
!1

domain-specific SMT solving
for neural network verification
(or anything else)

Lindsey Kuper
UC Santa Cruz

!2

sometimes it’s worth trading generality
for productivity + performance

[Olukotun et al., 2012]

http://graphit-lang.org/index

!2

sometimes it’s worth trading generality
for productivity + performance

[Olukotun et al., 2012]

http://graphit-lang.org/index

!2

sometimes it’s worth trading generality
for productivity + performance

[Olukotun et al., 2012]

http://graphit-lang.org/index

!2

sometimes it’s worth trading generality
for productivity + performance

[Olukotun et al., 2012]

http://graphit-lang.org/index

!3

[Julian et al., 2016]

!3

[Julian et al., 2016]

input: sensor data
once per second

output: one of five resolution advisories
(COC, weak left, weak right, strong left, strong right)

!3

[Julian et al., 2016]

Source: www.ll.mit.edu/publications/technotes/TechNote_ACASX.pdf

input: sensor data
once per second

output: one of five resolution advisories
(COC, weak left, weak right, strong left, strong right)

!3

[Julian et al., 2016]

Source: www.ll.mit.edu/publications/technotes/TechNote_ACASX.pdf

~120M 7-dimensional states
ρ: distance from ownship to intruder
θ: angle to intruder
ψ: heading angle of intruder
vown: speed of ownship
vint: speed of intruder
!: time until loss of vertical separation
aprev: previous advisory

[Julian et al., 2016]

input: sensor data
once per second

output: one of five resolution advisories
(COC, weak left, weak right, strong left, strong right)

!3

[Julian et al., 2016]

Source: www.ll.mit.edu/publications/technotes/TechNote_ACASX.pdf

~120M 7-dimensional states
ρ: distance from ownship to intruder
θ: angle to intruder
ψ: heading angle of intruder
vown: speed of ownship
vint: speed of intruder
!: time until loss of vertical separation
aprev: previous advisory

needs 100s of GBs of storage—
too big to fit in memory on verified hardware

[Julian et al., 2016]

!4

9 fully-connected layers with ReLU activations (f(x) = max(0, x))

ρ

θ

ψ

...

COC: 0.230892

weak right: 0.703941

...

......
......

!4

9 fully-connected layers with ReLU activations (f(x) = max(0, x))

ρ

θ

ψ

...

COC: 0.230892

weak right: 0.703941

...

......
......

[Julian et al., 2016]

!5

verification strategy
SAT: determine if a
Boolean formula
(containing only
Boolean variables,
parens, ∧, ∨, ¬) is
satisfiable

SMT: determine
satisfiability of a
formula with
respect to some
theory (e.g., theory
of linear real
arithmetic)

“if intruder is near and
approaching from left,

network will advise
‘strong right’”

… (n == 5 + m) ∨ (p ∧ ¬q) …

Property to be shownDescription of network

SMT Solver

SMT formula

satisfiable unsatisfiable

!6

eager approach: convert
whole SMT formula to
SAT formula immediately,
then solve with SAT
solver
lazy approach: use
theory solvers, each
specific to a particular
theory

Source: fm.csl.sri.com/SSFT16/slides.pdf

the virtues of laziness

!6

eager approach: convert
whole SMT formula to
SAT formula immediately,
then solve with SAT
solver
lazy approach: use
theory solvers, each
specific to a particular
theory

Source: fm.csl.sri.com/SSFT16/slides.pdf

key idea:
to exploit domain knowledge and unlock efficiency,
use a theory solver specifically for handling neural networks

the virtues of laziness

“if intruder is near and
approaching from left,

network will advise
‘strong right’”

… (n == 5 + m) ∨ (p ∧ ¬q) …

Property to be shownDescription of network

SMT Solver

SMT formula

satisfiable unsatisfiable

!7

[Katz et al., 2017]
lazily handling ReLU activations

“if intruder is near and
approaching from left,

network will advise
‘strong right’”

… (n == 5 + m) ∨ (p ∧ ¬q) …

Property to be shownDescription of network

SMT Solver

SMT formula

satisfiable unsatisfiable

!7

LP solver Solver core SAT solver

SMT solver

[Katz et al., 2017]
lazily handling ReLU activations

“if intruder is near and
approaching from left,

network will advise
‘strong right’”

… (n == 5 + m) ∨ (p ∧ ¬q) …

Property to be shownDescription of network

SMT Solver

SMT formula

satisfiable unsatisfiable

!7

LP solver Solver core SAT solver

SMT solver

ReLU constraints like y = max(0, x) can only be encoded as disjunctions:
(x ≥ 0 ∧ y = x) ∨ (x < 0 ∧ y = 0)

[Katz et al., 2017]
lazily handling ReLU activations

“if intruder is near and
approaching from left,

network will advise
‘strong right’”

… (n == 5 + m) ∨ (p ∧ ¬q) …

Property to be shownDescription of network

SMT Solver

SMT formula

satisfiable unsatisfiable

!7

LP solver Solver core SAT solver

SMT solver

LP + ReLU
solver

ReLU constraints like y = max(0, x) can only be encoded as disjunctions:
(x ≥ 0 ∧ y = x) ∨ (x < 0 ∧ y = 0)

[Katz et al., 2017]
lazily handling ReLU activations

“if intruder is near and
approaching from left,

network will advise
‘strong right’”

… (n == 5 + m) ∨ (p ∧ ¬q) …

Property to be shownDescription of network

SMT Solver

SMT formula

satisfiable unsatisfiable

!7

LP solver Solver core SAT solver

SMT solver

LP + ReLU
solver

ReLU constraints like y = max(0, x) can only be encoded as disjunctions:
(x ≥ 0 ∧ y = x) ∨ (x < 0 ∧ y = 0)

[Katz et al., 2017]

“if intruder is near and
approaching from left,

network will advise
‘strong right’”

… (n == 5 + m) ∨ (p ∧ ¬q) …

Property to be shownDescription of network

SMT Solver

SMT formula

satisfiable unsatisfiable ...and more

Property description Does it
hold?

Solver
time

Max. ReLU
split depth

(out of
300)

“if intruder is directly ahead and is moving
towards ownship, network will not advise COC” 7.8h 22

“if intruder is near and approaching from left,
network advises ‘strong right’” 5.4h 46

“if intruder is sufficiently far away, network
advises COC” 50h 50

“for large vertical separation and previous ‘weak
left’ advisory, network will either advise COC or
continue advising ‘weak left’”

11h 69

lazily handling ReLU activations

[Paolo Viotti and Marko Vukolić, Consistency in Non-Transactional Distributed Storage Systems]

the distributed consistency model zoo

https://dl.acm.org/citation.cfm?id=2926965

the distributed consistency model zoo

(smaller regions admit fewer executions)

name that consistency bug/feature!

FIFO consistency violation

name that consistency bug/feature!

name that consistency bug/feature!

FIFO OK

name that consistency bug/feature!

causal consistency
violation

FIFO OK

name that consistency bug/feature!

name that consistency bug/feature!

FIFO OK,
causal OK

name that consistency bug/feature!

linearizability violation

FIFO OK,
causal OK

name that consistency bug/feature!

consistency contracts
[Sivaramakrishnan et al., 2015]

a contract is a first-order logic formula
universal quantification over EffVars allowed

consistency contracts
[Sivaramakrishnan et al., 2015]

see: Sebastian Burckhardt’s book

a contract is a first-order logic formula
universal quantification over EffVars allowed

consistency contracts
[Sivaramakrishnan et al., 2015]

example contracts for bank account operations

see: Sebastian Burckhardt’s book

a contract is a first-order logic formula
universal quantification over EffVars allowed

for withdraw:

for getBalance:

̂η(is the current operation/effect)

consistency contracts
[Sivaramakrishnan et al., 2015]

example contracts for bank account operations

see: Sebastian Burckhardt’s book

a contract is a first-order logic formula
universal quantification over EffVars allowed

for withdraw:

for getBalance:

(what’s the contract for deposit? why?)

̂η(is the current operation/effect)

consistency contracts
[Sivaramakrishnan et al., 2015]

specialized theory solvers are an old idea

domain-specific solvers = high-level theory solvers

one domain of interest: consistency-aware solvers 
existing contract languages a possible starting point

for now, PL folk can bravely dig into solver internals

in the long run: democratize solver development! 
“Delite for domain-specific solvers”

takeaways

