L Vars

L attice-based Data Structures
for Deterministic Parallel
and Distributed Programming

Lindsey Kuper
Compose :: Conference
January 31,2015

Joint work with Ryan Newton, Neel Krishnaswami,
Aaron Turon, Sam Tobin-Hochstadt

(with illustrations by Jason Reed)

controlles

including
Display;

DMl and

Misa 1/0

e

.| ;A||||I|.|"_!'-

Toad o ool bt 000
: o Memory Controller 1/0 wemarmas

Parallel systems Distributed systems

including
Display;
DMl and
Misa 1/0

—

o 1.‘.1.)‘|"L| f 8 l ' s R eN BN
— o Memory Controller 1/0 uemarmes

Deterministic Parallel Programming

including
Display;
DMl and
Misa 1/0

—

o 1.‘.1.)‘|"L| f 8 l ' s R eN BN
— o Memory Controller 1/0 uemarmes

(observably)
Deterministic Parallel Programming

data Item = Book | Shoes |

data Item = Book | Shoes |

p ¢ IO (Map Item Int)

data Item = Book | Shoes | ...

p :: IO (Map Item Int)
p = do cart <- newIORef empty

data Item = Book | Shoes | ...

p :: IO (Map Item Int)
p = do cart <- newIORef empty

data Item = Book | Shoes | ...

p :: IO (Map Item Int)
p = do cart <- newIORef empty

data Item = Book | Shoes |

IO (Map Item Int)
do cart <- newIORef empty
async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))

P
P

data Item = Book | Shoes |

IO (Map Item Int)
do cart <- newIORef empty
async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))

P
P

data Item = Book | Shoes | ...

p ¢ IO (Map Item Int)
p = do cart <- newIORef empty
async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))

data Item = Book | Shoes | ...

p ¢ IO (Map Item Int)
p = do cart <- newIORef empty
async (atomicModifyIORef cart

(\m -> (insert Book 1 m, ())))
async (atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ())))

data Item = Book | Shoes | ...

p ¢ IO (Map Item Int)
p = do cart <- newIORef empty
async (atomicModifyIORef cart

(\m -> (insert Book 1 m, ())))
async (atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ())))

res <- async (readIORef cart)

data Item = Book | Shoes | ...

p ¢ IO (Map Item Int)
p = do cart <- newIORef empty
async (atomicModifyIORef cart

(\m -> (insert Book 1 m, ())))
async (atomicModifyIORef cart

(\m -> (insert Shoes 1 m, ())))
res <- async (readIORef cart)
walit res

T — R

e MO Terminal — bash — 90x27

| bash |

landin:lvar-examples lkuper$ make map-ioref-data-race

ghc -02 map-ioref-data-race.hs -rtsopts -threaded

[1 of 1] Compiling Main (map-ioref-data-race.hs, map-ioref-data-race.o)
Linking map-ioref-data-race ...

while true; do ./map-ioref-data-race +RTS -N2; done
[(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes,1)][(Book,1
), (Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1
)1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1
), (Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1
)1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1
), (Shoes,1)][(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes
,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Boo
k,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Sho
es,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Bo
ok,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(B
ook,1),(Shoes,1)][(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(
Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][
(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]
[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),
(Shoes,1)][(Book,1),(Shoes,1)][(Book,1)]1[(Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)
1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1)][(Book,1),(Shoes,1)
1[(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes
,1)1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book |§
,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Boo E
k,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe §

e MO Terminal — bash — 90x27

| bash |

landin:lvar-examples lkuper$ make map-ioref-data-race .
ghc -02 map-ioref-data-race.hs -rtsopts -threaded
[1 of 1] Compiling Main (map-ioref-data-race.hs, map-ioref-data-race.o)
L1nk1ng map-1oref -data-race ...
man_ioref-data-race +RTS -N2; done
(Book 1), (Shoes 1)]1R(Shoes,1)][(Book,1), (Shoes 1)]1[(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1
500K, 1), (Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1

)][(Book 1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1
), (Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1
)1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1
), (Shoes,1)][(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes
,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Boo
k,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Sho
es,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Bo
ok,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(B
ook,1),(Shoes,1)][(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(
Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][
(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]
[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),
(Shoes,1)][(Book,1),(Shoes,1)][(Book,1)]1[(Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)
1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1)][(Book,1),(Shoes,1)
1[(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes
,1)1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book [§
,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Boo E
k,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe §

oM O Terminal — bash — 90x27

| bash |
landin:lvar-examples lkuper$ make map-ioref-data-race .
ghc -02 map-ioref-data-race.hs -rtsopts -threaded
[1 of 1] Compiling Main (map-ioref-data-race.hs, map-ioref-data-race.o)
L1nk1ng map-1oref -data-race ...
an-ioraf_data-race +RTS -N2; done

[(Book 1), (Shoes 1) l(Shoes 1)] (Book,1), (Shoes 1) [(Shoes,1)]l (Book,1),(Shoes,1)]1[(Book,1

. SOUK , L, onves, 1) | [(Book,1),(Shoes, 1, (buuK, L), Shoes,1)][(Book,1),(Shoes,1
)][(Book 1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1
), (Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1
)1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1
), (Shoes,1)][(Shoes,1)][CRaok 11 (Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes
,1)]1[(Book,1),(Shoes,1) [(Shoes,1)] (Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1)]\ buuK, L), Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Boo
k,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Sho
es,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Bo
ok,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(B
ook,1),(Shoes,1)][(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(
Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][
(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]
[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),
(Shoes,1)][(Book,1),(Shoes,1)][(Book,1)]1[(Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)
ALCRaok 17 (Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1)][(Book,1),(Shoes,1)
" [(Shoes,1)] (Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes
»LJJL\DUUK, 1/, (Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1) CShoas ANIT(Book [i§
,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1) [(Shoes,1)] (Boo E
k,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1) \ booUR, L), Shoe ¥

oM O Terminal — bash — 90x27

| bash |
landin:lvar-examples lkuper$ make map-ioref-data-race .
ghc -02 map-ioref-data-race.hs -rtsopts -threaded
[1 of 1] Compiling Main (map-ioref-data-race.hs, map-ioref-data-race.o)
L1nk1ng map-1oref -data-race ...
an-ioraf_data-race +RTS -N2; done

[(Book 1), (Shoes 1) l(Shoes 1)] (Book,1), (Shoes 1) [(Shoes,1)]l (Book,1),(Shoes,1)]1[(Book,1

. SOUK , L, onves, 1) | [(Book,1),(Shoes, 1, (buuK, L), Shoes,1)][(Book,1),(Shoes,1
)][(Book 1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1
), (Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1
)1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1
), (Shoes,1)][(Shoes,1)][CRaok 11 (Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes
,1)]1[(Book,1),(Shoes,1) [(Shoes,1)] (Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1)]\ buuK, L), Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Boo
k,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Sho
es,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Bo
ok,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(B
ook,1),(Shoes,1)][(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(
Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][
(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]
[(Book,1),(Shoes,1)]1[(Book,1) LShae (Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),
(Shoes,1)][(Book,1),(Shoes,1)§[(Book,1)]R8 (Book,1),(Shoes,1)]LLShas (Book,1),(Shoes,1)
ALCRaok 17 (Shoes,1)][(Book,1),Csrnoes,)] [(Book,1),(Shoes,1)R[(Book,1)]8(Book,1),(Shoes,1)
" [(Shoes,1)] (Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Book;L), oes, 1)]1[(Book,1),(Shoes
»LJJL\DUUK, 1/, (Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1) CShoas ANIT(Book [i§
,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1) [(Shoes,1)] (Boo E
k,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1) \ booUR, L), Shoe ¥

0 Q

f@@
/

T we want determinism,
we have to learn to share nicely

data Item = Book | Shoes | ...

p ¢ IO (Map Item Int)
p = do cart <- newIORef empty
async (atomicModifyIORef cart

(\m -> (insert Book 1 m, ())))
async (atomicModifyIORef cart

(\m -> (insert Shoes 1 m, ())))
res <- async (readIORef cart)
walit res

T — R

data Item = Book | Shoes | ...

p ¢ IO (Map Item Int)
p = do cart <- newIORef empty
async (atomicModifyIORef cart

(\m -> (insert Book 1 m, ())))
async (atomicModifyIORef cart

(\m -> (insert Shoes 1 m, ())))
res <- async (readIORef cart)
walit res

data Item = Book | Shoes | ...

p ¢ IO (Map Item Int)
p = do cart <- newIORef empty
al <- async (atomicModifyIORef cart

(\m -> (insert Book 1 m, ())))
async (atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ())))
res <- async (readIORef cart)

walt res

data Item = Book | Shoes | ...

p ¢ IO (Map Item Int)
p = do cart <- newIORef empty
al <- async (atomicModifyIORef cart

(\m -> (insert Book 1 m, ())))
a2 <- async (atomicModifyIORef cart

(\m -> (insert Shoes 1 m, ())))
res <- async (readIORef cart)

walt res

data Item = Book | Shoes | ...

p ¢ IO (Map Item Int)
p = do cart <- newIORef empty
al <- async (atomicModifyIORef cart

(\m -> (insert Book 1 m, ())))
a2 <- async (atomicModifyIORef cart

(\m -> (insert Shoes 1 m, ())))
res <- async (do waitBoth al a2
walit res readIORef cart)

data Item = Book | Shoes | ...

p ¢ IO (Map Item Int)
p = do cart <- newIORef empty
al <- async (atomicModifyIORef cart

(\m -> (insert Book 1 m, ())))
a2 <- async (atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ())))

res <- async (do waitBoth al a2
readIORef cart)
wait res

p :: IO (Map Item Int)
p = do
cart <- newIORef empty
al <- async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))
a2 <- async (atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ())))
res <- async (do waitBoth al a2
readIORef cart)
walt res

main = do v <- p
print v

T — *

deterministic

= do

cart <- newIORef empty

al <- async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))

a2 <- async (atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ())))

res <- async (do waitBoth al a2

readIORef cart)

p :: IO (Map Item Int)
p

walit res

main = do v <- p
print v

T — *

deterministic...now

= do

cart <- newIORef empty

al <- async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))

a2 <- async (atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ())))

res <- async (do waitBoth al a2

readIORef cart)

p :: IO (Map Item Int)
p

walit res

main = do v <- p
print v

T — *

deterministic..now..we hope

HasPut e =>

D I0 (Map Item Int) P
b = do Par e s (IMap Item s Int)
cart <- newIORef empty p = do
al <- async (atomicModifyIORef cart cart <- newEmptyMap
(o> Cinsere soox o m, (1)) | £omk insert sook 1 care)
a2 <- async (atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ()))) return cart

res <- async (do waitBoth al a2

readIORef cart)
wait res T — T —

deterministic by construction
[FHPC 13, POPL '14]

main = print (runParThenFreeze p)

main = do v <- p
print v

T — e —

deterministic..now..we hope

The deterministic by construction parallel programming landscape:

The deterministic by construction parallel programming landscape:

The deterministic by construction parallel programming landscape:

i
O 9

imperative disjoint radisias

The deterministic by construction parallel programming landscape:

i
O 9

imperative disjoint radisias

The deterministic by construction parallel programming landscape:

i
O 9

. NS -calculus v
imperative disjoint P h

-y
g

The deterministic by construction parallel programming landscape:

© ® .
O 9

. NS -calculus v
imperative disjoint P h

-y
g

The deterministic by construction parallel programming landscape:

(o) ®
O 9

. NS -calculus v
imperative disjoint P h

-y
g

The deterministic by construction parallel programming landscape:

(©mo (W) ®
O 9

. NS -calculus v
imperative disjoint P h

-y
g

The deterministic by construction parallel programming landscape:

(©mo (W) ®
O 9

. NS -calculus v
imperative disjoint P h

-y
g

The deterministic by construction parallel programming landscape:

(©mo (W) ®
O 9

imperative disjoint oS

/\ (& C]I’I’ay /Gﬂgs,) w L

g(left) (rght)
EEEEEEEEEEEEEE

=F
N

The deterministic by construction parallel programming landscape:

(©mo (W) ®
O 9

imperative disjoint oS

/\ (& C]I’I’ay /Gﬂgs,) w L

g(left) (rght)
HEEEEEEEEEEEEEN

=F
N

The deterministic by construction parallel programming landscape:

(omo (H) o
Y
°<‘l?"4 :L'.'g!;. 9 @

imperative disjoint A-calculus

/\ (& array langs, ...) h

g(left) (rght)
HEEEEEEESENNES

The deterministic by construction parallel programming landscape:

(omo (H) o
Y
°<‘l?"4 :L'.'g!;. 9 @

imperative disjoint A-calculus

/NDPJ,) (& array langs, ...) hy

g(left) I (rght)
EEEEEERENENEES

The deterministic by construction parallel programming landscape:

(omo (H) o
Y
°<‘l?"4 :L'.'g!;. 9 @

imperative disjoint A-calculus

/NDPJ,) (& array langs, ...) hy

g(left) (rght)
HEEEEEEESENNES

Can we generalize and unify these points in the space!

The deterministic by construction parallel programming landscape:

(omo (H) o
Y
°<‘l?"4 :L'.'g!;. 9 @

imperative disjoint A-calculus

/NDPJ,) (& array langs, ...) hy

g(left) (rght)
HEEEEEEESENNES

Can we generdalize and unify these points Iin the space! Yes!

data Item = Book | Shoes | ...

p :: IO (Map Item Int)
p = do cart <- newIORef empty

async (atomicModifyIORef cart

(\m -> (insert Book 1 m,

())))

async (atomicModifyIORef cart

(\m -> (insert Shoes 1 m,

())))

res <- async (readIORef cart)

walt res

T —

data Item = Book | Shoes | ...

p :: IO (Map Item Int)
p = do cart <- newIORef empty .

async,{atomicModifyIORef cart :
“=_(insert Book 1 m, (

{»*”om1CMo-1xyIORefgcart
(\m“a<<\stert_Shoes 1 m,_L+;;?

res <- async (readIORef cart)
walit res

P -

data Item = Book | Shoes | ...

p :: IO (Map Item Int)
p = do cart <- newIORef empty .

async,{atomicModifyIORef cart :
“=_(insert Book 1 m, (

async{»;”om1CMo-1*yIORef4cart
(\m‘a<<\stert_Shoes 1 m,_L+;;?

res <- async (readIORef cart)

walt res
T — e ——

[Vars: single writes, blocking (but exact) reads
[Arvind et al,, 1989]

data Item = Book | Shoes | ...

p :: IO (Map Item Int)
p = do cart <- newIORef empty .

async,{atomicModifyIORef cart :
“=_(insert Book 1 m, (

async{»;”om1CMo-1*yIORef4cart
(\m‘a<<\stert_Shoes 1 m,_L+;;?

res <- async (readIORef cart)

walt res
P

[Vars: single writes, blocking (but exact) reads
[Arvind et al,, 1989]

L

data Item = Book | Shoes | ...

p ¢ IO (Map Item Int)
p = do cart <- newlQRef empty

~atomicModifyIORef cart
“=_(insert Book 1 m, (

async{»/”om1CMo-1*yIORef4cart
(\m‘a<<\stert_Shoes 1 m,_L+;;?

res <- async (readIORef cart)
walit res
e —

[Vars: single writes, blocking (but exact) reads
[Arvind et al,, 1989]

L

[Vars: multiple commutative and inflationary writes,

blocking threshold reads

data Item = Book | Shoes | ...

p ¢ IO (Map Item Int) —
p = do cart <- newlIQRef empty ‘ %1,%»1

~atomicModifyIORef cart

(\m (insert Book 1 m, |

async ”om1¢Mo-1‘yIORef4cart | Zl—1 R 1
(\mka<<ifwsert_Shoes 1 m,_L+;;?

res <- async (readIORef cart) — .

walt res

EE——

[Vars: single writes, blocking (but exact) reads
[Arvind et al,, 1989]

[Vars: multiple commutative and inflationary writes,
blocking threshold reads

* actually a bounded join-semilattice

nuim

_|

N
7

|_

(08
N

Raises an error;since 3 U4 =T

do
fork (put num 3)
fork (put num 4)

|

S

T — ——
Works fine,since4 u4 =4
do

fork (put num 4)
fork (put num 4)

I — B |

nuim

_|

N
7

|_

(08
N

|

S

Raises an error;since 3 U4 =T

do
fork (put num 3)
fork (put num 4)

T — ————
Works fine,since4 u4 =4
do

fork (put num 4)
fork (put num 4)

* *

get blocks until threshold Is reached

do
fork (put num 4)
get num

J— e ——————

Raises an error;since 3 U4 =T

do
fork (put num 3)
fork (put num 4)

T — —_—
Works fing, since 4 U 4 = 4
do

fork (put num 4)
fork (put num 4)

- —

get blocks until threshold Is reached

do
fork (put num 4)
get num

T —

bairwise incompatible

Raises an error;since 3 U4 =T

do
fork (put num 3)
fork (put num 4)

T — ————
Works fine,since4 u4 =4
do

fork (put num 4)
fork (put num 4)

* *

get blocks until threshold Is reached

do
fork (put num 4)
get num

—'L

Data structure author’s
obligation:

bairwise incompatible

Raises an error;since 3 U4 =T

do
fork (put num 3)
fork (put num 4)

T — —_—
Works fing, since 4 U 4 = 4
do

fork (put num 4)
fork (put num 4)

T — ———————TTT

get blocks until threshold Is reached

do
fork (put num 4)
get num

-

counter

Works fine, since 1ncrs commute

do

fork (incrl counter)
fork (incr42 counter)

*

——

counter

*

Works fine, since 1ncrs commute

do

fork (incrl counter)

fork (incr4?

counter)

get blocks until threshold Is reached

do

fork (incrl counter)

fork (incré4?2
get counter 2

counter)

T —

——

——

counter

Works fine, since 1ncrs commute

do

fork (incrl counter)

fork (incr4?

counter)

*

get blocks until threshold Is reached

do

fork (incrl counter)

fork (incré4?2
get counter 2

counter)

T —

——

——

counter

Works fine, since 1ncrs commute

do
fork (incrl counter)
fork (incr42 counter)

10— B

get blocks until threshold Is reached

do
fork (incrl counter)
fork (incré42 counter)
‘get counter 2 >

unblocks when counter is at least 2
exact contents of counter not observable

X Can't see the exact, complete contents of an [Var

X Can't see the exact, comp

ete contents of an LVar

& Can't iterate over the con

‘ents of an LVar

X Can't see the exact, comp

& Can't iterate over the con

ete contents of an LVar

ents of an LVar

& Can't determine if something isn't in the [Var

& Can't see the exact, complete contents of an LVar

& Can't iterate over the contents of an LVar

& Can't determine if something isn't in the [Var

& Can't react to writes that we weren't expecting

see the exact, complete contents of an [Var

terate over the contents of an LVar

determine If something isn't In the LVar

react to writes that we weren't expecting

see the exact, complete contents of an [Var

terate over the contents of an LVar

determine It something isn't In the LVar

react to writes that we weren't expecting

handlers,
quiescence,
freezing

freeze after writing
(or before reading)

seen nodes

seen nodes

seen nodes

@

seen nodes

@

; @OO6
- 00O
HOCIC

; @OO6
- 00O
HOCIC

already seen

seen nodes

OIOIOIO,
OO
OIOC)

already seen

already seen

seen nodes

OIOIOIO,
OO
OIOC)

already seen

already seen

already seen

already seen

seen nodes

OIOIOIO,
OO
OIOC)

already seen

already seen

already seen

already seen

seen nodes

OIOIOIO,
OO
OIOC)

already seen

already seen

already seen

already seen

seen nodes

OIOIOIO,
OO
OIOC)

Events are updates that change an LVar's state

already seen

already seen

already seen

already seen

seen nodes

OIOIOIO,
OO
OIOC)

Events are updates that change an LVar's state

Event handlers listen for events and launch callbacks in response

already seen

already seen

already seen

already seen

seen nodes

OIOIOIO,
OO
OIOC)

Events are updates that change an LVar's state

Event handlers listen for events and launch callbacks in response

traverse g startNode = do

already seen

already seen

Events are updates that change an LVar's state

Event handlers listen for events and launch callbacks in response

traverse g startNode = do
seen <- newkEmptySet

already seen

already seen

Events are updates that change an LVar's state

Event handlers listen for events and launch callbacks in response

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)
return ())

— T

already seen

already seen

Events are updates that change an LVar's state

Event handlers listen for events and launch callbacks in response

2

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)

return ())

insert startNode seen

— T

already seen

already seen

Events are updates that change an LVar's state

Event handlers listen for events and launch callbacks in response

quiesce blocks until all callbacks launched by a given handler are done running

2

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)

return ())

insert startNode seen

— U

already seen

already seen

Events are updates that change an LVar's state

Event handlers listen for events and launch callbacks in response

quiesce blocks until all callbacks launched by a given handler are done running

2

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)
return ())
insert startNode seen
quiesce h

— U

already seen

already seen

Events are updates that change an LVar's state

Event handlers listen for events and launch callbacks in response

quiesce blocks until all callbacks launched by a given handler are done running

2

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)
return ())
insert startNode seen
quiesce h

I U

already seen

already seen

freeze: exact non-blocking read

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)
return ())
insert startNode seen
quiesce h

T — =

freeze: exact non-blocking read

Attempts to write to a frozen LVar raise a write-after-freeze exception

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)
return ())
insert startNode seen
quiesce h

T — EE——

freeze: exact non-blocking read

Attempts to write to a frozen LVar raise a write-after-freeze exception

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)
return ())
insert startNode seen
quiesce h
freeze seen

R — e ———

freeze: exact non-blocking read

Attempts to write to a frozen LVar raise a write-after-freeze exception
Two possible outcomes: erther the same final value or an exception

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)
return ())
insert startNode seen
quiesce h
freeze seen

T — EE—

freeze: exact non-blocking read

Attempts to write to a frozen LVar raise a write-after-freeze exception
Two possible outcomes: erther the same final value or an exception

Theorem 1 (Quasi-Determinism). If o0 —* ¢’ and 0 —* o, 40
and neither o' nor o'’ can take a step, then either:

] / !/ . .
. o' = o up to a permutation on locations w, or
2. o' = error or o’/ = error.

[POPL’14] ®nsert v seen)
w—'—'——'- — ‘——-4 node)

return ())
insert startNode seen
quiesce h
freeze seen

T — =

freeze: exact non-blocking read

Attempts to write to a frozen LVar raise a write-after-freeze exception
Two possible outcomes: erther the same final value or an exception

Theorem 1 (Quasi-Determinism). If o0 —* ¢’ and 0 —* o, 40
and neither o' nor o'’ can take a step, then either:

] / !/ . .
. o' = o up to a permutation on locations w, or
2. o' = error or o’/ = error.

[POPL’14] ®nsert v seen)
w—'—'——'- — ‘——-4 node)

return ())
[(Book,1),(Shoes,1)] insert startNode seen

[(Book,1)] quliesce h
freeze seen

[(Shoes,1)] L — ———

freeze: exact non-blocking read

Attempts to write to a frozen LVar raise a write-after-freeze exception
Two possible outcomes: erther the same final value or an exception

Theorem 1 (Quasi-Determinism). If o0 —* ¢’ and 0 —* o, 40
and neither o' nor o'’ can take a step, then either:

] / !/ . .
. o' = o up to a permutation on locations w, or
2. o' = error or o’/ = error.

[POPL’14] ®nsert v seen)
w—'—'——'- — ‘——-4 node)

return ())
[(Book,1),(Shoes,1)] insert startNode seen

mum quiesce h
freeze seen

[(Shoes,1)] L — ———

freeze: exact non-blocking read

Attempts to write to a frozen LVar raise a write-after-freeze exception
Two possible outcomes: erther the same final value or an exception

Theorem 1 (Quasi-Determinism). If o0 —* ¢’ and 0 —* o, ‘o
and neither o' nor o'’ can take a step, then either:

] / !/ . .
. o' = o up to a permutation on locations w, or
2. o' = error or o’/ = error.

[POPL’14] ®nsert v seen)
R — ‘—N node)

return ())
[(Book,1),(Shoes,1)] insert startNode seen

mum quiesce h

freeze seen

T — B

freeze: exact non-blocking read

Attempts to write to a frozen LVar raise a write-after-freeze exception
Two possible outcomes: erther the same final value or an exception

Theorem 1 (Quasi-Determinism). If o0 —* ¢’ and 0 —* o, ‘o
and neither o' nor o'’ can take a step, then either:

1. o' = ¢" up to a permutation on locations , or
2. ¢’ = error or o'’ = error.
[POPL’14] ®nsert v seen)
T TERse— —_— _ node)
return ())
or error. insert startNode seen

mum quiesce h
freeze seen

T — B

% | Vish

a Haskell library for parallel programming with [Vars

0

! :

R LVish

a Haskell library for parallel programming with [Vars

[Var operations run in Par computations

0

! :

R LVish

a Haskell library for parallel programming with [Vars

[Var operations run in Par computations
Lightweight threads

% | Vish

a Haskell library for parallel programming with [Vars

[Var operations run in Par computations
Lightweight threads

Par computations indexed by effect level

p :: HasPut e =>

p

Par e s (IMap Item s Int)
= do
cart <- newEmptyMap
fork (insert Book 1 cart)
fork (insert Shoes 1 cart)

[Var operations run in Par computations

% | Vish

a Haskell library for parallel programming with [Vars

Lightweight threads

Par computations indexed by effect level

N7 runParThenFreeze expresses
B N
- the freeze-after-writing idiom

p :: HasPut e =>

p

Par e s (IMap Item s Int)
= do
cart <- newEmptyMap
fork (insert Book 1 cart)
fork (insert Shoes 1 cart)

[Var operations run in Par computations

% | Vish

a Haskell library for parallel programming with [Vars

Lightweight threads

Par computations indexed by effect level

N7 runParThenFreeze expresses
B N
- the freeze-after-writing idiom

p :: HasPut e =>

p

Par e s (IMap Item s Int)
= do
cart <- newEmptyMap
fork (insert Book 1 cart)
fork (insert Shoes 1 cart)
return cart

0

! :

R LVish

a Haskell library for parallel programming with [Vars

[Var operations run in Par computations

p :: HasPut e =>
Lightweight threads Par e s (IMap Item s Int)
p = do

Par computations indexed by effect level cart <- newEmptyMap

7 fork (insert Book 1 cart)
%"Yﬂ runParThenFreeze expresses fork (insert Shoes 1 cart)
- the freeze-after-writing idiom return cart

main = print (runParThenFreeze p)

v ‘

0

! :

R LVish

a Haskell library for parallel programming with [Vars

[Var operations run in Par computations

p :: HasPut e =>
Lightweight threads Par e s (IMap Item s Int)
| | p = do
Par computations indexed by effect level cart <- newEmptyMap
7 fork (insert Book 1 cart)
-
[%, 3 runParThenFreeze.e.XpITeISSGS fork (insert Shoes 1 cart)
i the ﬂ"eeze-aﬁel"—wrltlﬂg |d|om return cart

Efficient lock-free sets, maps, etc. , ,
main = print (runParThenFreeze p)

T — B

0

! :

R LVish

a Haskell library for parallel programming with [Vars

[Var operations run in Par computations

p :: HasPut e =>
Lightweight threads Par e s (IMap Item s Int)
| | p = do
Par computations indexed by effect level cart <- newEmptyMap
7 fork (insert Book 1 cart)
-
[%, 3 runParThenFreeze.e.XpITeISSGS fork (insert Shoes 1 cart)
i the ﬂ"eeze-aﬁel"—wrltlﬂg |d|om return cart

Efficient lock-free sets, maps, etc. , ,
main = print (runParThenFreeze p)

Implement your own LVars, too

T — B

0

! :

R LVish

a Haskell library for parallel programming with [Vars

[Var operations run in Par computations

p :: HasPut e =>
Lightweight threads Par e s (IMap Item s Int)
| | p = do
Par computations indexed by effect level cart <- newEmptyMap
7 fork (insert Book 1 cart)
-
[%, 3 runParThenFreeze.elxpr:elsses fork (insert Shoes 1 cart)
i the ﬂ"eeze-aﬁel"—wrltlﬂg |d|om return cart

Efficient lock-free sets, maps, etc. , ,
main = print (runParThenFreeze p)

Implement your own LVars, too

hackage.haskell.org/package/lvish

0

! :

R LVish

a Haskell library for parallel programming with [Vars

[Var operations run in Par computations

o) HasPut e

Lightweight threads Par e s (IMap Item s Int)

. . P do
Par computations indexed by effect level cart newEmptyMap
v fork (insert Book 1 cart)
-
Big runParThenFreeze.e.xplfegses fork (insert Shoes 1 cart)
i the ﬂ"eeze-aﬁel"—wrltlﬂg |d|om return cart

Efficient lock-free sets, maps, etc. , ,
malin print (runParThenFreeze p)

Implement your own LVars, too

hackage.haskell.org/package/lvish

github.com/iu-parfunc/lvars

including
Display;
DMl and
Misa 1/0

—

o 1.‘.1.)‘|"L| f 8 l ' s R eN BN
— o Memory Controller 1/0 uemarmes

Deterministic Parallel Programming

including
Display;
DMl and
Misa 1/0

—

o 1.‘.1.)‘|"L| f 8 l ' s R eN BN
— o Memory Controller 1/0 uemarmes

(observably)
Deterministic Parallel Programming

213 Controller

including

Display;

DMl and
_ Mis& [/0

A ‘ ‘l‘ | lllllllllvlllll' "‘!-
] ."Memory Controller 1/0 semarmes

(observably) (irregular)
Deterministic Parallel Programming

Case study: k-CFA static analysis parallelized with LVish [POPL '14]

D b e e .

[Earl et al, ICFP '12]

— —

Case study: k-CFA static analysis parallelized with LVish [POPL '14]

P up to 25x speedup, even on one core, from not having to copy data!

o
——
[Earl et al, ICFP '12]
— -

20

Case study: k-CFA static analysis parallelized with LVish [POPL '14]

P up to 25x speedup, even on one core, from not having to copy datal

P 7-8x parallel speedup

Speedup over one processor

12

10

/ V.

Parallel Speedup
— linear speedup O Dblur (lock-free) blur (pure) '”,/
% notChain (lock-free) # notChain (pure) Lo’

¢"" E_-\

i —
P
2 4 6 8 10 12

Processors

e —————

20

Case study: k-CFA static analysis parallelized with LVish [POPL '14]

P up to 25x speedup, even on one core, from not having to copy datal

P 7-8x parallel speedup

Speedup over one processor

12

10

/
/ f’_;,/_
Parallel Speedup
— linear speedup O Dblur (lock-free) blur (pure) ‘”,/
% notChain (lock-free) # notChain (pure) Lo’

~q 1

T

2 4 6 8 10 12

Processors

-

20

Case study: k-CFA static analysis parallelized with LVish [POPL '14]

P up to 25x speedup, even on one core, from not having to copy datal

P 7-8x parallel speedup

» Lock-free structures help , -
/ V.
Parallel Speedup
12 : .
— linear speedup O Dblur (lock-free) blur (pure) IS
5 2 notChain (lock-free) #x notChain (pure) Lo’
% 10 e
S poo
K N
o
C
° 6
o
3 S
o 4 -
)
O
5
Q 2
= B
0 —
2 4 6 8 10 12
Processors

-

20

Case study: k-CFA static analysis parallelized with LVish [POPL '14]

P up to 25x speedup, even on one core, from not having to copy datal

P 7-8x parallel speedup

» Lock-free structures help , -
/ V.
Parallel Speedup
12 : .
— linear speedup O Dblur (lock-free) blur (pure) IS
5 2 notChain (lock-free) #x notChain (pure) Lo’
% 10 e
S poo
K N
o
C
° 6
o
3 S
o 4 -
)
O
5
Q 2
= B
0 —
2 4 6 8 10 12
Processors

-

20

Case study: k-CFA static analysis parallelized with LVish [POPL '14]

P up to 25x speedup, even on one core, from not having to copy datal

P 7-8x parallel speedup

P Lock-free structures help ,
/ f/_;,/_
Parallel Speedup
12 : .
— linear speedup O blur (lock-free) blur (pure) IS
S % notChain (lock-free) # notChain (pure) Lo’
% 10 e
8 —
5 8 \
o
C
> 6
o
3 S
o 4 s
)
O
5
Q 2
CD I ol ..
0 e
2 4 6 8 10 12
Processors

e

20

Case study: k-CFA static analysis parallelized with LVish [POPL '14]

P up to 25x speedup, even on one core, from not having to copy datal

P 7-8x parallel speedup
» Lock-free structures help

Speedup over one processor

12

10

Parallel Speedup

— linear speedup O blur (lock-free)
2¢ notChain (lock-free) # notChain (pure)

blur (pure)

Processors

~q 1

T

20

Case study: k-CFA static analysis parallelized with LVish [POPL '14]

P up to 25x speedup, even on one core, from not having to copy datal

P 7-8x parallel speedup
» Lock-free structures help

Speedup over one processor

12

10

Parallel Speedup

— linear speedup O blur (lock-free)
2¢ notChain (lock-free) # notChain (pure)

blur (pure) .7

2 4 6

Processors

r

parallelized with [Vish [PLDI"14]

20

Distributed systems

2|

22

22

22

Bl

getKey Book

| 1

22

getKey Book

-
-

W

|

s

| |1

22

Eventual consistency.

"It updates stop arriving,
replicas will eventually agree”

-3 i -
\ . ¢

y %

s ‘

i

| 1

getKey Book

H
getKey Book

22

Eventual consistency..but how!?

"It updates stop arriving,
replicas will eventually agree”

..) \
. %
s ‘

3

-

—
.

getKey Book

]
getKey Book

1

22

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

Amazon.com

ABSTRACT

Reliability at massive scale is one of the biggest challenges we
face at Amazon.com, one of the largest e-commerce operations in
the world; even the slightest outage has significant financial
consequences and impacts customer trust. The Amazon.com
platform, which provides services for many web sites worldwide,
is implemented on top of an infrastructure of tens of thousands of
servers and network components located in many datacenters
around the world. At this scale, small and large components fail
continuously and the way persistent state is managed in the face
of these failures drives the reliability and scalability of the
software systems.

This paper presents the design and implementation of Dynamo, a
highly available key-value storage system that some of Amazon’s
core services use to provide an “always-on” experience. To
achieve this level of availability, Dynamo sacrifices consistency
under certain failure scenarios. It makes extensive use of object
versioning and application-assisted conflict resolution in a manner
that provides a novel interface for developers to use.

Categories and Subject Descriptors

D.4.2 [Operating Systems]: Storage Management; D.4.5
[Operating Systems]: Reliability; D.4.2 [Operating Systems]:
Performance;

General Terms
Algorithms, Management, Measurement, Performance, Design,
Reliability.

1. INTRODUCTION

Amazon runs a world-wide e-commerce platform that serves tens
of millions customers at peak times using tens of thousands of
servers located in many data centers around the world. There are
strict operational requirements on Amazon’s platform in terms of
performance, reliability and efficiency, and to support continuous
growth the platform needs to be highly scalable. Reliability is one
of the most important requirements because even the slightest
outage has significant financial consequences and impacts
customer trust. In addition, to support continuous growth, the
platform needs to be highly scalable.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SOSP’07, October 14-17, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-591-5/07/0010...$5.00.

One of the lessons our organization has learned from operating
Amazon’s platform is that the reliability and scalability of a
system is dependent on how its application state is managed.
Amazon uses a highly decentralized, loosely coupled, service
oriented architecture consisting of hundreds of services. In this
environment there is a particular need for storage technologies
that are always available. For example, customers should be able
to view and add items to their shopping cart even if disks are
failing, network routes are flapping, or data centers are being
destroyed by tornados. Therefore, the service responsible for
managing shopping carts requires that it can always write to and
read from its data store, and that its data needs to be available
across multiple data centers.

Dealing with failures in an infrastructure comprised of millions of
components is our standard mode of operation; there are always a
small but significant number of server and network components
that are failing at any given time. As such Amazon’s software
systems need to be constructed in a manner that treats failure
handling as the normal case without impacting availability or
performance.

To meet the reliability and scaling needs, Amazon has developed
a number of storage technologies, of which the Amazon Simple
Storage Service (also available outside of Amazon and known as
Amazon S3), is probably the best known. This paper presents the
design and implementation of Dynamo, another highly available
and scalable distributed data store built for Amazon’s platform.
Dynamo is used to manage the state of services that have very
high reliability requirements and need tight control over the
tradeoffs between availability, consistency, cost-effectiveness and
performance. Amazon’s platform has a very diverse set of
applications with different storage requirements. A select set of
applications requires a storage technology that is flexible enough
to let application designers configure their data store appropriately
based on these tradeoffs to achieve high availability and
guaranteed performance in the most cost effective manner.

There are many services on Amazon’s platform that only need
primary-key access to a data store. For many services, such as
those that provide best seller lists, shopping carts, customer
preferences, session management, sales rank, and product catalog,
the common pattern of using a relational database would lead to
inefficiencies and limit scale and availability. Dynamo provides a
simple primary-key only interface to meet the requirements of
these applications.

Dynamo uses a synthesis of well known techniques to achieve
scalability and availability: Data is partitioned and replicated
using consistent hashing [10], and consistency is facilitated by
object versioning [12]. The consistency among replicas during
updates is maintained by a quorum-like technique and a
decentralized replica synchronization protocol. Dynamo employs

* *

[DeCandia et al,, SOSP '07/]

23

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

Amazon.com

ABSTRACT

Reliability at massive scale is one of the biggest challenges we
face at Amazon.com, one of the largest e-commerce operations in
the world; even the slightest outage has significant financial
consequences and impacts customer trust. The Amazon.com
platform, which provides services for many web sites worldwide,
is implemented on top of an infrastructure of tens of thousands of
servers and network components located in many datacenters
around the world. At this scale, small and large components fail
continuously and the way persistent state is managed in the face
of these failures drives the reliability and scalability of the
software systems.

This paper presents the design and implementation of Dynamo, a
highly available key-value storage system that some of Amazon’s
core services use to provide an “always-on” experience. To
achieve this level of availability, Dynamo sacrifices consistency
under certain failure scenarios. It makes extensive use of object
versioning and application-assisted conflict resolution in a manner
that provides a novel interface for developers to use.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management; D.4.5
[Operating Systems]: Reliability; D.4.2 [Operating Systems]:

Porfamm -

One of the lessons our organization has learned from operating
Amazon’s platform is that the reliability and scalability of a
system is dependent on how its application state is managed.
Amazon uses a highly decentralized, loosely coupled, service
oriented architecture consisting of hundreds of services. In this
environment there is a particular need for storage technologies
that are always available. For example, customers should be able
to view and add items to their shopping cart even if disks are
failing, network routes are flapping, or data centers are being
destroyed by tornados. Therefore, the service responsible for
managing shopping carts requires that it can always write to and
read from its data store, and that its data needs to be available
across multiple data centers.

Dealing with failures in an infrastructure comprised of millions of
components is our standard mode of operation; there are always a
small but significant number of server and network components
that are failing at any given time. As such Amazon’s software
systems need to be constructed in a manner that treats failure
handling as the normal case without impacting availability or
performance.

To meet the reliability and scaling needs, Amazon has developed
a number of storage technologies, of which the Amazon Simple
Storage Service (also available outside of Amazon and known as
“?\ is probably the best known. This paper presents the
ementation of Dynamo, another highly available

ributed data store built for Amazon’s platform.

to manage the state of services that have very

since the application 1s aware of the data schema 1t & ot S G o s

Amazon’s platform has a very diverse set of
1 different storage requirements. A select set of

can decide on the conflict resolution method that 1s best suited fOr i s s sy i s nexbic soueh

designers configure their data store appropriately
tradeoffs to achieve high availability and

its client’s experience. For instance, the application that maintains s vemsos e e

services on Amazon’s platform that only need
388 to a data store. For many services, such as

customer shopping carts can choose to “merge” the conflicting & ki Sowne o isions
versions and return a single unified shopping cart.

DR ——

on management, sales rank, and product catalog,
i of using a relational database would lead to
limit scale and availability. Dynamo provides a
£y only interface to meet the requirements of

ynthesis of well known techniques to achieve
vailability: Data is partitioned and replicated

- Wﬂsmem hashing [10], and consistency is facilitated by
otherwise, of republisii, 10 ‘post-on rsioning [12]. The consistency among replicas durin;
requires prior specific permission and/or a fee. St [12) © consisiency ong replicas during

SOSP’07, October 14-17, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-591-5/07/0010...$5.00.

updates 1s maintained by a quorum-like technique and a
decentralized replica synchronization protocol. Dynamo employs

v

——————TT
[DeCandia et al,, SOSP '07/]

23

Bl 1, 1
N
A)

7*

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

Amazon.com

ABSTRACT

Reliability at massive scale is one of the biggest challenges we
face at Amazon.com, one of the largest e-commerce operations in
the world; even the slightest outage has significant financial
consequences and impacts customer trust. The Amazon.com
platform, which provides services for many web sites worldwide,
is implemented on top of an infrastructure of tens of thousands of
servers and network components located in many datacenters
around the world. At this scale, small and large components fail
continuously and the way persistent state is managed in the face
of these failures drives the reliability and scalability of the
software systems.

This paper presents the design and implementation of Dynamo, a
highly available key-value storage system that some of Amazon’s
core services use to provide an “always-on” experience. To
achieve this level of availability, Dynamo sacrifices consistency
under certain failure scenarios. It makes extensive use of object
versioning and application-assisted conflict resolution in a manner
that provides a novel interface for developers to use.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management; D.4.5
[Operating Systems]: Reliability; D.4.2 [Operating Systems]:

Porfamm -

One of the lessons our organization has learned from operating
Amazon’s platform is that the reliability and scalability of a
system is dependent on how its application state is managed.
Amazon uses a highly decentralized, loosely coupled, service
oriented architecture consisting of hundreds of services. In this
environment there is a particular need for storage technologies
that are always available. For example, customers should be able
to view and add items to their shopping cart even if disks are
failing, network routes are flapping, or data centers are being
destroyed by tornados. Therefore, the service responsible for
managing shopping carts requires that it can always write to and
read from its data store, and that its data needs to be available
across multiple data centers.

Dealing with failures in an infrastructure comprised of millions of
components is our standard mode of operation; there are always a
small but significant number of server and network components
that are failing at any given time. As such Amazon’s software
systems need to be constructed in a manner that treats failure
handling as the normal case without impacting availability or
performance.

To meet the reliability and scaling needs, Amazon has developed
a number of storage technologies, of which the Amazon Simple
Storage Service (also available outside of Amazon and known as
“?\ is probably the best known. This paper presents the
ementation of Dynamo, another highly available

ributed data store built for Amazon’s platform.

to manage the state of services that have very

since the application 1s aware of the data schema 1t & ot S G o s

Amazon’s platform has a very diverse set of
1 different storage requirements. A select set of

can decide on the conflict resolution method that 1s best suited fOr i s s sy i s nexbic soueh

designers configure their data store appropriately
tradeoffs to achieve high availability and

its client’s experience. For instance, the application that maintains s vemsos e e

services on Amazon’s platform that only need
388 to a data store. For many services, such as

customer shopping carts can choose to “merge” the conflicting & ki Sowne o isions
versions and return a single unified shopping cart.

DR ——

on management, sales rank, and product catalog,
i of using a relational database would lead to
limit scale and availability. Dynamo provides a
£y only interface to meet the requirements of

ynthesis of well known techniques to achieve
vailability: Data is partitioned and replicated

- Wﬂsmem hashing [10], and consistency is facilitated by
otherwise, of republisii, 10 ‘post-on rsioning [12]. The consistency among replicas durin;
requires prior specific permission and/or a fee. St [12) © consisiency ong replicas during

SOSP’07, October 14-17, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-591-5/07/0010...$5.00.

updates 1s maintained by a quorum-like technique and a
decentralized replica synchronization protocol. Dynamo employs

v

——————TT
[DeCandia et al,, SOSP '07/]

23

Convergent replicated data types

(CVRDTs)
[Shapiro et al., 201 |]

-1, -1
N
Fl—1

7*

—1

since the application 1s aware of the data schema it
can decide on the conflict resolution method that 1s best suited for
its client’s experience. For instance, the application that maintains
customer shopping carts can choose to “merge” the conflicting

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

Amazon.com

ABSTRACT

Reliability at massive scale is one of the biggest challenges we
face at Amazon.com, one of the largest e-commerce operations in
the world; even the slightest outage has significant financial
consequences and impacts customer trust. The Amazon.com
platform, which provides services for many web sites worldwide,
is implemented on top of an infrastructure of tens of thousands of
servers and network components located in many datacenters
around the world. At this scale, small and large components fail
continuously and the way persistent state is managed in the face
of these failures drives the reliability and scalability of the
software systems.

This paper presents the design and implementation of Dynamo, a
highly available key-value storage system that some of Amazon’s
core services use to provide an “always-on” experience. To
achieve this level of availability, Dynamo sacrifices consistency
under certain failure scenarios. It makes extensive use of object
versioning and application-assisted conflict resolution in a manner
that provides a novel interface for developers to use.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management; D.4.5
[Operating Systems]: Reliability; D.4.2 [Operating Systems]:

Porfamm -

versions and return a single unified shopping cart.

DR ——

One of the lessons our organization has learned from operating
Amazon’s platform is that the reliability and scalability of a
system is dependent on how its application state is managed.
Amazon uses a highly decentralized, loosely coupled, service
oriented architecture consisting of hundreds of services. In this
environment there is a particular need for storage technologies
that are always available. For example, customers should be able
to view and add items to their shopping cart even if disks are
failing, network routes are flapping, or data centers are being
destroyed by tornados. Therefore, the service responsible for
managing shopping carts requires that it can always write to and
read from its data store, and that its data needs to be available
across multiple data centers.

Dealing with failures in an infrastructure comprised of millions of
components is our standard mode of operation; there are always a
small but significant number of server and network components
that are failing at any given time. As such Amazon’s software
systems need to be constructed in a manner that treats failure
handling as the normal case without impacting availability or
performance.

To meet the reliability and scaling needs, Amazon has developed
a number of storage technologies, of which the Amazon Simple
Storage Service (also available outside of Amazon and known as
“?\ is probably the best known. This paper presents the
ementation of Dynamo, another highly available
ributed data store built for Amazon’s platform.
to manage the state of services that have very
“requirements and need tight control over the
sén availability, consistency, cost-effectiveness and
Amazon’s platform has a very diverse set of
1 different storage requirements. A select set of
ires a storage technology that is flexible enough
designers configure their data store appropriately
tradeoffs to achieve high availability and
rmance in the most cost effective manner.

services on Amazon’s platform that only need
388 to a data store. For many services, such as
de best seller lists, shopping carts, customer
on management, sales rank, and product catalog,
i of using a relational database would lead to
limit scale and availability. Dynamo provides a
£y only interface to meet the requirements of

ynthesis of well known techniques to achieve
vailability: Data is partitioned and replicated

- Wﬂsmem hashing [10], and consistency is facilitated by
otherwise, of republisii, 10 ‘post-on rsioning [12]. The consistency among replicas durin;
requires prior specific permission and/or a fee. St [12) © consisiency ong replicas during

SOSP’07, October 14-17, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-591-5/07/0010...$5.00.

updates 1s maintained by a quorum-like technique and a
decentralized replica synchronization protocol. Dynamo employs

v

——————TT
[DeCandia et al,, SOSP '07/]

23

\

getKey Boo

getKey Book

24

getKey Book

1

24

Our contribution:
deterministic threshold queries of CvRDTs

1

24

[Vars and LVish across the landscape:

(om0 (H) o
Y
°<‘l?"4 :L'.'g!;. 9 @

imperative disjoint A-calculus

BB S)

g(left) (rght)
HEEEEEEESENNES

[Vars and LVish across the landscape:

(Oma (&) 9
v
Q‘w‘-g !;Q.gfa 9 @4/

imperative disjoint A-calculus

N g)

g(left) (rght)
HEEEREEREENEEES

[Vars and LVish across the landscape:

(Omo () ®./%
Y
<ahn f.;-; o @4/

imperative disjoint A-calculus

Aha —

g(left) (rght)
HEEEREEREENEEES

g

[Vars and LVish across the landscape:

/Y
-
networks ¢ e
imperative disjoint -Calculus

BB Y

g(left) (rght)
HEEEEEEESENNES

g

[Vars and LVish across the landscape:

Y4
@ .D @ €)Y quasi-det.

Y 4
XY

N al i <100 9
imperative disjoint A-calculus

BB Y

g(left) (rght)
HEEEEEEESENNES

[Vars and LVish across the landscape:

24
@ N @ O quasi-det.

/4

Ndll process
- v‘r

g}v/. N ‘?‘/
imperative disjoint A-calculus

BB hy

g(left) (rght)
HEEEEEEESENNES

Y/
threshold-readable CvRDTs

[Vars and LVish across the landscape:

Vg
@ - @ €. quasi-det.

/4
XY,

N\ al 1 <100
A-calculus

STWOL 1/"‘ e x
Aha .

imperative disjoint
g(left) (rght)

EEEEEERENENEES

Y/
threshold-readable CvRDTs

[Vars and LVish across the landscape:

Y4
@ S/ quasi-det.

v/

imperative disjoint A-calculus

B ai)

g(left) (rght)
HEEEEREN

Thank youl
Twitter: @lindsey

L Vars project repo: github.com/iu-parfunc/lvars
Code from this talk: github.com/lkuper/Ivar-examples
Papers: cs.ndiana.edu/~lkuper

Research blog: composition.al

