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sometimes it’s worth trading generality 
for productivity + performance

[Olukotun et al., 2012]

http://graphit-lang.org/index
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input: sensor data 
once per second

output: one of five resolution advisories 
(COC, weak left, weak right, strong left, strong right)
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~120M 7-dimensional states 
ρ: distance from ownship to intruder 
θ: angle to intruder 
ψ: heading angle of intruder 
vown: speed of ownship 
vint: speed of intruder 
!: time until loss of vertical separation 
aprev: previous advisory
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~120M 7-dimensional states 
ρ: distance from ownship to intruder 
θ: angle to intruder 
ψ: heading angle of intruder 
vown: speed of ownship 
vint: speed of intruder 
!: time until loss of vertical separation 
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needs 100s of GBs of storage— 
too big to fit in memory on verified hardware

[Julian et al., 2016]
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9 fully-connected layers with ReLU activations (f(x) = max(0, x))
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COC: 0.230892

weak right: 0.703941
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verification strategy
SAT: determine if a 
Boolean formula 
(containing only 
Boolean variables, 
parens, ∧, ∨, ¬) is 
satisfiable 

SMT: determine 
satisfiability of a 
formula with 
respect to some 
theory (e.g., theory 
of linear real 
arithmetic)

“if intruder is near and 
approaching from left, 

network will advise 
‘strong right’”

… (n == 5 + m) ∨ (p ∧ ¬q) …

Property to be shownDescription of network

SMT Solver

SMT formula

satisfiable unsatisfiable
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eager approach: convert 
whole SMT formula to 
SAT formula immediately, 
then solve with SAT 
solver 
lazy approach: use 
theory solvers, each 
specific to a particular 
theory

Source: fm.csl.sri.com/SSFT16/slides.pdf 

the virtues of laziness
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eager approach: convert 
whole SMT formula to 
SAT formula immediately, 
then solve with SAT 
solver 
lazy approach: use 
theory solvers, each 
specific to a particular 
theory

Source: fm.csl.sri.com/SSFT16/slides.pdf 

key idea: 
to exploit domain knowledge and unlock efficiency, 
use a theory solver specifically for handling neural networks

the virtues of laziness
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“if intruder is near and 
approaching from left, 

network will advise 
‘strong right’”

… (n == 5 + m) ∨ (p ∧ ¬q) …

Property to be shownDescription of network

SMT Solver

SMT formula

satisfiable unsatisfiable ...and more

Property description Does it 
hold?

Solver 
time

Max. ReLU 
split depth 

(out of 
300)

“if intruder is directly ahead and is moving 
towards ownship, network will not advise COC” 7.8h 22

“if intruder is near and approaching from left, 
network advises ‘strong right’” 5.4h 46

“if intruder is sufficiently far away, network 
advises COC” 50h 50

“for large vertical separation and previous ‘weak 
left’ advisory, network will either advise COC or 
continue advising ‘weak left’”

11h 69

lazily handling ReLU activations



[Paolo Viotti and Marko Vukolić, Consistency in Non-Transactional Distributed Storage Systems]

the distributed consistency model zoo

https://dl.acm.org/citation.cfm?id=2926965


the distributed consistency model zoo

(smaller regions admit fewer executions)



name that consistency bug/feature!
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FIFO OK, 
causal OK

name that consistency bug/feature!



linearizability violation

FIFO OK, 
causal OK

name that consistency bug/feature!
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̂η(    is the current operation/effect)
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example contracts for bank account operations

see: Sebastian Burckhardt’s book

a contract is a first-order logic formula 
universal quantification over EffVars allowed

for withdraw:

for getBalance:

(what’s the contract for deposit?  why?)

̂η(    is the current operation/effect)

consistency contracts
[Sivaramakrishnan et al., 2015]



specialized theory solvers are an old idea 

domain-specific solvers = high-level theory solvers 

one domain of interest: consistency-aware solvers 
existing contract languages a possible starting point 

for now, PL folk can bravely dig into solver internals 

in the long run: democratize solver development! 
“Delite for domain-specific solvers”

takeaways


