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Freeze After Writing

8 | Vars

8 Quasl-Deterministic
Parallel Programming
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data Item = Book | Shoes | ...
deriving (Show, Ord, Eq)
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data Item = Book | Shoes |
deriving (Show, Ord, Eq)

p :: IO (Map Item Int)
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data Item = Book | Shoes | ...
deriving (Show, Ord, Eq)

:: IO (Map Item Int)
do cart <- newIORef empty
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data Item = Book | Shoes | ..
deriving (Show, Ord, Eq)

p ¢:: IO (Map Item Int)
P do cart <- newIORef empty

Introduction to
Lattices and Order

Segond Edition
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data Item = Book | Shoes | ..
deriving (Show, Ord, Eq)

:: IO (Map Item Int)
do cart <- newIORef empty
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data Item = Book | Shoes | ...
deriving (Show, Ord, Eq)

:: IO (Map Item Int)
do cart <- newIORef empty
async $ atomicModifyIORef cart
(\m -> (insert Book 1 m, ()))
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data Item = Book | Shoes | ...
deriving (Show, Ord, Eq)

:: IO (Map Item Int)
do cart <- newIORef empty
async $ atomicModifyIORef cart
(\m -> (insert Book 1 m, ()))
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data Item = Book | Shoes | ...
deriving (Show, Ord, Eq)
p ¢:: IO (Map Item Int)
p = do cart <- newIORef empty
async $ atomicModifyIORef cart
(\m -> (insert Book 1 m, ()))
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data Item = Book | Shoes | ...
deriving (Show, Ord, Eq)

:: IO (Map Item Int)
do cart <- newIORef empty
async $ atomicModifyIORef cart
(\m -> (insert Book 1 m, ()))
async $ atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ()))
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data Item = Book | Shoes | ...
deriving (Show, Ord, Eq)

:: IO (Map Item Int)
do cart <- newIORef empty
async $ atomicModifyIORef cart
(\m -> (insert Book 1 m, ()))
async $ atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ()))
res <- async $ readIORef cart
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data Item = Book | Shoes | ...
deriving (Show, Ord, Eq)

p ¢:: IO (Map Item Int)
p = do cart <- newIORef empty
async $ atomicModifyIORef cart
(\m -> (insert Book 1 m, ()))
async $ atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ()))
res <- async $ readIORef cart
wait res
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e MO Terminal — bash — 90x27

| bash |

landin:lvar-examples lkuper$ make map-ioref-data-race

ghc -02 map-ioref-data-race.hs -rtsopts -threaded

[1 of 1] Compiling Main ( map-ioref-data-race.hs, map-ioref-data-race.o )
Linking map-ioref-data-race ...

while true; do ./map-ioref-data-race +RTS -N2; done
[(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes,1)][(Book,1
), (Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1
)1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1
), (Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1
)1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1
), (Shoes,1)][(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes
,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Boo
k,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Sho
es,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Bo
ok,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(B
ook,1),(Shoes,1)][(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(
Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][
(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]
[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),
(Shoes,1)][(Book,1),(Shoes,1)][(Book,1)]1[(Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)
1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1)][(Book,1),(Shoes,1)
1[(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes
,1)1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book |§
,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Boo E
k,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe §




e MO Terminal — bash — 90x27

| bash |

landin:lvar-examples lkuper$ make map-ioref-data-race .
ghc -02 map-ioref-data-race.hs -rtsopts -threaded
[1 of 1] Compiling Main ( map-ioref-data-race.hs, map-ioref-data-race.o )
L1nk1ng map-1oref -data-race ...
man_ioref-data-race +RTS -N2; done
(Book 1), (Shoes 1)]1R(Shoes,1)][(Book,1), (Shoes 1)]1[(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1
500K, 1), (Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1

)][(Book 1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1
), (Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1
)1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1
), (Shoes,1)][(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes
,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Boo
k,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Sho
es,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Bo
ok,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(B
ook,1),(Shoes,1)][(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(
Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][
(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]
[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),
(Shoes,1)][(Book,1),(Shoes,1)][(Book,1)]1[(Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)
1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1)][(Book,1),(Shoes,1)
1[(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes
,1)1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book [§
,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Boo E
k,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe §




oM O Terminal — bash — 90x27

| bash |
landin:lvar-examples lkuper$ make map-ioref-data-race .
ghc -02 map-ioref-data-race.hs -rtsopts -threaded

[1 of 1] Compiling Main ( map-ioref-data-race.hs, map-ioref-data-race.o )
L1nk1ng map-1oref -data-race ...

man.1nraf t'|n+n_rlace +RTS _NZ donn
(Book 1), (Shoes 1) B(Shoes,1)]! (Book,1), (Shoes 1) [(Shoes,1)]l (Book,1),(Shoes,1)]1[(Book,1
SOUK , L), onves, 1) | [(Book,1),(Shoes, 1, (buuK, L), Shoes,1)][(Book,1),(Shoes,1

)][(Book 1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1
), (Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1
)1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1
), (Shoes,1)][(Shoes,1)][CRaok 11 (Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes
,1)]1[(Book,1),(Shoes,1) [(Shoes,1)] (Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1) ]\ buuK, L), Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Boo
k,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Sho
es,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Bo
ok,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(B
ook,1),(Shoes,1)][(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(
Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][
(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]
[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),
(Shoes,1)][(Book,1),(Shoes,1)][(Book,1)]1[(Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)
ALCRaok 17 (Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1)][(Book,1),(Shoes,1)
" [(Shoes,1)] (Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes
»LJJL\DUUK, 1/, (Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1) CShoas ANIT(Book [i§
,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1) [(Shoes,1)] (Boo E
k,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)  \ booUR, L), Shoe ¥




oM O Terminal — bash — 90x27

| bash |
landin:lvar-examples lkuper$ make map-ioref-data-race .
ghc -02 map-ioref-data-race.hs -rtsopts -threaded

[1 of 1] Compiling Main ( map-ioref-data-race.hs, map-ioref-data-race.o )
L1nk1ng map-1oref -data-race ...

man.1nraf t'|n+n_rlace +RTS _NZ donn
(Book 1), (Shoes 1) B(Shoes,1)]! (Book,1), (Shoes 1) [(Shoes,1)]l (Book,1),(Shoes,1)]1[(Book,1
SOUK , L), onves, 1) | [(Book,1),(Shoes, 1, (buuK, L), Shoes,1)][(Book,1),(Shoes,1

)][(Book 1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1
), (Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1
)1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1
), (Shoes,1)][(Shoes,1)][CRaok 11 (Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes
,1)]1[(Book,1),(Shoes,1) [(Shoes,1)] (Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1) ]\ buuK, L), Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Boo
k,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Sho
es,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Bo
ok,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(B
ook,1),(Shoes,1)][(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(
Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][
(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]
[(Book,1),(Shoes,1)]1[(Book,1) LShae (Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),
(Shoes,1)][(Book,1),(Shoes,1)§[(Book,1) ]R8 (Book,1),(Shoes,1)]LLShas (Book,1),(Shoes,1)
ALCRaok 17 (Shoes,1)][(Book,1),Csrnoes, )] [(Book,1),(Shoes,1)R[(Book,1)]8(Book,1),(Shoes,1)
" [(Shoes,1)] (Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Book;L), oes, 1)]1[(Book,1),(Shoes
»LJJL\DUUK, 1/, (Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1) CShoas ANIT(Book [i§
,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1) [(Shoes,1)] (Boo E
k,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)  \ booUR, L), Shoe ¥




data Item = Book | Shoes | ...
deriving (Show, Ord, Eq)

p :: IO (Map Item Int)
P do cart <- newIORef empty
async $ atomicModifyIORef cart
(\m -> (insert Book 1 m, ()))
async $ atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ()))
res <- async $ readIORef cart

walt res -
-
T — T ————————= \ NN Y X /
R
ARG

« INCN( N a4 4

‘ (’0:6:‘%:\0?‘*% $4°¢ ¢ \
) - ¢ & |
\}* ARAAAARAY

g/: :




data Item = Book | Shoes | ...
deriving (Show, Ord, Eq)

:: IO (Map Item Int)
do cart <- newIORef empty
async $ atomicModifyIORef cart
(\m -> (insert Book 1 m, ()))
async $ atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ()))
res <- async $ readIORef cart
walit res
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data Item = Book | Shoes | ...
deriving (Show, Ord, Eq)

:: IO (Map Item Int)
do cart <- newIORef empty
al <- async $ atomicModifyIORef cart
(\m -> (insert Book 1 m, ()))
async $ atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ()))
res <- async $ readIORef cart
walit res
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data Item = Book | Shoes | ...
deriving (Show, Ord, Eq)

:: IO (Map Item Int)
do cart <- newIORef empty
al <- async $ atomicModifyIORef cart
(\m -> (insert Book 1 m, ()))
a2 <- async $ atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ()))
res <- async $ readIORef cart
walit res
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data Item = Book | Shoes | ...
deriving (Show, Ord, Eq)

p ¢:: IO (Map Item Int)
p = do cart <- newIORef empty
al <- async $ atomicModifyIORef cart
(\m -> (insert Book 1 m, ()))
a2 <- async $ atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ()))
res <- async $ do waitBoth al a2
walit res readIORef cart
s
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data Item = Book | Shoes | ...
deriving (Show, Ord, Eq)

p ¢:: IO (Map Item Int)
p = do cart <- newIORef empty
al <- async $ atomicModifyIORef cart
(\m -> (insert Book 1 m, ()))
a2 <- async $ atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ()))
res <- async $ do waitBoth al a2
readIORef cart
wait res f/m
a1
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p :: IO (Map Item Int)
p = do
cart <- newIORef empty
al <- async $ atomicModifyIORef cart

(\c -> (insert Book 1 c, ()))
a2 <- async $ atomicModifyIORef cart
(\c -> (insert Shoes 1 ¢, ()))

res <- async $ do waitBoth al a2
readIORef cart
wait res

main = do v <- p
putStr $ show $ toList v

T — B

Deterministic,
but only because we put the waits
in the right places



P IO (Map Item Int) ' p :: Par Det s (IMap Item s Int)
p = do p = do
cart <- newIORef empty cart <- newEmptyMap
al <- async $ atomicModifyIORef cart | fork $ insert Book 1 cart
(\c¢ -> (insert Book 1 ¢, ())) fork $ insert Shoes 1 cart
a2 <- async $ atomicModifyIORef cart return cart
(\c -> (insert Shoes 1 ¢, ()))
res <- async $ do waitBoth al a2 main = do
readIORef cart putStr $ show $ toList $
walt res | fromIMap $ runParThenFreeze p
main = do v <- p T T ——
putStr $ show $ toList v Deterministic by construction
1 — B |
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but only because we put the waits
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data Item = Book | Shoes | ...
deriving (Show, Ord, Eq)

p ¢:: IO (Map Item Int)
p = do cart <- newIORef empty
async $ atomicModifyIORef cart
(\m -> (insert Book 1 m, ()))
async $ atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ()))
res <- async $ readIORef cart
wait res
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data Item = Book | Shoes | ...
deriving (Show, Ord, Eq)
p ¢:: IO (Map Item Int)
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async S~ atomicModifyIORef cari;j>
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async $—atomicModifylORef cart -
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data Item = Book | Shoes | ...
deriving (Show, Ord, Eq)
p ¢:: IO (Map Item Int)
p = do cart <- newIORef empty .
async S~ atomicModifyIORef cart
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[Vars: single writes, blocking (but exact) reads
[Arvind et al., 1989]
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data Item = Book | Shoes | ...
deriving (Show, Ord, Eq)

p ¢:: IO (Map Item Int)
p = do cart <- newIORef empty -
async S~atomicModifyIORef cart -
(\m’~s<;nsert Book 1 m, ();;j>
async S—atomicModifyIORet cart -
(\m >=_(insert Shoes 1 m,,LE;;>
res <- async $ readIORef cart
wait res
T — e ———————

[Vars: single writes, blocking (but exact) reads
[Arvind et al., 1989]
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data Item = Book | Shoes | ...
deriving (Show, Ord, Eq)

p ¢:: IO (Map Item Int)
p = do cart <- newIORef empty -
async S~ atomicModifyIORef cari;j>
(\m >=_( ())
async S$—atomicModifyIORef cart -
res <- async $ readIORef cart
wait res
T —

[Vars: single writes, blocking (but exact) reads
[Arvind et al., 1989]

LVars: multiple least-upper-bound writes,
blocking threshold reads
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data Item = Book | Shoes | ...
deriving (Show, Ord, Eq)

p ¢:: IO (Map Item Int)
p = do cart <- newIORef empty -
async S~ atomicModifyIORef cari;j>
(\m >=_( ())
async S$—atomicModifyIORef cart -
(\m™>=_(insert Shoes 1 m, JD
res <- async $ readIORef cart
wait res
T — ——

[Vars: single writes, blocking (but exact) reads
[Arvind et al., 1989]

LVars: multiple least-upper-bound writes,
blocking threshold reads
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num

Raises an error;since 3 U4 =T

do
fork (put num 3)
fork (put num 4)

T — —
Works fine,since 4 u 4 = 4
do

fork (put num 4)
fork (put num 4)

- —



data Item = Book | Shoes
deriving (Show, Ord, Eq)

p = do
cart <- newEmptyMap
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fork $ insert Book 2 cart
getKey Book cart -- returns 2

T — T ——



data Item = Book | Shoes
deriving (Show, Ord, Eq)

p = do
cart <- newEmptyMap
fork $ insert Shoes 1 cart
fork $ insert Book 2 cart
getKey Book cart -- returns 2

15— e ——=



data Item = Book | Shoes
deriving (Show, Ord, Eq)

p = do
cart <- newEmptyMap
fork $ insert Shoes 1 cart
fork $ insert Book 2 cart
getKey Book cart -- returns 2

15— e ——=



data Item = Book | Shoes
deriving (Show, Ord, Eq)

p = do
cart <- newEmptyMap
fork $ insert Shoes 1 cart
fork $ insert Book 2 cart
getKey Book cart -- returns 2

15— e ——=



data Item = Book | Shoes
deriving (Show, Ord, Eq)

p = do
cart <- newEmptyMap
fork $ insert Shoes 1 cart
fork $ insert Book 2 cart
getKey Book cart -- returns 2

15— e ——=



data Item = Book | Shoes
deriving (Show, Ord, Eq)

p = do
cart <- newEmptyMap
fork $ insert Shoes 1 cart
fork $ insert Book 2 cart
getKey Book cart -- returns 2

15— e ——=



data Item = Book | Shoes
deriving (Show, Ord, Eq)

p = do
cart <- newEmptyMap
fork $ insert Shoes 1 cart
fork $ insert Book 2 cart
getKey Book cart -- returns 2

15— e ——=
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deriving (Show, Ord, Eq)

p = do
cart <- newEmptyMap
fork $ insert Shoes 1 cart
fork $ insert Book 2 cart
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data Item = Book | Shoes
deriving (Show, Ord, Eq)
{(Book,l),(Book,Z),.”}
p = do
cart <- newEmptyMap
fork $ insert Shoes 1 cart
fork $ insert Book 2 cart
getKey Book cart -- returns 2

T — —



getItemCount Book 1

T — data Item = Book | Shoes

deriving (Show, Ord, Eq)
{(Book,l),(Book,Z),.”}
p = do
cart <- newEmptyMap
fork $ insert Shoes 1 cart
fork $ insert Book 2 cart
getKey Book cart -- returns 2
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getItemCount Book 1

-

{(Book,l),(Book,Z),.”}

bairwise incompatible

ﬁi»zﬁﬁbeq
—————— - = "tripwire”
&2
data Item = Book | Shoes

deriving (Show, Ord, Eq)

p = do
cart <- newEmptyMap
fork $ insert Shoes 1 cart
fork $ insert Book 2 cart
getKey Book cart -- returns 2

I — e —
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—1, &1 —1, &2 =2, 2
_________ == ----#--"tripwire"
|
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getItemCount Book | ! 1
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« Can see the exact, complete contents of the cart
« Can iterate over the items in the cart
« Can determine Iif an item isn’t in the cart

« Can react to writes that we weren't expecting
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getItemCount Book

« Can
« Can
« Can

« Can

-

see the exact, complete contents of the cart
'terate over the items In the cart
determine If an item isn't in the cart

react to writes that we weren't expecting

handlers,
quiescence,
freezing
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seen <- newkEmptySet
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traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
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return ())

insert startNode seen
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Event handlers listen for events and launch callbacks in response

quiesce blocks until all callbacks launched by a given handler are done running
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Events are updates that change an LVar's state

Event handlers listen for events and launch callbacks in response

quiesce blocks until all callbacks launched by a given handler are done running

2

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)
return ())
insert startNode seen
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freeze: exact non-blocking read

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)
return ())
insert startNode seen
quiesce h
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freeze: exact non-blocking read

Attempts to write to a frozen LVar raise a write-after-freeze exception
Two possible outcomes: erther the same final value or an exception
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and neither o' nor o'’ can take a step, then either:
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L Var operations run inside a Par monad

Library-level threads
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. p = do

Library-level threads cart <- newEmptyMap
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[ Vish

a Haskell library for programming with [ Vars

AV=TaelollgciilelalNaV aNIa (e [SH-MF-baliaglelglell 0 :: Par Det s (IMap Item s Int)
p = do
cart <- newEmptyMap
fork $ insert Shoes 1 cart
fork $ insert Book 2 cart

Library-level threads
Par computations indexed by effect level

runParThenFreeze captures the return cart

freeze-after-writing idiom L
main = do

[Var data structures: sets, maps, etc. putStr 5 show $ tolist 3
fromIMap $ runParThenFreeze p

Implement your own [Vars, too

cabal install 1lvish today!
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The LVish calculus and its quasi-determinism proof

Gory details of the LVish scheduler implementation
Case study: parallel k-CFA written with the LVish library

Parallel Speedup
15

— linear speedup ©O Dblur/lockfree blur
©O notChain/lockfree ©O notChain

11.25

7.5

3.75

Threads







Thank you!

Email: kuper@cs.indiana.edu
Project repo: github.com/iu-parfunc/lvars
Code from this talk: github.com/Ikuper/lvar-examples
More LVars papers: cs.indiana.edu/~lkuper
Research blog: composition.al




