Verified Causal Broadcast with Liquid Haskell

E github.com/lsd-ucsc/cbcast-lh

Verified Causal Broadcast with Liquid Haskell

Dagstuhl Seminar 23112:
Unifying Formal Methods for Trustworthy Distributed Systems 13 March 2023

idea
software

E github.com/lsd-ucsc/cbcast-lh

Verified Causal Broadcast with Liquid Haskell

Patrick Redmond

Gan Shen

Niki Vazou
Lindsey Kuper

Dagstuhl Seminar 23112:
Unifying Formal Methods for Trustworthy Distributed Systems
13 March 2023

E github.com/lsd-ucsc/cbcast-lh

Verified Causal Broadcast with Liquid Haskell

Dagstuhl Seminar 23112:
Unifying Formal Methods for Trustworthy Distributed Systems
13 March 2023

github.com/lsd-ucsc/cbcast-lh

Verified Causal Broadcast with Liquid Haskell

Patrick Redmond

Gan Shen

Niki Vazou

Lindsey Kuper

Dagstuhl Seminar 23112:
Unifying Formal Methods for Trustworthy Distributed Systems
13 March 2023

E github.com/lsd-ucsc/cbcast-lh

Verified Causal Broadcast with Liquid Haskell

Patrick Redmond

Gan Shen

Niki Vazou

Lindsey Kuper

Dagstuhl Seminar 23112:
Unifying Formal Methods for Trustworthy Distributed Systems
13 March 2023

E github.com/lsd-ucsc/cbcast-lh

Verified Causal Broadcast with Liquid Haskell

Patrick Redmond

Gan Shen

Niki Vazou

Lindsey Kuper

Dagstuhl Seminar 23112:
Unifying Formal Methods for Trustworthy Distributed Systems
13 March 2023

E github.com/lsd-ucsc/cbcast-lh

Verified Causal Broadcast with Liquid Haskell (IFL ${ }^{22}$)

Patrick Redmond

Gan Shen

Niki Vazou

Lindsey Kuper

Dagstuhl Seminar 23112:
Unifying Formal Methods for Trustworthy Distributed Systems
13 March 2023

E github.com/lsd-ucsc/cbcast-lh

Causal broadcast with vector clocks [Birman et al., 1991]

Causal broadcast with vector clocks [Birman et al., 1991]

Causal broadcast with vector clocks [Birman et al., 1991]

Causal broadcast with vector clocks [Birman et al., 1991]

Causal broadcast with vector clocks [Birman et al., 1991]

Causal broadcast with vector clocks [Birman et al., 1991]

Causal broadcast with vector clocks [Birman et al., 1991]

Causal broadcast with vector clocks [Birman et al., 1991]

Causal broadcast with vector clocks [Birman et al., 1991]

Causal broadcast with vector clocks [Birman et al., 1991]

Causal broadcast with vector clocks [Birman et al., 1991]

Causal broadcast with vector clocks [Birman et al., 1991]

Causal broadcast with vector clocks [Birman et al., 1991]

Causal broadcast with vector clocks [Birman et al., 1991]

Causal broadcast with vector clocks [Birman et al., 1991]

Programmers should be able to...

express and prove interesting correctness properties

Programmers should be able to...

express and prove interesting correctness properties
...of deployable implementations of distributed systems

Programmers should be able to...

express and prove interesting correctness properties
...of deployable implementations of distributed systems
...using language-integrated verification tools

Programmers should be able to...

express and prove interesting correctness properties
...of deployable implementations of distributed systems
...using language-integrated verification tools (i.e., types!)

Refinement types

```
type Nat = { v:Int | v >= 0 }
```

Refinement types
type Nat $=\{\mathrm{v}$:Int | $\mathrm{v}>=0\}$

Refinement types

```
type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]
```


Refinement types

```
type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]
vcMerge :: VectorClock -> VectorClock -> VectorClock
```


Refinement types

```
type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]
```

vcMerge :: VectorClock -> VectorClock -> VectorClock
vcMerge = zipWith max
e.g., vcMerge $[1,0,0,0][0,2,0,1]=[1,2,0,1]$

Refinement types

```
type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]
```

vcMerge : : VectorClock -> VectorClock -> VectorClock
vcMerge = zipWith max
e.g., vcMerge $[1,0,0,0][0,2,0,1]=[1,2,0,1]$
type VCsized $N=\{$ vc:VectorClock | len vc $==\mathrm{N}\}$

Refinement types

```
type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]
```

vcMerge : : VectorClock -> VectorClock -> VectorClock
vcMerge = zipWith max
e.g., vcMerge $[1,0,0,0][0,2,0,1]=[1,2,0,1]$
type VCsized $N=\{$ vc:VectorClock | len vc $==\mathrm{N}\}$
type VCsameLength V = VCsized \{len V\}

Refinement types

```
type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]
```

vcMerge :: VectorClock -> VectorClock -> VectorClock
vcMerge = zipWith max
e.g., vcMerge $[1,0,0,0][0,2,0,1]=[1,2,0,1]$
type VCsized $\mathrm{N}=\{$ vc:VectorClock | len vc == N \}
type VCsameLength V = VCsized \{len V\}
vcMerge : : v:VectorClock -> VCsameLength \{v\} -> VCsameLength \{v\}

Refinement types

```
type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]
```

type VCsized $\mathrm{N}=\{\mathrm{vc}$:VectorClock | len vc == N \}
type VCsameLength $V=$ VCsized $\{$ len V \}
vcMerge :: v:VectorClock -> VCsameLength \{v\} -> VCsameLength \{v\}
vcMerge = zipWith max

Refinement types

```
type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]
```

type VCsized $\mathrm{N}=\{\mathrm{vc}$:VectorClock | len vc == N \}
type VCsameLength $\mathrm{V}=\mathrm{VCsized}$ \{len V \}
vcMerge :: v:VectorClock -> VCsameLength \{v\} -> VCsameLength \{v\}
vcMerge = zipWith max

Refinement reflection

```
type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]
```

type VCsized $\mathrm{N}=\{\mathrm{vc}$:VectorClock | len vc == N \}
type VCsameLength $\mathrm{V}=\mathrm{VCsized}$ \{len V \}
vcMerge :: v:VectorClock -> VCsameLength \{v\} -> VCsameLength \{v\}
vcMerge = zipWith max

Refinement reflection

```
type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]
```

type VCsized $\mathrm{N}=\{\mathrm{vc}$:VectorClock | len vc == N$\}$
type VCsameLength $V=$ VCsized $\{$ len V \}
vcMerge :: v:VectorClock -> VCsameLength \{v\} -> VCsameLength \{v\}
vcMerge = zipWith max
type Commutative a $A=x: a$-> y:a -> \{ _:Proof | A x y == A y x \}

Refinement reflection

```
type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]
```

type VCsized $\mathrm{N}=\{\mathrm{vc}$:VectorClock | len vc == N$\}$
type VCsameLength $V=$ VCsized $\{$ len V \}
vcMerge :: v:VectorClock -> VCsameLength \{v\} -> VCsameLength \{v\}
vcMerge = zipWith max
type Commutative a $A=x: a->y: a ~->~\left\{~ _: P r o o f ~ \mid ~ A x y==A y x\right\}$

Refinement reflection

```
type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]
```

type VCsized $\mathrm{N}=\{\mathrm{vc}$:VectorClock | len vc == N$\}$
type VCsameLength $V=$ VCsized $\{$ len V \}
vcMerge :: v:VectorClock -> VCsameLength \{v\} -> VCsameLength \{v\}
vcMerge = zipWith max
type Commutative a $A=x: a$-> y:a -> \{ _:Proof | A x y == A y x \}

Refinement reflection

```
type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]
```

type VCsized $\mathrm{N}=\{\mathrm{vc}$:VectorClock | len vc == N \}
type VCsameLength $V=$ VCsized $\{$ len V \}
vcMerge :: v:VectorClock -> VCsameLength \{v\} -> VCsameLength \{v\}
vcMerge = zipWith max
type Commutative a $A=x: a$-> y:a -> \{ _:Proof | A x y == A y x \}
vcMergeComm :: n:Nat -> Commutative (VCsized n) vcMerge

Refinement reflection

```
type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]
```

type VCsized $\mathrm{N}=\{\mathrm{vc}$:VectorClock | len vc == N \}
type VCsameLength $V=$ VCsized $\{$ len V \}
vcMerge :: v:VectorClock -> VCsameLength \{v\} -> VCsameLength \{v\}
vcMerge = zipWith max
type Commutative a $A=x: a$-> y:a -> \{ _:Proof | A x y == A y x \}
vcMergeComm :: n:Nat -> Commutative (VCsized n) vcMerge

Refinement reflection

```
type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]
```

type VCsized $\mathrm{N}=\{\mathrm{vc}$:VectorClock | len vc == N$\}$
type VCsameLength $\mathrm{V}=\mathrm{VCsized}$ \{len V \}
vcMerge : : v:VectorClock -> VCsameLength \{v\} -> VCsameLength \{v\}
vcMerge = zipWith max
type Commutative a $A=x: a$-> y:a -> \{ _:Proof | Axy== A y x \}
vcMergeComm :: n:Nat -> Commutative (VCsized n) vcMerge
vcMergeComm _n [] [] = ()
vcMergeComm n (_x:xs) (_y:ys) = vcMergeComm (n - 1) xs ys

Refinement reflection

```
type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]
```

type VCsized $\mathrm{N}=\{\mathrm{vc}$:VectorClock | len vc == N$\}$
type VCsameLength $\mathrm{V}=\mathrm{VCsized}$ \{len V \}
vcMerge : : v:VectorClock -> VCsameLength \{v\} -> VCsameLength \{v\}
vcMerge = zipWith max
type Commutative a $A=x: a$-> y:a -> \{ _:Proof | Axy== A y x \}
vcMergeComm :: n:Nat -> Commutative (VCsized n) vcMerge
vcMergeComm _n [] [] = ()
vcMergeComm n (_x:xs) (_y:ys) = vcMergeComm (n - 1) xs ys

Refinement reflection

```
type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]
```

type VCsized $\mathrm{N}=\{\mathrm{vc}$:VectorClock | len vc == N$\}$
type VCsameLength $\mathrm{V}=\mathrm{VCsized}$ \{len V \}
vcMerge : : v:VectorClock -> VCsameLength \{v\} -> VCsameLength \{v\}
vcMerge = zipWith max
type Commutative a $A=x: a$-> y:a -> \{ _:Proof | Axy== A y x \}
vcMergeComm :: n:Nat -> Commutative (VCsized n) vcMerge
vcMergeComm _n [] [] = ()
vcMergeComm n (_x:xs) (_y:ys) = vcMergeComm (n - 1) xs ys

Refinement reflection

```
type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]
```

type VCsized $\mathrm{N}=\{$ vc:VectorClock | len vc $==\mathrm{N}\}$
type VCsameLength $V=$ VCsized $\{$ len V \}
vcMerge :: v:VectorClock -> VCsameLength \{v\} -> VCsameLength \{v\}
vcMerge = zipWith max
application code
type Commutative a $A=x: a$-> y:a -> \{ _:Proof | A x y == A y x \}
vcMergeComm :: n:Nat -> Commutative (VCsized n) vcMerge
vcMergeComm _n [] [] = ()
vcMergeComm n (_x:xs) (_y:ys) = vcMergeComm (n - 1) xs ys

Refinement reflection

```
type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]
```

type VCsized $\mathrm{N}=\{$ vc:VectorClock | len vc == N$\}$
type VCsameLength $\mathrm{V}=\mathrm{V}$ Csized $\{$ len V \}
vcMerge :: v:VectorClock -> VCsameLength \{v\} -> VCsameLength \{v\}
vcMerge = zipWith max
application code
verification code
type Commutative $a \mathrm{~A}=\mathrm{x}: \mathrm{a}-\mathrm{y}$ y:a \rightarrow _ $\{$ _:Proof | A x y == A y x$\}$
vcMergeComm : : n:Nat -> Commutative (VCsized n) vcMerge
vcMergeComm _n [] [] = ()
vcMergeComm n (_x:xs) (_y:ys) $=\operatorname{vcMergeComm~(n-1)~xs~ys~}$

Refinement reflection

(Local) causal delivery as a refinement type

verification code

> I's process history (pHist): [(Deliver Q "Lost my "), (Deliver $\theta_{\text {" }}$ "Found it!"), (Broadcast "Yay!"), ...]

(Local) causal delivery as a refinement type

verification code
type LocalCausalDelivery $\mathrm{P}=$

$$
\begin{aligned}
&=\{\mathrm{m} 1: \text { Message | elem (Deliver (pID P) m1) (pHist P) }\} \\
&->\{\mathrm{m2}: \text { Message | elem (Deliver (pID P) m2) (pHist P) } \\
&\text { \&\& vcLess (mVC m1) (mVC m2) }\} \\
&->\left\{~ _: ~ P r o o f ~ \mid ~ p r o c e s s O r d e r ~(p H i s t ~ P) ~(D e l i v e r ~(p I D ~ P) ~ m 1) ~\right. \\
& \text { (Deliver (pID P) m2) \} }
\end{aligned}
$$

```
Q's process history (pHist):
[(Deliver Q "Lost my 首"),
    (Deliver & "Found it!"),
    (Broadcast "Yay!"),
...]
```


(Local) causal delivery as a refinement type

verification code

type LocalCausalDelivery $\mathrm{P}=$

$$
\begin{aligned}
& =\text { \{ m1 : Message | elem (Deliver (pID P) m1) (pHist P) \} } \\
& \text {-> \{ m2 : Message | elem (Deliver (pID P) m2) (pHist P) } \\
& \text { \&\& vcLess (mVC m1) (mVC m2) \} } \\
& \text {-> \{ _: Proof | processOrder (pHist P) (Deliver (pID P) m1) } \\
& \text { (Deliver (pID P) m2) \} }
\end{aligned}
$$

```
Q's process history (pHist):
[(Deliver Q "Lost my 眘"),
(Deliver 0. "Found it!"),
(Broadcast "Yay!"),
...]
```


(Local) causal delivery as a refinement type

verification code

type LocalCausalDelivery $\mathrm{P}=$

$$
\begin{aligned}
& =\{\mathrm{m1} \text { : Message | elem (Deliver (pID P) m1) (pHist P) \} } \\
& \text {-> \{ m2 : Message | elem (Deliver (pID P) m2) (pHist P) } \\
& \text { \&\& vcLess (mVC m1) (mVC m2) \} } \\
& \text {-> \{ _: Proof | processOrder (pHist P) (Deliver (pID P) m1) } \\
& \text { (Deliver (pID P) m2) \} }
\end{aligned}
$$

```
Q's process history (pHist):
[(Deliver Q "Lost my %),
(Deliver Q "Found it!"),
(Broadcast "Yay!"),
...]
```


(Local) causal delivery as a refinement type

verification code

type LocalCausalDelivery $\mathrm{P}=$

$$
\begin{aligned}
& =\text { \{ m1 : Message | elem (Deliver (pID P) m1) (pHist P) \} } \\
& \text {-> \{ m2 : Message | elem (Deliver (pID P) m2) (pHist P) } \\
& \text { \&\& vcLess (mVC m1) (mVC m2) \} } \\
& \text {-> \{ _: Proof | processOrder (pHist P) (Deliver (pID P) m1) } \\
& \text { (Deliver (pID P) m2) \} }
\end{aligned}
$$

```
Q's process history (pHist):
[(Deliver Q "Lost my 戛"),
(Deliver Q "Found it!"),
(Broadcast "Yay!"),
...]
```


(Local) causal delivery as a refinement type

verification code

type LocalCausalDelivery $\mathrm{P}=$

$$
\begin{aligned}
& =\text { \{ m1 : Message | elem (Deliver (pID P) m1) (pHist P) \} } \\
& \text {-> \{ m2 : Message | elem (Deliver (pID P) m2) (pHist P) } \\
& \text { \&\& vcLess (mVC m1) (mVC m2) \} } \\
& \text {-> \{ _: Proof | processOrder (pHist P) (Deliver (pID P) m1) } \\
& \text { (Deliver (pID P) m2) \} }
\end{aligned}
$$

```
Q's process history (pHist):
[(Deliver Q "Lost my 戛"),
(Deliver Q "Found it!"),
(Broadcast "Yay!"),
...]
```


Running the protocol preserves (local) causal delivery
application code
verification code

Running the protocol preserves (local) causal delivery

```
data Op r = OpBroadcast r | OpReceive (Message r) | OpDeliver
step :: Op r -> Process -> Process
step (OpBroadcast r) p = ..
step (OpReceive m) p = ..
step (OpDeliver) p = ..
```

application code
verification code

Running the protocol preserves (local) causal delivery

```
data Op r = OpBroadcast r | OpReceive (Message r) | OpDeliver
step :: Op r -> Process -> Process
step (OpBroadcast r) p = ..
step (OpReceive m) p = ..
step (OpDeliver) p = ..
```

application code

```
lcdStep :: op : Op r
    -> p : Process
    -> LocalCausalDelivery p
    -> LocalCausalDelivery (step p op)
lcdStep op p lcdp =
    case op ? step op p of
        OpBroadcast r -> ... -- short proof
        OpReceive m -> ... -- short proof
        OpDeliver -> ... -- long proof
```

verification code

Running the protocol preserves (local) causal delivery

```
data Op r = OpBroadcast r | OpReceive (Message r) | OpDeliver
step :: Op r -> Process -> Process
step (OpBroadcast r) p = ..
step (OpReceive m) p = ..
step (OpDeliver) p = ..
```

application code

```
lcdStep :: op : Op r
    -> p : Process
    -> LocalCausalDelivery p
    -> LocalCausalDelivery (step p op)
lcdStep op p lcdp =
    case op ? step op p of
        OpBroadcast r -> ... -- short proof
        OpReceive m -> ... -- short proof
        OpDeliver -> ... -- long proof
```

verification code

Running the protocol preserves (local) causal delivery

```
data Op r = OpBroadcast r | OpReceive (Message r) | OpDeliver
step :: Op r -> Process -> Process
step (OpBroadcast r) p = ..
step (OpReceive m) p = ..
step (OpDeliver) p = ..
```

application code

```
lcdStep :: op : Op r
    -> p : Process
    -> LocalCausalDelivery p
    -> LocalCausalDelivery (step p op)
lcdStep op p lcdp =
    case op ? step op p of
        OpBroadcast r -> ... -- short proof
        OpReceive m -> ... -- short proof
        OpDeliver -> ... -- long proof
```

verification code

Running the protocol preserves (local) causal delivery

```
data Op r = OpBroadcast r | OpReceive (Message r) | OpDeliver
step :: Op r -> Process -> Process
step (OpBroadcast r) p = ..
step (OpReceive m) p = ..
step (OpDeliver) p = ..
```

application code

```
lcdStep :: op : Op r
    -> p : Process
    -> LocalCausalDelivery p
    -> LocalCausalDelivery (step p op)
lcdStep op p lcdp =
    case op ? step op p of
        OpBroadcast r -> ... -- short proof
        OpReceive m -> ... -- short proof
        OpDeliver -> ... -- long proof
```

verification code

$$
\downarrow=\text { "relies on" }
$$

```
Running the protocol for one step preserves local causal delivery
```

$$
\downarrow=\text { "relies on" }
$$

Causal delivery [Birman et al., 1991]: $m \rightarrow m^{\prime} \Rightarrow \forall p:$ deliver $_{p}(m) \xrightarrow{p} \operatorname{deliver}_{p}\left(m^{\prime}\right)$

Causal delivery [Birman et al., 1991]: $m \rightarrow m^{\prime} \Rightarrow \forall p: \operatorname{deliver}_{p}(m) \xrightarrow{p} \operatorname{deliver}_{p}\left(m^{\prime}\right)$

```
type CausalDelivery X =
verification code
    pid : PID -- any pid in the domain of execution }
    -> { m : Message | elem (Deliver pid m ) (pHist (X pid)) }
    -> { m' : Message | elem (Deliver pid m') (pHist (X pid))
        && happensBefore X (Broadcast m) (Broadcast m') }
    -> { _: Proof | procOrder (pHist (X pid)) (Deliver pid m) (Deliver pid m') }
```


Causal delivery [Birman et al., 1991]: $m \rightarrow m^{\prime} \Rightarrow \forall p:$ deliver $_{p}(m) \xrightarrow{p} \operatorname{deliver}_{p}\left(m^{\prime}\right)$

```
type CausalDelivery X =
verification code
    pid : PID -- any pid in the domain of execution }
    -> { m : Message | elem (Deliver pid m ) (pHist (X pid)) }
    -> { m' : Message | elem (Deliver pid m') (pHist (X pid))
        && happensBefore X (Broadcast m) (Broadcast m') }
    -> { _: Proof | procOrder (pHist (X pid)) (Deliver pid m) (Deliver pid m') }
```


Causal delivery [Birman et al., 1991]: $m \rightarrow m^{\prime} \Rightarrow \forall p:$ deliver $_{p}(m) \xrightarrow{p} \operatorname{deliver}_{p}\left(m^{\prime}\right)$

```
type CausalDelivery X =
    verification code
    pid : PID -- any pid in the domain of execution X
    -> { m : Message | elem (Deliver pid m ) (pHist (X pid)) }
    -> { m' : Message | elem (Deliver pid m') (pHist (X pid))
        && happensBefore X (Broadcast m) (Broadcast m') }
    -> { _: Proof | procOrder (pHist (X pid)) (Deliver pid m) (Deliver pid m') }
```


Causal delivery [Birman et al., 1991]: $m \rightarrow m^{\prime} \Rightarrow \forall p:$ deliver $_{p}(m) \xrightarrow{p} \operatorname{deliver}_{p}\left(m^{\prime}\right)$

```
type CausalDelivery X =
    verification code
    pid : PID -- any pid in the domain of execution }
    -> { m : Message | elem (Deliver pid m ) (pHist (X pid)) }
    -> { m' : Message | elem (Deliver pid m') (pHist (X pid))
        && happensBefore X (Broadcast m) (Broadcast m') }
    -> { _: Proof | procOrder (pHist (X pid)) (Deliver pid m) (Deliver pid m') }
```


Causal delivery [Birman et al., 1991]: $m \rightarrow m^{\prime} \Rightarrow \forall p: \operatorname{deliver}_{p}(m) \xrightarrow{p} \operatorname{deliver}_{p}\left(m^{\prime}\right)$

```
type CausalDelivery X =
    verification code
    pid : PID -- any pid in the domain of execution }
    -> { m : Message | elem (Deliver pid m ) (pHist (X pid)) }
    -> { m' : Message | elem (Deliver pid m') (pHist (X pid))
        && happensBefore X (Broadcast m) (Broadcast m') }
    -> { _: Proof | procOrder (pHist (X pid)) (Deliver pid m) (Deliver pid m') }
```


Causal delivery [Birman et al., 1991]: $m \rightarrow m^{\prime} \Rightarrow \forall p: \operatorname{deliver}_{p}(m) \xrightarrow{p} \operatorname{deliver}_{p}\left(m^{\prime}\right)$

```
type CausalDelivery X =
    verification code
    pid : PID -- any pid in the domain of execution }
    -> { m : Message | elem (Deliver pid m ) (pHist (X pid)) }
    -> { m' : Message | elem (Deliver pid m') (pHist (X pid))
        && happensBefore X (Broadcast m) (Broadcast m') }
    -> { _: Proof | procOrder (pHist (X pid)) (Deliver pid m) (Deliver pid m') }
```


Causal delivery [Birman et al., 1991]: $m \rightarrow m^{\prime} \Rightarrow \forall p: \operatorname{deliver}_{p}(m) \xrightarrow{p} \operatorname{deliver}_{p}\left(m^{\prime}\right)$

```
type CausalDelivery X =
    verification code
    pid : PID -- any pid in the domain of execution }
    -> { m : Message | elem (Deliver pid m ) (pHist (X pid)) }
    -> { m' : Message | elem (Deliver pid m') (pHist (X pid))
        && happensBefore X (Broadcast m) (Broadcast m') }
    -> { _: Proof | procOrder (pHist (X pid)) (Deliver pid m) (Deliver pid m') }
```

Running the protocol (deliver is the hard part)
 for any number of steps preserves causal delivery

$$
\downarrow(+ \text { induction })
$$

Running the protocol
$\downarrow=$ "relies on"
for one step preserves causal delivery

$\downarrow \downarrow \downarrow$

broadcast, receive, deliver each preserve local causal delivery

each process observes local causal delivery \rightarrow whole execution observes causal delivery
vector clocks preserve happens-before

Causal delivery [Birman et al., 1991]: $m \rightarrow m^{\prime} \Rightarrow \forall p:$ deliver $_{p}(m) \xrightarrow{p}$ deliver $_{p}\left(m^{\prime}\right)$

```
type CausalDelivery X =
    verification code
    pid : PID -- any pid in the domain of execution }
    -> { m : Message | elem (Deliver pid m ) (pHist (X pid)) }
    -> { m' : Message | elem (Deliver pid m') (pHist (X pid))
        && happensBefore X (Broadcast m) (Broadcast m') }
    -> { _: Proof | procOrder (pHist (X pid)) (Deliver pid m) (Deliver pid m') }
```


Building apps with causal broadcast

Hierarchy of needs
Credit: Matthew Weidner

Programmers should be able to...

express and prove interesting correctness properties
...of deployable implementations of distributed systems
...using language-integrated verification tools (i.e., types!)

Programmers should be able to...

express and prove interesting correctness properties
...of deployable implementations of distributed systems
...using language-integrated verification tools (i.e., types!)

Toward Hole-Driven Development in Liquid Haskell

PATRICK REDMOND, University of California, Santa Cruz, USA
GAN SHEN, University of California, Santa Cruz, USA
LINDSEY KUPER, University of California, Santa Cruz, USA
Liquid Haskell is an extension to the Haskell programming language that adds support for refinement types: data types augmented with SMT-decidable logical predicates that refine the set of values that can inhabit a type. Furthermore, Liquid Haskell's support for refinement reflection enables the use of Haskell for generalpurpose mechanized theorem proving. A growing list of large-scale mechanized proof developments in Liquid Haskell take advantage of this capability. Adding theorem-proving capabilities to a "legacy" language like Haskell take advantage of this capability. Adding theorem-proving capabilities to a legacy language like
Haskell lets programmers directly verify properties of real-world Haskell programs (taking advantage of the existing highly tuned compiler, run-time system, and libraries), just by writing Haskell. However, more established proof assistants like Agda and Coq offer far better support for interactive proof development and insight into the proof state (for instance, what subgoals still need to be proved to finish a partially-complete proof). In contrast, Liquid Haskell provides only coarse-grained feedback to the user - either it reports a type error, or not - unfortunately hindering its usability as a theorem prover.
In this paper, we propose improving the usability of Liquid Haskell by extending it with support for Agdastyle typed holes and interactive editing commands that take advantage of them. In Agda, typed holes allow programmers to indicate unfinished parts of a proof, and incrementally complete the proof in a dialogue

Thank you!

Languages, Systems, and Data Lab: lsd.ucsc.edu Lindsey's research blog: decomposition.al

(github.com/lsd-ucsc/cbcast-lh

Thank you!

Languages, Systems, and Data Lab: lsd.ucsc.edu Lindsey's research blog: decomposition.al

(github.com/lsd-ucsc/cbcast-lh

