domain-specific SMT solving
for neural network verification
(or anything else)

Lindsey Kuper
UC Santa Cruz

Performance

Productivity Generality

[Olukotun et al., 2012]

sometimes it’s worth trading generality
for productivity + performance

http://graphit-lang.org/index

Performance

Productivity Generality

[Olukotun et al., 2012]

sometimes it’s worth trading generality
for productivity + performance

http://graphit-lang.org/index

Performance

PROGRAMMING
1111

Productivity Generality

[Olukotun et al., 2012]

sometimes it’s worth trading generality
for productivity + performance

http://graphit-lang.org/index

Performance

Halide ‘u«

Graphlt

PROGRAMMING
‘‘‘‘‘‘

Productivity A outhon' Generality
python

[Olukotun et al., 2012]

sometimes it’s worth trading generality
for productivity + performance

http://graphit-lang.org/index

TA Region

33NM-40s

21NM=~25s.

[Julian et al., 2016]

Policy Compression for
Aircraft Collision Avoidance Systems

Kyle D. Julian*, Jessica Lopez!, Jeffrey S. Brushf, Michael P. Owen? and Mykel J. Kochenderfer*
*Department of Aeronautics and Astronautics, Stanford University, Stanford, CA, 94305
TApplied Physics Laboratory, Johns Hopkins University, Laurel, MD, 20723
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, 02420

Abstract—One approach to designing the decision making logic
for an aircraft collision avoidance system is to frame the problem
as Markov decision process and optimize the system using
dynamic programming. The resulting strategy can be represented
as a numeric table. This methodology has been used in the
development of the ACAS X family of collision avoidance systems
for manned and unmanned aircraft. However, due to the high
dimensionality of the state space, discretizing the state variables
can lead to very large tables. To improve storage efficiency, we
propose two approaches for compressing the lookup table. The
first approach exploits redundancy in the table. The table is
decomposed into a set of lower-dimensional tables, some of which
can be represented by single tables in areas where the lower-
dimensional tables are identical or nearly identical with respect
to a similarity metric. The second approach uses a deep neural
network to learn a complex non-linear function approximation

is extremely large, requiring hundreds of gigabytes of floating
point storage. A simple technique to reduce the size of the
score table is to downsample the table after dynamic program-
ming. To minimize the deterioration in decision quality, states
are removed in areas where the variation between values in
the table are smooth. This allows the table to be downsampled
with only minor impact on overall decision performance. The
downsampling reduces the size of the table by a factor of 180
from that produced by dynamic programming. For the rest of
this paper, we refer to the downsampled ACAS Xu horizontal
table as our baseline, original table.

Even after downsampling, the current table requires over
2GB of floating point storage. Discretized score tables like

i" | “ Ili " g : Snicaassafanet 3 this have been comBressed with Gaussian Brocisses [6| and .

RA Reglon TcAS

[Julian et al., 2016]

to a similarity metric. The second approach uses a deep neural
network to learn a complex non-linear function approximation
of the table. With the use of an asymmetric loss function and a

preserving the relative preferences of the possible advisories

for each state. As a result, the table can be approximately
represented by only the parameters of the network, which reduces
the required storage space by a factor of 1000. Simulation

studies show that system performance is very similar using either
e t—— B oeen

crete representation. Although there are significant certification
concerns with neural network representations, which may be

addressed in the future, these results indicate a promising way
| - .

iInput: sensor data output: one of five resolution advisories

once per second (COC, weak left, weak right, strong left, strong right)
Updates
once per second Fast table
Sensor lookups
measurements | '1) | I
A > J State | > = } Action
\: | estimation l | selection |
: f V
& ‘ State :
£ . N i 45 Resolut
| & 5 gstribution | 4 .
\ | J
: . ‘ . 000001010 100000
B 1\ i 18t 011
Probabilistic : 00190001100101 11
dynamic model — REARL 430 b AhRAL
Probabilistic ———
sensor model Optimized
loghc table

Source: www.ll.mit.edu/publications/technotes/TechNote_ ACASX.pdf

I

Source: www.ll.mit.edu/publications/technotes/TechNote_ ACASX.pdf

~120M 7-dimensional states
p: distance from ownship to intruder
B: angle to intruder
: heading angle of intruder
Vown: Speed of ownship
Vint: Speed of intruder
7. time until loss of vertical separation

aprev: Previous advisory

Vown

\ .
«~ Ownship ,’
A - _ -’

g

/

\

\

\

- s DD wp-D
|~ RS -

w00 .00
-, OO0 - —-D
L= e~ L -
Qe lhe.-D
OO0 OO0 cmm
“wDOO0 wrm-D
-t eaD e~ v
Y - L - P
oo« -—-0
e el =~ el = L & J
SOM—-O00 00
- a-D00
LI e - D
O -0 .0 -9

O—-L.-00000
el et = N - B

%

logic table

e

\

- _1__»

'UlN Intruder

[Julian et al., 2016]

right)

~120M 7-dimensional states

\
\

/

needs 100s of GBs of storage—
too big to fit in memory on verified hardware

\

-l - D00
Ll -
00 -0 O a @

- o aDDD e -D
|~ RS -
-, OO0 -0
L= e~ L -
Qa0
OO0 00w wcmm
w0 v -D
“at D~ wuwrom
--..—QO..-o—
oo« -0
D e D
SOM—-O00 00

OO0 .00
O—-L.-00000
el et = N - B

sensor model Opgimized

Source: www.ll.mit.edu/publications/technotes/TechNote_ ACASX.pdf
r

\
- _1__»

! p: distance from ownship to intruder viN Intruder
q 8: angle to intruder Vown P ’
: heading angle of intruder .
. ;7 P P
Vown: Speed of ownship K Y
Vint: speed of intruder : O
1
. A . . . \ . /
7: time until loss of vertical separation . Ownship [Julian et al., 2016]
aprev: previous advisory 0

right)

9 fully-connected layers with ReLU activations (f(x) = max(0, x))

Crossrange (kft)

9 fully-connected layers with ReLU activations (f(x) = max(0, x))

Original Table

Advisories:

10 20 30
Downrange (kft)

coc M —3.0°/s

Neural Network

10 \ T

—10 | |

0 10 20 30
Downrange (kft)

—1.5°/s . 1.5°/s . 3.0°/s
[Julian et al., 2016]

verification strategy

SAT: determine if a
Boolean formula
(containing only
Boolean variables,
parens, A, Vv, 1) is
satisfiable

SMT: determine
satisfiability of a
formula with
respect to some
theory (e.g., theory
of linear real
arithmetic)

Description of network

Property to be shown

“If intruder is near and
approaching from left,
network will advise
‘strong right™

SMT formula

/

wnN=5+m)v (p A -qg) .

l

SMT Solver

/

satisfiable

N

unsatisfiable

the virtues of laziness

eager approach: convert Arithmetic Amays

whole SMT formula to N/

SAT formula immediately, ol — ——
then solve with SAT Core

solver

lazy approach: use
theory solvers, each

specific to a particular
theory

Source: fm.csl.sri.com/SSFT16/slides.pdf

the virtues of laziness

eager approach: convert Arithmetic Amays

whole SMT formula to \ /‘

SAT formula immediately, o __— -
then solve with SAT Core

solver

lazy approach: use
theory solvers, each

specific to a particular "
theory

Source: fm.csl.sri.com/SSFT16/slides.pdf

key idea:
to exploit domain knowledge and unlock efficiency,
use a theory solver specifically for handling neural networks

lazily handling RelLU activations
[Katz et al., 2017]

Description of network Property to be shown

“if intruder is near and
approaching from left,
network will advise
‘strong right™

SMT formula /

w(n=5+m v (pA-q) .

SMT Solver

/ N\

satisfiable unsatisfiable

lazily handling RelLU activations
[Katz et al., 2017]

Description of network Property to be shown

“if intruder is near and
approaching from left,
network will advise
‘strong right™

SMT formula ///

w n=5+m)v (pA-q) .
SMT solver l

| P solver =———% Solver core —’-
‘ \

/ N

satisfiable unsatisfiable

lazily handling RelLU activations
[Katz et al., 2017]

Description of network Property to be shown

“if intruder is near and
approaching from left,
network will advise
‘strong right™

SMT formula /

w n=5+m)v (pA-q) .
SMT solver l

| P solver =———% Solver core —’-
|

/ N

satisfiable unsatisfiable

RelLU constraints like y = max(0, x) can only be encoded as disjunctions:
X=20Ay=xX)v(x<0Ay=0)

lazily handling RelLU activations
[Katz et al., 2017]

Description of network Property to be shown

“Iif intruder is near and
approaching from letft,
network will advise
‘strong right™

SMT formula /

w n=5+m)v (pA-q) .
SMT solver l

C - - Solvercore —©
l ,

N

satisfiable unsatisfiable

RelLU constraints like y = max(0, x) can only be encoded as disjunctions:
X=20Ay=xX)v(x<0Ay=0)

lazily handling RelLU activations
[Katz et al., 2017]

Max. RelLU

e Does it Solver gplit depth

Property description hold? fime (out of
300)

“if intruder is directly ahead and is moving
towards ownship, network will not advise COC” J el e
“if intruder is near and approaching from left,
network advises ‘strong right’” J S-4h 46
“if intruder is sufficiently far away, network
advises COC” J >0h >0

“for large vertical separation and previous ‘weak
left’ advisory, network will either advise COC or x 11h 69
continue advising ‘weak left’”

...and more

A

RelLU constraints like y = max(0, x) can only be encoded as disjunctions:
X=20Ay=xX)v(x<0Ay=0)

the distributed consistency model zoo

Linearizability

Timed serial /ch:lar
& A I'-atomicity /

ol lm!c:;rcl::ll:l]n
/ ' Sequential Prefix) ¥
/ \ linearizable -
! Weak | Saf e <
/ fork-lin." ale Percbiect Staleness-based . Strong
\ er-objec o eventual
H \ i models . X \
! Bounded Real-time / Processor P ook - A
i fork-join ! causal Prcﬁx. : Synchrorlnzed N k-atomicity Eventual
 causal : Timed sequential models Bounded ? .| serializability
| | 1m¢:l ,‘ ‘r Weak ordering %\ / staleness \ A
i | gouse) | Per-key ; v g & [R
: . Causal ! sequential timeline ° / Vo Data H i
' i | § imeli e Vi ' i 5
' Fork ! models \ ' Release L S : i Composite and tunable
' s C o 7 & 0 ' k-regular i !
' sequential J " f " ! i models
. ‘ Causal Coherence |! i i '
: Fork* o Lazy release i ! i
\ Pench i i ! i« Hybrid
+ Fork-join ero JTCI F Scope i : p o Tun_ablic
‘causal —onou_ N, [/ 77 causa b P : ; Rationing
\ / Foon ; i RedBl
/ \ Eny 7\ PBS / L. Cg:it "
Slow Location L‘M"X PBS : « Vector-field
\‘Fork-based S memory RN Al \ k-staleness,” 1« PBS <k.t>-staleness
somodels N /e N DN e 1‘ N, kesafe ‘ e mmmnne
¢ “" Writes-follow-reads Read-your-writes Monotonic Writes ~ Monotonic Reads By 1
» (WFR) (RYW) (MW) (MR) ventua
“"*---..____Session models ?
------------------------- Quiescent

Weak

[Paolo Viotti and Marko Vukoli¢, Consistency in Non-Transactional Distributed Storage Systems]

https://dl.acm.org/citation.cfm?id=2926965

the distributed consistency model zoo

Strong consistency
Eventual (Linearizability) Read-your-writes

consistency . consistency
Causal consistency

FIFO consistency

Weak consistency

(smaller regions admit fewer executions)

name that consistency bug/feature!

initial balance: $25

(1) deposit $25

2 withdraw $30 ¢—

balance: $20

v

AN

initial balance: $25

2 withdraw $30

(D deposit $25

balance: $20

name that consistency bug/feature!

initial balance: $25

(1) deposit $25

2 withdraw $30 ¢—

balance: $20

v

FIFO consistency violation

*

initial balance: $25

2 withdraw $30

(D deposit $25

balance: $20

name that consistency bug/feature!

initial balance: $25

(1 deposit $100

initial balance: $25

(@ deposit $100

@ withdraw $50

initial balance: $25

ithd 50

balance: $75

balance: $75

name that consistency bug/feature!

initial balance: $25

(1 deposit $100

initial balance: $25

(@ deposit $100

@ withdraw $50

initial balance: $25

FIFO OK

ithd 50

balance: $75

balance: $75

name that consistency bug/feature!

initial balance: $25 initial balance: $25
(1 deposit $100
(@ deposit $100
@ withdraw $50
balance: $75 balance: $75

initial balance: $25

FIFO OK

causal consistency
violation

@ withdraw $50

name that consistency bug/feature!

initial balance: $25

(1) deposit $100

2 withdraw $30

balance: $95

initial balance: $25

2 withdraw $30

(1 deposit $100

balance: $95

name that consistency bug/feature!

initial balance: $25

(1 deposit $100

2 withdraw $30

balance: $95

FIFO OK,
causal OK

initial balance: $25

2 withdraw $30

(1 deposit $100

balance: $95

name that consistency bug/feature!

initial balance: $25

(1 deposit $100

2 withdraw $30

balance: $95

v

FIFO OK,
causal OK

linearizability violation

initial balance: $25

2 withdraw $30

(1 deposit $100

balance: $95

consistency contracts

[Sivaramakrishnan et al., 2015]

» € Contract
EffType
m €& Prop

Yiz:7)Y | Veop | «
Op | T7VrT

true | R(z,y) | mVvw
TAT | T=>T

vis | so | sameobj | =
RUR | RNR | RT

9
M

R € Relation

x,y,n € EffVar Op € OperName

consistency contracts

[Sivaramakrishnan et al., 2015]

a contract is a first-order logic formula

W € Contract — @: 7)) | VCU-T/JD universal quantification over EffVars allowed
T € EffType = Op | 7VT
m € Prop true | R(z,y) | mVvVw

TAT | T=>T
vis | so | sameobj | =
RUR | RNR | Rt

R € Relation

x,y,n € EffVar Op € OperName

consistency contracts

[Sivaramakrishnan et al., 2015]

a contract is a first-order logic formula
@:) | Veap |« universal quantification over EffVars allowed
Op | 7VT
= true | R(z,y) | VvV«
| AT | m=m see:Sebastian Burckhardt’s book
R € Relation := @J | sameoEi)|
| RUR | RNR |

¥ € Contract
EffType
™ €& Prop

9
M

x,y,n € EffVar Op € OperName

consistency contracts

[Sivaramakrishnan et al., 2015]

a contract is a first-order logic formula

@: 7)) | VCU-T/JD universal quantification over EffVars allowed
Op | 7VT

= true | R(z,y) | VvV«

| AT | m=m see:Sebastian Burckhardt’s book

|

1 € Contract
EffType
™ €& Prop

9
M

R € Relation

s | so | same-EDl

RURTENR |

x,y,n € EffVar Op € OperName

example contracts for bank account operations
(7] is the current operation/effect)

for withdraw: V(a : withdraw).
sameobj(a,) = a = 7 V vis(a,n) V vis(n, a)

for getBalance: V(a:deposit), (b: withdraw), (c: deposit V withdraw).
(vis(a, b) A vis(b, 1) = vis(a, 1))
A ((so N sameobj)(c, 7) = vis(c, 1))

consistency contracts

[Sivaramakrishnan et al., 2015]

a contract is a first-order logic formula

@;) | Ve | @ universal quantification over EffVars allowed
Op | 7VT

= true | R(z,y) | VvV«

| @wAwT | m=7 see:Sebastian Burckhardt’s book

|

®p € Contract
EffType
™ €& Prop

9
M

R € Relation

s | so | sam@l

RURTENR |

x,y,n € EffVar Op € OperName

example contracts for bank account operations
(7] is the current operation/effect)

for withdraw: V(a : withdraw).
sameobj(a,) = a = 7 V vis(a,n) V vis(7, a)

for getBalance: V(a:deposit), (b: withdraw), (c: deposit V withdraw).
(vis(a, b) A vis(b, 1) = vis(a, 1))
A ((so N sameobj)(c, 7) = vis(c, 1))

(what’s the contract for deposit? why?)

takeaways

rrrrrr

specialized theory solvers are an old idea
domain-specific solvers = high-level theory solvers

one domain of interest: consistency-aware solvers
existing contract languages a possible starting point

for now, PL folk can bravely dig into solver internals

in the long run: democratize solver development!
“Delite for domain-specific solvers”

