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res <- async (readIORef cart)
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p ¢ IO (Map Item Int)
p = do cart <- newIORef empty
al <- async (atomicModifyIORef cart

(\m -> (insert Book 1 m, ())))
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(\m -> (insert Shoes 1 m, ())))
res <- async (readIORef cart)
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data Item = Book | Shoes | ...

p ¢ IO (Map Item Int)
p = do cart <- newIORef empty
al <- async (atomicModifyIORef cart

(\m -> (insert Book 1 m, ())))
a2 <- async (atomicModifyIORef cart

(\m -> (insert Shoes 1 m, ())))
res <- async (do waitBoth al a2
walit res readIORef cart)




data Item = Book | Shoes | ...

p ¢ IO (Map Item Int)
p = do cart <- newIORef empty
al <- async (atomicModifyIORef cart

(\m -> (insert Book 1 m, ())))
a2 <- async (atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ())))

res <- async (do waitBoth al a2
readIORef cart)
wait res




p :: IO (Map Item Int)
p = do
cart <- newIORef empty
al <- async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))
a2 <- async (atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ())))
res <- async (do waitBoth al a2
readIORef cart)
walt res

main = do v <- p
print v

T — *

deterministic



= do

cart <- newIORef empty

al <- async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))

a2 <- async (atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ())))

res <- async (do waitBoth al a2

readIORef cart)

p :: IO (Map Item Int)
p

walit res

main = do v <- p
print v

T — *

deterministic...now



= do

cart <- newIORef empty

al <- async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))

a2 <- async (atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ())))

res <- async (do waitBoth al a2

readIORef cart)

p :: IO (Map Item Int)
p

walit res

main = do v <- p
print v

T — *

deterministic..now..we hope



HasPut e =>

D I0 (Map Item Int) P
b = do Par e s (IMap Item s Int)
cart <- newIORef empty p = do
al <- async (atomicModifyIORef cart cart <- newEmptyMap
(o> Cinsere soox o m, (1)) | £omk insert sook 1 care)
a2 <- async (atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ()))) return cart

res <- async (do waitBoth al a2

readIORef cart)
wait res T — T —

deterministic by construction
[FHPC 13, POPL '14]

main = print (runParThenFreeze p)

main = do v <- p
print v

T — e —

deterministic..now..we hope
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Can we generalize and unify these points in the space!



The deterministic by construction parallel programming landscape:
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imperative disjoint A-calculus

/NDPJ, ) (& array langs, ...) hy

g(left) (rght)
HEEEEEEESENNES

Can we generdalize and unify these points Iin the space! Yes!



data Item = Book | Shoes | ...

p :: IO (Map Item Int)
p = do cart <- newIORef empty

async (atomicModifyIORef cart

(\m -> (insert Book 1 m,

())))

async (atomicModifyIORef cart

(\m -> (insert Shoes 1 m,

())))

res <- async (readIORef cart)

walt res

T —
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p :: IO (Map Item Int)
p = do cart <- newIORef empty .

async,{atomicModifyIORef cart :
“=_(insert Book 1 m, (

{»*”om1CMo-1xyIORefgcart
(\m“a<<\stert_Shoes 1 m,_L+;;?

res <- async (readIORef cart)
walit res
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data Item = Book | Shoes | ...

p :: IO (Map Item Int)
p = do cart <- newIORef empty .

async,{atomicModifyIORef cart :
“=_(insert Book 1 m, (

async{»;”om1CMo-1*yIORef4cart
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Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

Amazon.com

ABSTRACT

Reliability at massive scale is one of the biggest challenges we
face at Amazon.com, one of the largest e-commerce operations in
the world; even the slightest outage has significant financial
consequences and impacts customer trust. The Amazon.com
platform, which provides services for many web sites worldwide,
is implemented on top of an infrastructure of tens of thousands of
servers and network components located in many datacenters
around the world. At this scale, small and large components fail
continuously and the way persistent state is managed in the face
of these failures drives the reliability and scalability of the
software systems.

This paper presents the design and implementation of Dynamo, a
highly available key-value storage system that some of Amazon’s
core services use to provide an “always-on” experience. To
achieve this level of availability, Dynamo sacrifices consistency
under certain failure scenarios. It makes extensive use of object
versioning and application-assisted conflict resolution in a manner
that provides a novel interface for developers to use.

Categories and Subject Descriptors

D.4.2 [Operating Systems]: Storage Management; D.4.5
[Operating Systems]: Reliability; D.4.2 [Operating Systems]:
Performance;

General Terms
Algorithms, Management, Measurement, Performance, Design,
Reliability.

1. INTRODUCTION

Amazon runs a world-wide e-commerce platform that serves tens
of millions customers at peak times using tens of thousands of
servers located in many data centers around the world. There are
strict operational requirements on Amazon’s platform in terms of
performance, reliability and efficiency, and to support continuous
growth the platform needs to be highly scalable. Reliability is one
of the most important requirements because even the slightest
outage has significant financial consequences and impacts
customer trust. In addition, to support continuous growth, the
platform needs to be highly scalable.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SOSP’07, October 14-17, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-591-5/07/0010...$5.00.

One of the lessons our organization has learned from operating
Amazon’s platform is that the reliability and scalability of a
system is dependent on how its application state is managed.
Amazon uses a highly decentralized, loosely coupled, service
oriented architecture consisting of hundreds of services. In this
environment there is a particular need for storage technologies
that are always available. For example, customers should be able
to view and add items to their shopping cart even if disks are
failing, network routes are flapping, or data centers are being
destroyed by tornados. Therefore, the service responsible for
managing shopping carts requires that it can always write to and
read from its data store, and that its data needs to be available
across multiple data centers.

Dealing with failures in an infrastructure comprised of millions of
components is our standard mode of operation; there are always a
small but significant number of server and network components
that are failing at any given time. As such Amazon’s software
systems need to be constructed in a manner that treats failure
handling as the normal case without impacting availability or
performance.

To meet the reliability and scaling needs, Amazon has developed
a number of storage technologies, of which the Amazon Simple
Storage Service (also available outside of Amazon and known as
Amazon S3), is probably the best known. This paper presents the
design and implementation of Dynamo, another highly available
and scalable distributed data store built for Amazon’s platform.
Dynamo is used to manage the state of services that have very
high reliability requirements and need tight control over the
tradeoffs between availability, consistency, cost-effectiveness and
performance. Amazon’s platform has a very diverse set of
applications with different storage requirements. A select set of
applications requires a storage technology that is flexible enough
to let application designers configure their data store appropriately
based on these tradeoffs to achieve high availability and
guaranteed performance in the most cost effective manner.

There are many services on Amazon’s platform that only need
primary-key access to a data store. For many services, such as
those that provide best seller lists, shopping carts, customer
preferences, session management, sales rank, and product catalog,
the common pattern of using a relational database would lead to
inefficiencies and limit scale and availability. Dynamo provides a
simple primary-key only interface to meet the requirements of
these applications.

Dynamo uses a synthesis of well known techniques to achieve
scalability and availability: Data is partitioned and replicated
using consistent hashing [10], and consistency is facilitated by
object versioning [12]. The consistency among replicas during
updates is maintained by a quorum-like technique and a
decentralized replica synchronization protocol. Dynamo employs

* *

[DeCandia et al,, SOSP '07/]

23



Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

Amazon.com

ABSTRACT

Reliability at massive scale is one of the biggest challenges we
face at Amazon.com, one of the largest e-commerce operations in
the world; even the slightest outage has significant financial
consequences and impacts customer trust. The Amazon.com
platform, which provides services for many web sites worldwide,
is implemented on top of an infrastructure of tens of thousands of
servers and network components located in many datacenters
around the world. At this scale, small and large components fail
continuously and the way persistent state is managed in the face
of these failures drives the reliability and scalability of the
software systems.

This paper presents the design and implementation of Dynamo, a
highly available key-value storage system that some of Amazon’s
core services use to provide an “always-on” experience. To
achieve this level of availability, Dynamo sacrifices consistency
under certain failure scenarios. It makes extensive use of object
versioning and application-assisted conflict resolution in a manner
that provides a novel interface for developers to use.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management; D.4.5
[Operating Systems]: Reliability; D.4.2 [Operating Systems]:

Porfamm -

One of the lessons our organization has learned from operating
Amazon’s platform is that the reliability and scalability of a
system is dependent on how its application state is managed.
Amazon uses a highly decentralized, loosely coupled, service
oriented architecture consisting of hundreds of services. In this
environment there is a particular need for storage technologies
that are always available. For example, customers should be able
to view and add items to their shopping cart even if disks are
failing, network routes are flapping, or data centers are being
destroyed by tornados. Therefore, the service responsible for
managing shopping carts requires that it can always write to and
read from its data store, and that its data needs to be available
across multiple data centers.

Dealing with failures in an infrastructure comprised of millions of
components is our standard mode of operation; there are always a
small but significant number of server and network components
that are failing at any given time. As such Amazon’s software
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Our contribution:
deterministic threshold queries of CvRDTs
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