. ' :l & (j ! 0 L “ 3

- . -

= -Bi m moll m el I Hels I el W Seom

LVars:
lattice-based data structures
for deterministic parallelism

Lindsey Kuper and Ryan R. Newton
Indiana University

Hacker School
June 10, 2013

e

o

What does this program evaluate to?

let _=put [0 in
let par v = get [
_=put [&

1n v

Disallow multiple writes?

let _=put [0 in
let par v = get [
_=put [&

1n v

Disallow multiple writes?

Tesler and Enea, 1968 // !/
Arvind et al., 1989 Iva rS

Deterministic programs that single-assignment forbids

let _=put (8 in
let par v = get [
_=put 8§

Deterministic programs that single-assignment forbids

let _ = pUt [8 in let par _ = p'l.lt l (4, J_)

_=rput ! (L,3)
in get [

let par v = get [
_=put 8§

in v

Deterministic programs that single-assignment forbids

let _ = pUt [8 in let par _ = p'llt l (4, J_)
let par v = get [

_=rput ! (L,3)
_=put 8§ ,
| in get [
in v
T — ——— T T — ——— T
~ let par _ = insert ["1111"
CANE SUGH _ = insert ["1100"
= in get |

From Kahn process networks...

Kahn, 1974

INFORMATION PROCESSING 74 — NORTH-HOLLAND PUBLISHING COMPANY (1974)

THE SEMANTICS OF A SIMPLE LANGUAGE FOR PARALLEL PROGRAMMING

Gilles KAHN

IRIA-Laboria, Domaine de Voluceau, 78150
Rocquencourt, France

and

Commissariat a I'Energie Atomique, France

In this paper, we describe a simple language for parallel programming. Its semantics is studied thor-
oughly. The desirable properties of this language and its deficiencies are exhibited by this theoret-
ical study. Basic results on parallel program s.hemata are given. We hope in this way to make a case
for a more formal (i.e. mathematical) approach tc-the design of languages for systems programming and

the design of operating systems.

. There is a wide disagreement among systems designers

as to what are the best primitives for writing sys-
tems programs. In this paper, we describe a simple
language for parallel programming and study its
mathematical properties.

1. A SIMPLE LANGUAGE FOR PARALLEL PROGRAMMING.

The features of our mini-language are exhibited on
the sample program S on fig.l. The conventions are
close to Algol and we only insist upon the new
features. The program S consists of a set of decla-
rations and a body. Variables of type integer
channel are declared at 'line (1), and for ary simple
type o (bcolean, real, etc...) we could have decla-
red a 0 ch 1. Then pr f, g and h are
declared, much like procedures. Aside from usual
parameters (passed by value in this example, like
INIT at line (3)), we can declare in the heading of
the process how it is linked to other processes : at
line (2) f is stated to communicate via two input

* lines that can carry integers, and one similar out-

put line.

The body of a process is an usual Algol program except
for invocation of wait onan input line (e.g. at (4))
or send a variable on a line of compatible type
(e.g. at (5)). The process stays blocked on a wait
until something is being sent on this line by ano-
ther process, but nothing can prevent a process
from performing a send on a line.

In other words, processes communicate via first-in
first-out (fifo) queues.

Calling instances of the processes is done in the

. body of the main program at line (6) where the

actual names of the channels are bound to the formal
parameters of the processes. The infix operator par
initiates the concurrent activation of the processes.
Such a style of programming is close to may systems
using EVENT mechanisms ((1],02],03],04]). A picto-
rial representation of the program is the schema P
on fig.2,, where the nodes represent processes and
the arcs communication channels between these pro-
cesses. :

What sort of things would we like to prove on a
program like S ? Firstly, that all processes in §
run forever. Secondly, more precisely, that S prints
out (at line (7)) an alternating sequence of 0's

and 1's forever. Third, that if one of the processes
were to stop at some time for an extraneous reason,
the whole system would stop.

The ability to state formally this kind of property
of a parallel program and to prove them within a
formal logical framework is the central motivation
for the theoretical study of the next sections.

2. PARALLEL COMPUTATION.

Informally speaking, a parallel computation is orga-
nized in the following way : some autonomous compu-
ting stations are connected to each other in a net-
work by communication lines. Computing stations
exchange information through these lines. A given
station computes on data coming along its input lines,

Begin
(1) Integer channel X, Y, 2, T, T2 ;
(2) Process f(integer in U,V; integer out W) ;
Begin integer 1 ; logical B ;
B := true ;
Repeat Begin

(4) 1 := if B then wait(U) else wait(V) ;
n print (1) ;
(5) gend T on W ;

B :=—B ;

end :

3

;
Process g(integer in U ; integer out V, W) ;
Begin integer 1 ; logical B ; .
B := true ;
Repeat Begin
1 := wait (U) ;
if B then send 1 on V else send T on W ;
B :=TB ;
End ;

End ;
(3) Process h(integer in U;integer out V; integer INIT);
Begin integer 1 ;
send INIT on V ;
Repeat Begin
I := wait (V) ;
send TonV ;
End ;
End ;

Comment : bbdy of mainprogram ;

(6) £(Y,2,X) par g(X,T1,T2) pa h(T),¥,0) par h(T2,Z,1’
End ;

Fig.l. Sample parallel program S.

Fig.2. The schema P for the program S.

From Kahn process networks...

INFORMATION PROCESSING 74 — NORTH-HOLLAND PUBLISHING COMPANY (1974) .~ ~

THE SEMANTICS OF A SIMPLE LANGUAGE FOR PARALLEL PROGRAMMING

Gilles KAHN

IRIA-Laboria, Domaine de Voluceau, 78150
Rocquencourt, France

and

Commissariat a I'Energie Atomique, France

In this paper, we describe a simple language for parallel programming.

Monotonicitz means that receiving more input at
a4 computing station can only provoke it to send more

output. Indeed this a crucial property since it
allows parallel operation : a machine need not have
all of its input to start computing, since future

lnput concerns onlz future putput.

In other words, processes communicate via first-in
first-out (fifo) queues.
Calling instances of the processes is done in the
. body of the main program at line (6) where the
actual names of the channels are bound to the formal
parameters of the processes. The infix operator par
et . Terapd o N imm

[J
[]

The kind of parallel programming.we have studied in
this paper is severely limited
determinate programs.

R ——

ion

2. PARALLEL COMPUTATION.

Informally speaking, a parallel computation is orga-
nized in the following way : some autonomous compu-
ting stations are connected to each other in a net-
work by communication lines. Computing stations
exchange information through these lines. A given
station computes on data coming along its input lines,

Kahn, 1974

it can produce only-=

Its semantics is studied thor-
Aeficiencies are exhibited by this theoret-
ven. We hope in this way to make a case
f languages for systems programming and

n
teger channel X, Y, 2, T, T2 ;
bcess f(integer in U,V; integer out W) ;
7in integer 1 ; logical B ;
B := true ;
Repeat Begin
1 := if B then wait(U) else wait(V) ;
print (1) ;
send Ton VW ;
B :=—B ;
5

A
'88 g(integer in U ; integer out V, W) ;
1in integer 1 ; logical B ; .
J i= true ;
“epeat Begin .
I := wait (U) ;
2f B then send I on V else gend 1 on W ;
B :=TB ;
End ;

a; h(integer in U;integer out V; integer INIT);
“n integer 1 ;
nd INIT on V ;
2peat Begin
I := watt(V) ;
send 1 onV ;
End ;
End ;
Comment : bbdy of mainprogram ;
(6) £(Y,2,X) par g(X,T!,T2) par h(T1,Y,0) par h(T2,2,1
End ;

Fig.l. Sample parallel program S.

T2

Fig.2. The schema P for the program S.

Monotonicity

A

f is monotonic iff, for a given <, fy)T

x <y = f(x) <f(y)

f(x)T .

...to Concurrent Collections

Concurrent Collections

Zoran Dudimiid’ Michael Hurke’' Vincent Cavd’ Kathieen Knobe'
Gooff Lowney’ Ryan Newton® Jems Pabberg’ David Pelxotto’
Vivek Sarkar' Frank Schlimbach’ Sagsak Tagerlar'

"Rice Universiny “Tatel Corporstion "UCLA

Abwtract

We st roduoe the Comowrrent Collentions (CaC) prograsesing mesied
Ol wapports Sexble combiracions of task and data pacalicisen whlle
swtalnlag detorminien. CoC b krplcnly pacaliel wih the uswr prowvkd
Ing bigh bewl operatioos akeg with wmascic ordering comstraiass that
sogrther form & CoC graghs.

We bwrvnally dowrilee e earvwiom sewsnibn of CoC amd prome
that e wodel pusranions determorinin corrgrriaiion Ve evaduaie (he
performance of Col srplemenistions on several appliontions and show
that o ofers perfoemance s scalabiity ogurvlent 10 o botter than
thae ofernd by lowes-dovel paraliel prograsssing models.

1 Introduction

With mveltiooee p paraliel computing & golsg malmetronm, Yot most
software is still written in teaditional serial bagusges with caplicit tloeding,
High-lewvel paraliel prograsssing models, afler four docndes of proposals, have
still mot seen widesperoad adoption. This & beginning te chasge. Sywiens like
MapRedooe are suooending based on lmpdicht paanlbeloms. Other syssems like
Nvidia CUDA aee partway there, providiag & restricted peogramming moded to
the wer bt abo exposing oo maay of the hardware Sctaib. The pagyolf foc a
Righ bevel prograsusing rodel s choar 7 can peovide semantic guarnatoes and
oan s pify the understandng, dedagging, snd testing of a paradel program
s this paper we lrgroduce the Conourrone Collections (CnC) prograsming
model, beilt o post work oo TStreaczs 15, CoC falls info the sacme Saxily
o dasallow aed o ing languages & prograe is & geaph of kersels,
comppanioating with cne ansther. [a CoC, those computations are called stepa,
and are related Yy control and data dependences. OaC s provaddy determn-
sthe. This lemits CnaC's soope, Bt compared 2o 24 more assTow cousterparts
{Stoene=lT, NP-Click, etc), CaC bs suted Sor many spplications incorpoeating
static and dysaenie forms of ek, data, loop, pipeline, and troe paralilise:,
Traly mosnstrenm pearalbdism will require resching the large community of
son-profosional programamens sclentbta, animatons, asd Snascial analyes
bt reaching them reguines & separation of corcerss between appliontion boge
and paraiiel implonentation, We sy that the former b the conoen of the
domain cxpert and the Ivtter of the perfosiance fuming expert The tusing
expert is given the possibie froedors 10 map the cotpatation ceto Lhe
target sechitecture and is ot roguired %0 have an undenstanding of the domain
A streagh of ColC bs thas & s sluktaneoudy » datafion-like paraliel model

Budimlic et al., 2010

— -

...to Concurrent Collections

Concurrent Collections

Zoran NDudimiid’ Michael Hurke' Vincent Cavd Kathieen Knobe
Goof Lowney’ Ryan Newton' Jems Pabberg’ David Pelxotto
Vivek Sashar' Frank Schlimbach’ Sa@sak Tagerlar

Race Universiny “Iatel Corporstion “UCLA

Abwtract

We istnnfure tle Cimwrreat Colltanm (CaC) pryreasenisg wesbed
Cn wapports Sexbie combiracions of task aod data pacaliclsen wilk
swtalniag detorminben. Col b brphonly pacaliel with the uwwr prowid
g bigh bl aperatioos alkeg with wmascic ordering comstraiass tha
wrther b & CoC graga

S ice . Lemma 3.2. (Momnotonicity) If o — o', then o < o’. 4

b the wodel poacavions determorinin cvergrpiaiion Ve evadunie (e

performance of Cal mrplemeniations on several appiontors and show

bt Cal ofens perfoemance aeed scalabiity ogurvalontt 10 oo better than

bae. offered by lowes-Jovel parallel prograsmzing maodels —— .
1 Introduction
With muslticoes processon, paralel o

Cmpatag & polsg malnetronm, Yot most
software s still written in teaditiona] serial bagusges with gl tlevadang
High-level parallie]l prograssing sodels, afler four docndes of proposals, have
still mot s widesproad adoption. This & beginning 1o chasge. Sywiens like
MapRedoce are sacoeedine * -~ sn lmelicht pasalles i

ot
"~

o s b The key language feature that enables determinism is the single assignment ¢

seezin condition. The single assignment condition guarantees monotonicity of the data

stic. This bemits Cr

servos - collection A. We view A as a partial function from integers to integers and the

Traly manstream

on- e odoseional peoy

single assignment condition guarantees that we can establish an ordering based

and paradel bmphee
sl

domain cxpert and

“=7zZi. on the non-decreasing domain of A.

arget aechitex

A rengeh of Cok

Budimlic et al., 2010

Monotonicity enables deterministic parallelism!

Parameterizing our language: LVars

N

0,0) (0,1) .. 3

AN BN

O,1) (1,L

NV \\\ e

IVar Pair of IVars Counter

Parameterizing our language: LVars

(0,0) (O, 1)

=\

OJ_) (1, L

Pair of IVars

Parameterizing our language: LVars

(0,0) (O, 1)

=\

OJ_) (1, L

Pair of IVars

Parameterizing our language: LVars

(o} 0) (o, 1)
(L0 (L) .. (o 1) (1, 1)

)
"tripwire”

Pair of IVars

Parameterizing our language: LVars

(0, 0) (1 0) (1,1)

let - =put p {(L,4)} in //

let par v; = getFst p (L0 (L i(o, 1) (1, 1)
=putp{(3,4)} A >~ \\/ ----------
in ...vq1...),/
getSnd | "tripwire"
— Pair of IVars

T — B

W getFst p = getp{(1) | neN}

-AA
8 gt

Two take-aways

Monotonicity enables deterministic parallelism

Monotonically increasing writes
+ threshold reads
= deterministic parallelism

Where to find out more

= composition.al

= Recent post: “How to read from an LVar: an
illustrated guide”

= Our draft paper and tech report

s Paper: Complete syntax and semantics
= TR: Complete proof of determinism

= GitHub: github.com/iu-parfunc/Ivars
= Prototype LVar library in Haskell

m Mechanized semantics in PLT Redex

s [alk to me!

