A tour of

ParallelAccelerator.|l

A and

for High-Level, High-Performance
Scientific Computing in Julia
Lindsey Kuper

Parallel Computing Lab, Intel Labs
June 24, 2016

High Performance Scripting Project Contributors:

Todd Anderson, Raj Barik, Chunling Hu, Victor Lee, Hai Liu,
Geoff Lowney, Paul Petersen, Hongbo Rong, Tatiana Shpeisman,
Ehsan Totoni, Leonard Truong, Youfeng Wu

ﬂ

INSTITUTE FOR GEOPHYSICSY

THF OF TE ISTIN

Source: http://lindzey.github.io/blog/2015/07/27/a-brief-introduction-to-ice-penetrating-radar/

The productivity/performance tradeoff

Productivity languages: Matlab, Python, R, Julia, ...

How do you “scale up” a productivity-language
orototype? The answer today: Get an expert to
oort the code to an efficiency language

The result is fast...and also brittle, hard to
experiment with, and hard to maintain

Can we do better?

H

How about high-performance EDSLS?

ldea: trade off generality for
productivity and performance

Delite (Brown et al., 2011),
SEJITS (Catanzaro et al., 2009),

[Olokutun et al., 2012]

Great results! But, two challenges:
= The learning curve
= The rest of the productivity story...

H

The rest of the EDSL productivity story

Several dimensions to productivity beyond offering
the “right” abstractions for a domain:

= Fast compilation time

* Robust to a wide variety of inputs

* Debuggable using familiar techniques
» Available on the platforms users want to use

H

ParallelAccelerator

A combination compiler-library solution

= Accelerate existing language constructs:

* map, reduce, comprehension

= Support additional domain-specific constructs
(runStencil)

= ...with two implementations: library-only and native
Run in library-only mode during development and debugging

Run in native mode for high performance at deployment

H

ParallelAccelerator

Implemented as ajulii] package:
github.com/IntelLabs/ParallelAccelerator.|l

Provides an @acc macro to annotate code to be optimized

Under the hood, it's a Julia-to-C++* compiler, written in Julia

Approach:

= Find implicit data-parallel patterns in a subset of Julia
code

= Compile to explicit parallel for loops

= Minimize run-time overheads

H

Example: Black-Scholes

using ParallelAccelerator

@acc function blackscholes(sptprice::Array{Float64,1},
strike: :Array{Float64,1},
rate: :Array{Float64,1},
volatility::Array{Float64,1},
time: :Array{Float64,1})

logterm = loglo(sptprice ./ strike)

powterm = .5 .* volatility .* volatility

den = volatility .* sqgrt(time)

dl = (((rate .+ powterm) .* time) .+ logterm) ./ den
d2 = dl1 .- den

NofXdl = cndf2(dl)

put = call .- futureValue .+ sptprice
end

put = blackscholes(sptprice, initStrike, rate, volatility, time)

IlllllllllIllllllIII.'II@E%IIIII

Black-Scholes performance results

Black-Scholes option pricing model
100,000,000 iterations

25
~ 20
)
o)
£ 15
S
.E 10_
c
&
5_
0 0.16 s
_0(xO
c,e\e’@z&’\ c,e\e’@a
AP @ APE x®
N'20 N 4D
?a@ \ Q@@ \

Data from 01/31/2016
2 Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.3GHz processors, 18 cores each (36 cores total)
128 GB RAM

H

Data-parallel patterns

= Map: Translate pointwise array operations like .+, .-, .*,
and ./ to data-parallel map operations

= Reduce: Translate minimum, maximum, sum, prod, any,
and all to data-parallel reduce operations

= Array comprehensions: Translate to in-place map

operations

avg(x) =
[©.25*x[1-1] + ©.5*x[1i] + 0.25*x[i+1] for i = 2:length (x)-1]

= Special runStencil form for stencil computations

III'I'EE%IIIII

runStencil example: Gaussian blur

using ParallelAccelerator

@acc function blur(img::Array{Float32,2}, iterations::Int)
buf = Array(Float32, size(img)...)
runStencil(buf, img, iterations, :oob_skip) do b, a

b[0,0] =
(a[-2,-2] * 9.003 + a[-1,-2] * 0.0133 + a[0,-2] *
a[-2,-1] * 0.0133 + a[-1,-1] * ©.0596 + a[0,-1] * ...
a[-2, @] * 0.0219 + a[-1, @] * ©0.0983 + a[0, O] * ...
a[-2, 1] * 0.0133 + a[-1, 1] * ©.0596 + a[0, 1] *
a[-2, 2] * 0.003 + a[-1, 2] * ©.0133 + a[o0, 2] *
return a, b

end
return img
end

img = blur(img, iterations)

III'I'@E%IIIII

Gaussian blur performance results

Gaussian blur image processing

600 7095x5322 source image, 100 iters.

500

i
o
o

Running time (s)
w
o
o

200¢

100}
39.59s

0 1.51s 2.93s
(O (O \
xO
e\e (\;o\ c‘e\eﬂ'a @5\ c’(,J\e.""e:‘_,,t)\
WP AP @ WP NG
oo a\\e \36 o N\ (\% oo a\\e O W

Data from 03/02/2016

2 Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.3GHz processors, 18 cores each (36 cores total)
128 GB RAM

ﬂ

ParallelAccelerator compiler pipeline

External

. Julia parsing Domain Parallel
Sourse code {ulia + and type inference Transformations Transformations C++ Backend (CGen) C++ Compiler
ParallelAccelerator) i i i i i

Mengiadl Domain AST Parallel AST Generated C++ Executable

Array
(ODBHMP) (Runtime)

Domain Transformations: replaces some Julia AST
nodes with new “domain nodes” for map, reduce,
comprehension, and stencill

Parallel Transformations: replaces domain nodes
with “parfor” nodes representing parallel for loops

CGen: converts parfor nodes into OpenMP loops

H

Why Julia?

Open source

Faster than many scientific computing languages
Good support for array-style programming

Under active development, strong community

A Julia compiler written in Julia is feasible! :D

ParallelAccelerator caveats

Package load time

Can be mitigated using ParallelAccelerator.embed()

Compiler limitations

Only a subset of Julia is accelerated
Compiller tries to transitively compile the whole call chain
If anything fails to compile, fall back to standard Julia

These problems should go away with the forthcoming
native threading backend

H

To learn more...

The Julia blog:

julialang.org/blog/2016/03/parallelaccelerator
Our GitHub repo:

github.com/IntelLabs/ParallelAccelerator.||

Thanks!

YW @lindsey
Q lkuper

