a Haskell library for programming with [Vars

AV=TaelollgciilelalNaV aNIa (e [SH-MF-baliaglelglell 0 :: Par Det s (IMap Item s Int)

. p = do

Library-level threads cart <- newEmptyMap

Par computations indexed by effect level fork $ insert Shoes 1 cart
P 4 fork $ insert Book 2 cart

return cart

[Vish

a Haskell library for programming with [Vars

AV=TaelollgciilelalNaV aNIa (e [SH-MF-baliaglelglell 0 :: Par Det s (IMap Item s Int)
p = do
cart <- newEmptyMap
fork $ insert Shoes 1 cart
fork $ insert Book 2 cart

Library-level threads
Par computations indexed by effect level

runParThenFreeze captures the return cart
freeze-after-writing idiom

[Vish

a Haskell library for programming with [Vars

AV=TaelollgciilelalNaV aNIa (e [SH-MF-baliaglelglell 0 :: Par Det s (IMap Item s Int)
p = do
cart <- newEmptyMap
fork $ insert Shoes 1 cart
fork $ insert Book 2 cart

Library-level threads
Par computations indexed by effect level

runParThenFreeze captures the return cart

freeze-after-writing idiom L
main = do
putStr $ show $ toList $

fromIMap $ runParThenFreeze p

[Vish

a Haskell library for programming with [Vars

AV=TaelollgciilelalNaV aNIa (e [SH-MF-baliaglelglell 0 :: Par Det s (IMap Item s Int)
. p = do
Library-level threads cart <- newEmptyMap

fork $ insert Shoes 1 cart
fork $ insert Book 2 cart

Par computations indexed by effect level

runParThenFreeze captures the return cart

freeze-after-writing idiom L
main = do

[Var data structures: sets, maps, etc. putStr 5 show $ tolist 3
fromIMap $ runParThenFreeze p

[Vish

a Haskell library for programming with [Vars

AV=TaelollgciilelalNaV aNIa (e [SH-MF-baliaglelglell 0 :: Par Det s (IMap Item s Int)
p = do
cart <- newEmptyMap
fork $ insert Shoes 1 cart
fork $ insert Book 2 cart

Library-level threads
Par computations indexed by effect level

runParThenFreeze captures the return cart

freeze-after-writing idiom L
main = do

[Var data structures: sets, maps, etc. putStr 5 show $ tolist 3
fromIMap $ runParThenFreeze p

Implement your own [Vars, too

[Vish

a Haskell library for programming with [Vars

AV=TaelollgciilelalNaV aNIa (e [SH-MF-baliaglelglell 0 :: Par Det s (IMap Item s Int)
p = do
cart <- newEmptyMap
fork $ insert Shoes 1 cart
fork $ insert Book 2 cart

Library-level threads
Par computations indexed by effect level

runParThenFreeze captures the return cart

freeze-after-writing idiom L
main = do

[Var data structures: sets, maps, etc. putStr 5 show $ tolist 3
fromIMap $ runParThenFreeze p

Implement your own [Vars, too

cabal install 1lvish today!

More In the paper and IR

More In the paper and IR

The LVish calculus and its quasi-determinism proof

More In the paper and IR

The LVish calculus and its quasi-determinism proof

Gory details of the LVish scheduler implementation

More In the paper and IR

The LVish calculus and its quasi-determinism proof

Gory details of the LVish scheduler implementation
Case study: parallel k-CFA written with the LVish library

More In the paper and IR

The LVish calculus and its quasi-determinism proof

Gory details of the LVish scheduler implementation
Case study: parallel k-CFA written with the LVish library

Parallel Speedup
15

— linear speedup ©O Dblur/lockfree blur
©O notChain/lockfree ©O notChain

11.25

7.5

3.75

Threads

Thank you!

Email: kuper@cs.indiana.edu
Project repo: github.com/iu-parfunc/lvars
Code from this talk: github.com/Ikuper/lvar-examples
More LVars papers: cs.indiana.edu/~lkuper
Research blog: composition.al

