I LVars:

) ..‘ = :
Lattice-based Data Structures —
for Deterministic Parallelism _— e

Lindsey Kuper and Ryan Newton
Indiana University

FHPC ’13, Boston, MA, USA

-~ September 23, 2013 .
T .

What does this program evaluate to?

p = do
num <- newbkEmptyMVar
forkIO $ do putMVar num 3
forkIO $ do putMvVar num 4

v <- takeMVar num
return v

T — e —————T

Terminal — bash — 88x23

landin:lvar-examples lkuper$ make data-race-example
ghc -02 data-race-example.hs -rtsopts -threaded

Linking data-race-example ...
while true; do ./data-race-example +RTS -N2; done

4 4 AW 4 4 4

Disallow multiple writes?

p = do
num <- newbkEmptyMVar
forkIO $ do putMVar num 3
forkIO $ do putMvVar num 4

v <- takeMVar num
return v

r ——

Disallow multiple writes?

p = do
num <- newEmptyMVar w
forkIO 3 dOL;utMVar num%3f\

forkIO S do 4-

v <- takeMvVar num

return v

T —

Disallow multiple writes?

p = do
num <- newkEmptyMvar

forkIO 5 dO()utMVar num\3f\

forkIO S »qo
v <- takeMVar num
return v

?-»

Tesler and Enea, 1968

Arvind et al., 1989 [Vars

Disallow multiple writes?

p :: Par Int

p = do
num <- new
fork $ doCpu
fork $ docput nu
v <- get ‘
return v

-

Tesler and Enea, 1968

Arvind et al., 1989 [Vars

Disallow multiple writes?

fork
fork

v <- get num
return v

T —

Tesler and Enea, 1968

Arvind et al., 1989 I[Vars

./ivar-example +RTS -N2

lvar-example: multiple put

Deterministic programs that single-assignment forbids

num <- new

fork $ docpu .
fork $ docput —hum_

VvV <- get B e U
return v

—

Deterministic programs that single-assignment forbids

fork
fork

v <- get num
return v

*

. /repeated-4-ivar +RTS -N2

repeated-4-ivar: multiple put

Deterministic programs that single-assignment forbids

p :: Par Int
p=d0
num <- new
fork $ do&pu

v <- get
return v

./repeated-4-ivar +RTS -N2

repeated-4-ivar: multiple put

Deterministic programs that single-assignment forbids

p :: Par Int
p=d0
num <- new
fork $ dogpu

v <- get
return v

./repeated-4-ivar +RTS -N2

repeated-4-ivar: multiple put

Deterministic programs that single-assignment forbids

p :: Par Int
p=d0
num <- new
fork $ dogpu

v <- get
return v

./repeated-4-ivar +RTS -N2

repeated-4-ivar: multiple put

do
fork S do insert t "0°"
fork S do insert t "1100"
fork S do insert t "1111"
v <- get t
return v

Deterministic programs that single-assignment forbids

p :: Par Int
p=d0
num <- new
fork $ dogpu

v <- get
return v

./repeated-4-ivar +RTS -N2

repeated-4-ivar: multiple put

do
fork S do 1insert t
fork S do 1insert t
fork S do 1insert t
v <- get t
return v

LVars: Multiple least-upper-bound writes

num

Raises an error, since 3 u4 =T

do
fork $ do put num 3
fork $ do put num 4

I — —
Works fine, since 4 u 4 =4
do

fork $ do put num 4
fork $ do put num 4

T — T

LVars: Threshold reads

(0,0) (O, 1)

B fork $ do putFst nn 0O
/ \ """ fork $ do putSnd nn 1
b ¥ v <- getSnd nn
:uﬂ)(lﬂ .o 0,) (1, 1)

‘\\QS‘/////// return v -- returns
- —_—

"tripwire

LVars: Threshold reads

(0, 0) (01)

R fork $ do putFst nn 0
/ T \ """ fork $ do putSnd nn 1
T""{i"'"ﬁx’ v <- getSnd nn
(Lo (L) L 0L (L)
T --------------- / return v -- returns 1
, D
getSnd | "tripwire”

LVars: Threshold reads

nn T
(

0,0) (0,1)

/\
C(L,0) (L,1)

getSnd | "tripwire” 1

/
/
/
]
I

0,1))@,1)

W

e —

///\\\ a0
nn <- newPailr
) (1,0) (1,1)

fork $ do putFst nn 0
fork $ do putSnd nn 1
v <- getSnd nn

return v -- returns 1

—

LVars: Threshold reads

(0, 0)

B fork $ do putFst nn 0O
/ \ """ fork $ do putSnd nn 1
b ¥ v <- getSnd nn
:uﬂ)(lﬂ .o 0,) (1, 1)

‘\\QS‘/////// return v -- returns
- —_—

"tripwire

LVars: Threshold reads

as R fork $ do putFst nn 0
/ T \ """ fork $ do putSnd nn 1
T""{i"'"ﬁx’ v <- getSnd nn
(Lo (L) L 0L (L)
T --------------- / return v -- returns 1
, D
getSnd | "tripwire”

LVars: Threshold reads

I : fork $ do putFst nn 0
/ "\ """ fork $ do putSnd nn 1
(lO)/ : / 0, 1) (1,1) . v <- getSnd nn
T _____________ \</i;///// return v —-- returns 1
p: N
getSnd | "tripwire" —

LVars: Threshold reads

(0, 0)

B fork $ do putFst nn 0O
/ \ """ fork $ do putSnd nn 1
b ¥ v <- getSnd nn
:uﬂ)(lﬂ .o 0,) (1, 1)

‘\\QS‘/////// return v -- returns
- —_—

"tripwire

LVars: Threshold reads

\ B fork $ do putFst nn 0

fork $ do putSnd nn 1
)/ v <- getSnd nn
| o0, L) (1,1L)

\<Ki;///// return v -- returns 1
(e \ ——
"tripwire"

LVars: Threshold reads

\ B fork $ do putFst nn 0

fork $ do putSnd nn 1
)/ v <- getSnd nn
| o0, L) (1,1L)

.x<éé;;?;//“ return v -- returns 1
N

Overlapping writes are no problem

do
fork S do 1insert t
fork S do 1insert t
fork S do 1insert t
v <- get t
return v

Monotonicity enables deterministic parallelism

Kahn, 1974

INFORMATION PROCESSING 74 — NORTH-HOLLAND PUBLISHING COMPANY (1974)

THE SEMANTICS OF A SIMPLE LANGUAGE FOR PARALLEL PROGRAMMING

Gilles KAHN

IRIA-Laboria, Domaine de Voluceau, 78150
Rocquencourt, France

and

Commissariat d I'Energie Atomique, France

In this paper, we describe a simple language for parallel programming. Its

ics 1is studied thor-

oughly. The desirable properties of this language and its deficiencies are exhibited by this theoret-
ical study. Basic results on parallel program s.hemata are given. We hope in this way to make a case
for a more formal (i.e. mathematical) approach tc-the design of languages for systems programming and

the design of operating systems.

. There is a wide disagreement among systems designers

as to what are the best primitives for writing sys-
tems programs. In this paper, we describe a simple
language for parallel programming and study its
mathematical properties.

1. A SIMPLE LANGUAGE FOR PARALLEL PROGRAMMING.

The features of our mini-language are exhibited on
the sample program S on fig.l. The conventions are
close to Algol and we only insist upon the new
features. The program S consists of a set of decla-
rations and a body. Variables of type integer
channel are declared at 'line (1), and for ary simple
type o (bcolean, real, etc...) we could have decla-
red a o ch 1. Then pr f, g and h are
declared, much like procedures. Aside from usual
parameters (passed by value in this example, like
INIT at line (3)), we can declare in the heading of
the process how it is linked to other processes : at
line (2) f is stated to communicate via two input

* lines that can carry integers, and one similar out-

put line.

The body of a process is an usual Algol program except
for invocation of wait onan input line (e.g. at (4))
or send a variable on a line of compatible type
(e.g. at (5)). The process stays blocked on a wait
until something is being sent on this line by ano-
ther process, but nothing can prevent a process
from performing a send on a line.

In other words, processes communicate via first-in
first-out (fifo) queues.

Calling instances of the processes is done in the

. body of the main program at line (6) where the

actual names of the channels are bound to the formal
parameters of the processes. The infix operator par
initiates the concurrent activation of the processes.
Such a style of programming is close to may systems
using EVENT mechanisms ([1],02],03],04]). A picto-
rial representation of the program is the schema P
on fig.2,, where the nodes represent processes and
the arcs communication channels between these pro-
cesses. '

What sort of things would we like to prove on a
program like S ? Firstly, that all processes in §
run forever. Secondly, more precisely, that S prints
out (at line (7)) an alternating sequence of 0's

and 1's forever. Third, that if one of the processes
were to stop at some time for an extraneous reason,
the whole system would stop.

The ability to state formally this kind of property
of a parallel program and to prove them within a
formal logical framework is the central motivation
for the theoretical study of the next sections.

2. PARALLEL COMPUTATION.

Informally speaking, a parallel computation is orga-
nized in the following way : some autonomous compu-
ting stations are connected to each other in a net-
work by communication lines. Computing stations
exchange information through these lines. A given
station computes on data coming along its input lines,

Begin
(1) Integer channel X, Y, 2, T, T2 ;
(2) Process f(integer in U,V; integer out W) ;
Begin integer 1 ; logical B ;
B := true ;
Repeat Begin

(4) 1 := if B then wait(V) else wait(V) ;
e print (1) ;
(5) send Ton VW ;

B :=—/B ;

end ;

3

End ;
Process g(integer in U ; integer out V, W) ;
Begin integer 1 ; logical B ; .
B := true ;
Repeat Begin
I := wait (U) ;
if B then send I on V else send 1 on W ;
B :=7B ;
End ;

End ;
(3) Process h(integer in U;integer out V; integer INIT);
Begin integer 1 ;
send INIT on V ;
Repeat Begin
I := watt(V) ;
send TonV ;
End ;
End ;

Camment : body of mainprogram ;

(6) f£(Y,Z,X) par g(X,T1,T2) par h(T1,Y,0) par h(T2,Z,1
End ;

Fig.!. Sample parallel program S.

Fig.2. The schema P for the program S.

onotonicity enables deterministic parallelism

f is monotonic ift, for a given §,

x <y = f(x) < f(y)

Kahn, 1974

INFORMATION PROCESSING 74 — NORTH-HOLLAND PUBLISHING COMPANY (1974)

THE SEMANTICS OF A SIMPLE LANGUAGE FOR PARALLEL PROGRAMMING

Gilles KAHN

IRIA-Laboria, Domaine de Voluceau, 78150
Rocquencourt, France

and

Commissariat a I'Energie Atomique, France

In this paper, we describe a simple language for parallel programming. Its semantics is studied thor-
oughly. The desirable properties of this language and its deficiencies are exhibited by this theoret-
ical study. Basic results on parallel program s.hemata are given. We hope in this way to make a case
for a more formal (i.e. mathematical) approach tc-the design of languages for systems programming and

the design of operating systems.

. There is a wide disagreement among systems designers

as to what are the best primitives for writing sys-
tems programs. In this paper, we describe a simple
language for parallel programming and study its
mathematical properties.

1. A SIMPLE LANGUAGE FOR PARALLEL PROGRAMMING.

The features of our mini-language are exhibited on
the sample program S on fig.l. The conventions are
close to Algol and we only insist upon the new
features. The program S consists of a set of decla-
rations and a body. Variables of type integer
channel are declared at 'line (1), and for ary simple
type o (bcolean, real, etc...) we could have decla-
red a o ch 1. Then pr f, g and h are
declared, much like procedures. Aside from usual
parameters (passed by value in this example, like
INIT at line (3)), we can declare in the heading of
the process how it is linked to other processes : at
line (2) f is stated to communicate via two input

* lines that can carry integers, and one similar out-

put line.

The body of a process is an usual Algol program except
for invocation of wait onan input line (e.g. at (4))
or send a variable on a line of compatible type
(e.g. at (5)). The process stays blocked on a wait
until something is being sent on this line by ano-
ther process, but nothing can prevent a process
from performing a send on a line.

In other words, processes communicate via first-in
first-out (fifo) queues.

Calling instances of the processes is done in the

. body of the main program at line (6) where the

actual names of the channels are bound to the formal
parameters of the processes. The infix operator par
initiates the concurrent activation of the processes.
Such a style of programming is close to may systems
using EVENT mechanisms ([1],02],03],04]). A picto-
rial representation of the program is the schema P
on fig.2,, where the nodes represent processes and
the arcs communication channels between these pro-
cesses. :

What sort of things would we like to prove on a
program like S ? Firstly, that all processes in §
run forever. Secondly, more precisely, that S prints
out (at line (7)) an alternating sequence of 0's

and 1's forever. Third, that if one of the processes
were to stop at some time for an extraneous reason,
the whole system would stop.

The ability to state formally this kind of property
of a parallel program and to prove them within a
formal logical framework is the central motivation
for the theoretical study of the next sections.

2. PARALLEL COMPUTATION.

Informally speaking, a parallel computation is orga-
nized in the following way : some autonomous compu-
ting stations are connected to each other in a net-
work by communication lines. Computing stations
exchange information through these lines. A given
station computes on data coming along its input lines,

Begin
(1) Integer channel X, Y, 2, T, T2 ;
(2) Process f(integer in U,V; integer out W) ;
Begin integer 1 ; logical B ;
B := true ;
Repeat Begin

(4) 1 := if B then wait(V) else wait(V) ;
) print (1) ;
(5) send Ton VW ;

B :=—/B ;

end ;

3

;
Process g(integer in U ; integer out V, W) ;
Begin integer 1 ; logical B ; .

B := true ;

Repeat Begin
I := wait (U) ;
if B then send I on V else send 1 on W ;
B :=TB ;
End ;

End ;
(3) Process h(integer in U;integer out V; integer INIT);
Begin integer 1 ;
send INIT on V ;
Repeat Begin
I := watt(V) ;
send TonV ;
End ;
End ;

Camment : body of mainprogram ;

(6) f£(Y,Z,X) par g(X,T1,T2) par h(T1,Y,0) par h(T2,Z,1
End ;

Fig.!. Sample parallel program S.

Fig.2. The schema P for the program S.

Monotonicity enables deterministic parallelism

INFORMATION PROCESSING 74 — NORTH-HOLLAND PUBLISHING COMPANY (1974) .~ ~

f i S m O n O tO n iC iff’ fO r a give n <) THE SEMANTICS OF A SIMPLE LANGUAGE FOR PARALLEL PRbGRAMMlNG
x <y = f(x) < f(y)

Rocquencourt, France
and

Commissariat d I'Energie Atomique, France

In this paper, we describe a simple language for parallel programming. Its semantics is studied thor-
Aeficiencies are exhibited by this theoret-

ven. We hope in this way to make a case

f languages for systems programming and

Monotonicitz means that receiving more input at J
@ computing station can only provoke it to send more FrwslimwinTTY

B := true ;
Repeat Begin

ou tpu t . Ind eed thi S a cruc ial proper ty s i-llc e i t ‘:”,:E;‘;f‘ﬁ Ehc;n wait(V) else wait(V) ;
allows parallel operation : a machine need not have

all of its input to start computing, since future b o

1 := wait (U) ; !
2f B then send I on V else gend 1 on W ;

lnput concerns onlz future putput. B

s

88 h(integer in U;integer out V; integer INIT);
“n integer 1 ;

nd INIT on V ;

2peat Begin

I := watt(V) ;
= send 1 onV ;
——
ther process, but no End ;
from performing a send on a line. End ;

In other words, processes communicate via first-in
first-out (fifo) queues.

Comment : bbdy of mainprogram ;

Calling instances of the processes is done in the (6) £(¥,2,X) par g(X,T1,T2) par h(T1,Y,0) par h(T2,Z,!
. body of the main program at line (6) where the End ;

actual names of the channels are bound to the formal .

parameters of the processes. The infix operator par Fig.l. Sample parallel program §.

The kind of parallel programming.we have studied in
this paper is severely limited : it can produce only-.
determinate programs. -

2. PARALLEL COMPUTATION.

Informally speaking, a parallel computation is orga-
nized in the following way : some autonomous compu-
ting stations are connected to each other in a net-
work by communication lines. Computing stations
exchange information through these lines. A given

station computes on data coming along its input lines, Fig.2. The schema P for the program S.

Kahn, 1974

Challenge problem

In a directed graph:

= find the connected component of all
nodes within k hops of a vertex v

= and compute a function analyze over
each vertex in that component

= making the set of results available
asynchronously to other
computations

Challenge problem

We compared two implementations:
Control.Parallel.Strategies

Our prototype LVar library
(tracking visited nodes in an LVar)

Level-sync breadth-first traversal, k= 10

Random graph; 320K edges; 40K nodes
Varying:
number of cores

amount of work done by analyze

Challenge problem: Strategies vs. LVars

Running time (s)

Running time (s)

(lower is better)

Strategies vs. LVarPure, 1 core

12

Bl Strategies
Bl VarPure

1 2

10.3810.51

4 8 16 32
Work done by analyze (us)

Strategies vs. LVarPure, 3 cores

Bl Strategies
Bl LVarPure

0.0

4137

3.38

4 8 16 32
Work done by analyze (us)

Running time (s)

Strategies vs. LVarPure, 2 cores

Bl Strategies
Bl LVarPure

Running time (s)

1 2

7.16

4 8 16 32
Work done by analyze (us)

Strategies vs. LVarPure, 4 cores

Bl Strategies
B VarPure

4.0

w
w

™
o

N
w

o
-

-
U

o

o
w

=
o

409
3.96 2

4 8 16 32
Work done by analyze (us)

Challenge problem:

Strategies vs. LVars

Running time (s)

Running time (s)

(lower is better)

Strategies vs. LVarPure, 1 core

12

Bl Strategies
Bl VarPure

1 2 4 8 16 32
Work done by analyze (us)

Strategies vs. LVarPure, 3 cores

. 4137
Bl Strategies

B |\VarPure

3.38

0.0

1 2 4 8 16 32
Work done by analyze (us)

Running time (s)

Strategies vs. LVarPure, 2 cores

Bl Strategies
Bl LVarPure

Running time (s)

1 2

7.16

4 8 16 32
Work done by analyze (us)

Strategies vs. LVarPure, 4 cores

Bl Strategies
B VarPure

4.0

w
w

™
o

N
w

o
-

-
U

o

o
w

=
o

409
3.96 2

4 8 16 32
Work done by analyze (us)

Challenge problem: Strategies vs. LVars

Monotonicitz means that receiving more input at /
a8 computing station can only provoke it to send more
output. Indeed this a crucial property since it
allows parallel operation : a machine need not have
all of its input to start comggting;-gince future

lnput concerns onlz future putput.
PR R—— A

Average time from start of program
to first invocation of analyze:

Strategies version: 64.64 ms

LVar version: 0.18 ms

Lots more stuff in the paper and TR

Mvar, @ core calculus for LVars

Proof of determinism for Arvar
Independence Lemma is a frame property!

Details on our Haskell library

Proposed extension: quasi-determinism

Ask me about our new paper on this!

Cool applications: k-CFA, phylogenetics, ...

< <42 = "
I Thank you!

Email: lkuper@cs.indiana.edu
Research blog: composition.al
Project repo: github.com/iu-parfunc/lvars
Code from this talk: github.com/lkuper/lvar-examples \,i

(€9 (® Photo by kakadu on Flickr. Thanks!

