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Lattice-based data structures (LVars)  Non-invasive DSLs for

for deterministic programming productive parallelism
[POPL '14, PLDI 14, FHPC "I 3, WoDet ' 14] [ECOOP '17]
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for deterministic programming productive parallelism
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a Guiding principle:
@ Find the right high-level abstractions
to enable efficient computation
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Lattice-based data structures (LVars)  Non-invasive DSLs for SMT-based verification
for deterministic programming productive parallelism of neural networks
[POPL '14, PLDI '14, FHPC 13, WoDet '14] [ECOOP'17] [SysML 18]
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a Guiding principle:
ﬁ Find the right high-level abstractions
to enable efficient computation
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a Guiding principle:
@ Find the right high-level abstractions
to enable efficient computation
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Lattice-based data structures (LVars)

for deterministic programming
[POPL '14, PLDI '14, FHPC '1 3, WoDet ' 14]

a Guiding principle:
@ Find the right high-level abstractions
to enable efficient computation
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data Item = Book | Shoes | ...
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data Item = Book | Shoes | ...

:: IO (Map Item Int)
do cart <- newIORef empty
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data Item = Book | Shoes | ...

:: IO (Map Item Int)
do cart <- newIORef empty
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data Item
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Book | Shoes | ...

IO (Map Item Int)
do cart <- newIORef empty
async (atomicModifyIORef cart
(insert Book 1))
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data Item

P
P

Book | Shoes | ...

IO (Map Item Int)
do cart <- newIORef empty
async (atomicModifyIORef cart
(insert Book 1))
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data Item = Book | Shoes | ...
:: IO (Map Item Int)
do cart <- newIORef empty
async (atomicModifyIORef cart
(insert Book 1))
async (atomicModifyIORef cart
(insert Shoes 1))
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data Item = Book | Shoes | ...

p :: IO (Map Item Int)
p = do cart <- newIORef empty
async (atomicModifyIORef cart
(insert Book 1))
async (atomicModifyIORef cart
(insert Shoes 1))
res <- async (readIORef cart)
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data Item = Book | Shoes | ...
:: IO (Map Item Int)
do cart <- newIORef empty
async (atomicModifyIORef cart
(insert Book 1))
async (atomicModifyIORef cart
(insert Shoes 1))
res <- async (readIORef cart)
walit res
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e MO Terminal — bash — 90x27

| bash |

landin:lvar-examples lkuper$ make map-ioref-data-race

ghc -02 map-ioref-data-race.hs -rtsopts -threaded

[1 of 1] Compiling Main ( map-ioref-data-race.hs, map-ioref-data-race.o )
Linking map-ioref-data-race ...

while true; do ./map-ioref-data-race +RTS -N2; done
[(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes,1)][(Book,1
), (Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1
)1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1
), (Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1
)1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1
), (Shoes,1)][(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes
,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Boo
k,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Sho
es,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Bo
ok,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(B
ook,1),(Shoes,1)][(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(
Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][
(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]
[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),
(Shoes,1)][(Book,1),(Shoes,1)][(Book,1)]1[(Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)
1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1)][(Book,1),(Shoes,1)
1[(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes
,1)1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book |§
,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Boo E
k,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe §
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landin:lvar-examples lkuper$ make map-ioref-data-race .
ghc -02 map-ioref-data-race.hs -rtsopts -threaded
[1 of 1] Compiling Main ( map-ioref-data-race.hs, map-ioref-data-race.o )
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man_ioref-data-race +RTS -N2; done
(Book 1), (Shoes 1)]1R(Shoes,1)][(Book,1), (Shoes 1)]1[(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1
500K, 1), (Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1

)][(Book 1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1
), (Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1
)1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1
), (Shoes,1)][(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes
,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Boo
k,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Sho
es,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Bo
ok,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(B
ook,1),(Shoes,1)][(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(
Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][
(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]
[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),
(Shoes,1)][(Book,1),(Shoes,1)][(Book,1)]1[(Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)
1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1)][(Book,1),(Shoes,1)
1[(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes
,1)1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book [§
,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Boo E
k,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe §




oM O Terminal — bash — 90x27

| bash |
landin:lvar-examples lkuper$ make map-ioref-data-race .
ghc -02 map-ioref-data-race.hs -rtsopts -threaded
[1 of 1] Compiling Main ( map-ioref-data-race.hs, map-ioref-data-race.o )
L1nk1ng map-1oref -data-race ...
an-ioraf_data-race +RTS -N2; done

[(Book 1), (Shoes 1) l(Shoes 1)] (Book,1), (Shoes 1) [(Shoes,1)]l (Book,1),(Shoes,1)]1[(Book,1

. SOUK , L, onves, 1) | [(Book,1),(Shoes, 1, (buuK, L), Shoes,1)][(Book,1),(Shoes,1
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), (Shoes,1)][(Shoes,1)][CRaok 11 (Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes
,1)]1[(Book,1),(Shoes,1) [(Shoes,1)] (Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1) ]\ buuK, L), Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Boo
k,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Sho
es,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Bo
ok,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(B
ook,1),(Shoes,1)][(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(
Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][
(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]
[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),
(Shoes,1)][(Book,1),(Shoes,1)][(Book,1)]1[(Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)
ALCRaok 17 (Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1)][(Book,1),(Shoes,1)
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landin:lvar-examples lkuper$ make map-ioref-data-race .
ghc -02 map-ioref-data-race.hs -rtsopts -threaded
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we have to share nicely



data Item = Book | Shoes | ...
:: IO (Map Item Int)
do cart <- newIORef empty
async (atomicModifyIORef cart
(insert Book 1))
async (atomicModifyIORef cart
(insert Shoes 1))
res <- async (readIORef cart)
walit res
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data Item = Book | Shoes | ...
:: IO (Map Item Int)
do cart <- newIORef empty
async (atomicModifyIORef cart
(insert Book 1))
async (atomicModifyIORef cart
(insert Shoes 1))
res <- async (readIORef cart)
walit res
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data Item = Book | Shoes | ...
:: IO (Map Item Int)
do cart <- newIORef empty
al <- async (atomicModifyIORef cart
(insert Book 1))
async (atomicModifyIORef cart
(insert Shoes 1))
res <- async (readIORef cart)
walit res
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data Item = Book | Shoes | ...
:: IO (Map Item Int)
do cart <- newIORef empty
al <- async (atomicModifyIORef cart
(insert Book 1))
a2 <- async (atomicModifyIORef cart
(insert Shoes 1))
res <- async (readIORef cart)
walit res
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data Item = Book | Shoes | ...
p :: IO (Map Item Int)
p = do cart <- newIORef empty

al <- async (atomicModifyIORef cart
(insert Book 1))

a2 <- async (atomicModifyIORef cart
(lnsert Shoes 1))

res <- async (do waitBoth al a2

walit res readIORef cart)
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data Item = Book | Shoes | ...
p :: IO (Map Item Int)
p = do cart <- newIORef empty

al <- async (atomicModifyIORef cart
(insert Book 1))
a2 <- async (atomicModifyIORef cart
(insert Shoes 1))
res <- async (do waitBoth al a2
readIORef cart)

walt res
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data Item = Book | Shoes | ...
:: IO (Map Item Int)
do cart <- newIORef empty
async (atomicModifyIORef cart
(insert Book 1))
async (atomicModifyIORef cart
(1lnsert Shoes 1))
res <- async (readIORef cart)
walit res
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data Item = Book | Shoes | ...

:: IO (Map Item Int)
do cart <- newIORef empty
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Events are updates that change an LVar's state
Event handlers listen for events and launch callbacks in response

quiesce blocks until all callbacks launched by a given handler are done running

2 traverse g startNode = do
seen <- newkEmptySet
0 h <- newHandler seen
(\node -> do

0 mapM (\v -> insert v seen)
(neighbors g node)

return ())

insert startNode seen
a quiesce h
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freeze: exact non-blocking read
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seen <- newkEmptySet
h <- newHandler seen
(\node -> do
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freeze: exact non-blocking read

Attempts to write to a frozen LVar raise a write-after-freeze exception
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freeze: exact non-blocking read

Attempts to write to a frozen LVar raise a write-after-freeze exception
Two possible outcomes: erther the same final value or an exception

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)
return ())
insert startNode seen
quiesce h
freeze seen

T — e ———



freeze: exact non-blocking read

Attempts to write to a frozen LVar raise a write-after-freeze exception
Two possible outcomes: erther the same final value or an exception

Theorem 1 (Quasi-Determinism). If o —* o' and o0 —* ", do
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Attempts to write to a frozen LVar raise a write-after-freeze exception
Two possible outcomes: erther the same final value or an exception
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4.3 The Frame Problem

In the last section of part 3, in proving that one person could get into conver-
sation with another, we were obliged to add the hypothesis that if a person
has a telephone he still has it after looking up a number in the telephone

book.

[McCarthy and Hayes, 1969]
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Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

Amazon.com

ABSTRACT

Reliability at massive scale is one of the biggest challenges we
face at Amazon.com, one of the largest e-commerce operations in
the world; even the slightest outage has significant financial
consequences and impacts customer trust. The Amazon.com
platform, which provides services for many web sites worldwide,
is implemented on top of an infrastructure of tens of thousands of
servers and network components located in many datacenters
around the world. At this scale, small and large components fail
continuously and the way persistent state is managed in the face
of these failures drives the reliability and scalability of the
software systems.

This paper presents the design and implementation of Dynamo, a
highly available key-value storage system that some of Amazon’s
core services use to provide an “always-on” experience. To
achieve this level of availability, Dynamo sacrifices consistency
under certain failure scenarios. It makes extensive use of object
versioning and application-assisted conflict resolution in a manner
that provides a novel interface for developers to use.

Categories and Subject Descriptors

D.4.2 [Operating Systems]: Storage Management; D.4.5
[Operating Systems]: Reliability; D.4.2 [Operating Systems]:
Performance;

General Terms
Algorithms, Management, Measurement, Performance, Design,
Reliability.

1. INTRODUCTION

Amazon runs a world-wide e-commerce platform that serves tens
of millions customers at peak times using tens of thousands of
servers located in many data centers around the world. There are
strict operational requirements on Amazon’s platform in terms of
performance, reliability and efficiency, and to support continuous
growth the platform needs to be highly scalable. Reliability is one
of the most important requirements because even the slightest
outage has significant financial consequences and impacts
customer trust. In addition, to support continuous growth, the
platform needs to be highly scalable.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SOSP’07, October 14-17, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-591-5/07/0010...$5.00.

One of the lessons our organization has learned from operating
Amazon’s platform is that the reliability and scalability of a
system is dependent on how its application state is managed.
Amazon uses a highly decentralized, loosely coupled, service
oriented architecture consisting of hundreds of services. In this
environment there is a particular need for storage technologies
that are always available. For example, customers should be able
to view and add items to their shopping cart even if disks are
failing, network routes are flapping, or data centers are being
destroyed by tornados. Therefore, the service responsible for
managing shopping carts requires that it can always write to and
read from its data store, and that its data needs to be available
across multiple data centers.

Dealing with failures in an infrastructure comprised of millions of
components is our standard mode of operation; there are always a
small but significant number of server and network components
that are failing at any given time. As such Amazon’s software
systems need to be constructed in a manner that treats failure
handling as the normal case without impacting availability or
performance.

To meet the reliability and scaling needs, Amazon has developed
a number of storage technologies, of which the Amazon Simple
Storage Service (also available outside of Amazon and known as
Amazon S3), is probably the best known. This paper presents the
design and implementation of Dynamo, another highly available
and scalable distributed data store built for Amazon’s platform.
Dynamo is used to manage the state of services that have very
high reliability requirements and need tight control over the
tradeoffs between availability, consistency, cost-effectiveness and
performance. Amazon’s platform has a very diverse set of
applications with different storage requirements. A select set of
applications requires a storage technology that is flexible enough
to let application designers configure their data store appropriately
based on these tradeoffs to achieve high availability and
guaranteed performance in the most cost effective manner.

There are many services on Amazon’s platform that only need
primary-key access to a data store. For many services, such as
those that provide best seller lists, shopping carts, customer
preferences, session management, sales rank, and product catalog,
the common pattern of using a relational database would lead to
inefficiencies and limit scale and availability. Dynamo provides a
simple primary-key only interface to meet the requirements of
these applications.

Dynamo uses a synthesis of well known techniques to achieve
scalability and availability: Data is partitioned and replicated
using consistent hashing [10], and consistency is facilitated by
object versioning [12]. The consistency among replicas during
updates is maintained by a quorum-like technique and a
decentralized replica synchronization protocol. Dynamo employs

v *

[DeCandia et al,, SOSP '07]

|4



Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

Amazon.com

ABSTRACT

Reliability at massive scale is one of the biggest challenges we
face at Amazon.com, one of the largest e-commerce operations in
the world; even the slightest outage has significant financial
consequences and impacts customer trust. The Amazon.com
platform, which provides services for many web sites worldwide,
is implemented on top of an infrastructure of tens of thousands of
servers and network components located in many datacenters
around the world. At this scale, small and large components fail
continuously and the way persistent state is managed in the face
of these failures drives the reliability and scalability of the
software systems.

This paper presents the design and implementation of Dynamo, a
highly available key-value storage system that some of Amazon’s
core services use to provide an “always-on” experience. To
achieve this level of availability, Dynamo sacrifices consistency
under certain failure scenarios. It makes extensive use of object
versioning and application-assisted conflict resolution in a manner
that provides a novel interface for developers to use.

Categories and Subject Descriptors

D.4.2 [Operating Systems]: Storage Management; D.4.5
[Operating Systems]: Reliability; D.4.2 [Operating Systems]:
Performance;

General Terms
Algorithms, Management, Measurement, Performance, Design,
Reliability.

since the application 1s aware of the data schema 1
can decide on the conflict resolution method that 1s best suited for
its client’s experience. For instance, the application that maintains
customer shopping carts can choose to “merge” the conflicting
versions and return a single unified shopping cart.
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To meet the reliability and scaling needs, Amazon has developed
a number of storage technologies, of which the Amazon Simple
Storage Service (also available outside of Amazon and known as
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design and implementation of Dynamo, another highly available
and scalable distributed data store built for Amazon’s platform.
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Abstract. Replicating data under Eventual Consistency (EC) allows
any replica to accept updates without remote synchronisation. This en-
s performance and scalability in large-scale distributed systems {e.g..
clouds). However, published EC approaches are ad-hoc and error-prone.
Under a formal Strong Eventual Consistency (SEC) model, we study suf-
ficient conditions for convergence. A data type that satisfies these con-
ditions is called a Conflict-free Replicated Data Type (CRDT). Replicas
of any CRDT are guaranteed to converge in a self-stabilising manner,
despite any number of failures. This paper formalises two popular ap-
proaches (state- and operation-based) and their relevant sufficient con-
ditions. We study a number of useful CRDTs, such as sets with clean
semantics, supporting both add and remove operations, and consider in
depth the more complex Graph data type. CRDT types can be composed
to develop large-scale distributed applications, and have interesting the-
oretical properties.

Keywords: Eventual Consistency, Replicated Shared Objects, Large-
Scale Distributed Systems.

1 Introduction

Replication and consistency are essential features of any large distributed system,
such as the WWW, peer-to-peer, or cloud computing platforms. The standard
“strong consistency™ approach serialises updates in a global total order [I0].
This constitutes a performance and scalability bottleneck. Furthermore, strong
consistency conflicts with availability and partition-tolerance [8].

When network delays are large or partitioning is an issue, as in delay-tolerant
networks, disconnected operation, cloud computing, or P2P systems, evenfual
consistency promises better availability and performance [17]21]. An update ex-
ecutes at some replica, without synchronisation: later, it is sent to the other

B —
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Abstract. Replicating data under Eventual Consistency (EC) allows
any replica to accept updates without remote synchronisation. This en-
sures performance and scalability in large-scale distributed systems {e.g..
clouds). However, published EC approaches are ad-hoc and error-prone.
Under a formal Strong Eventual Consistency (SEC) model, we study suf-
ficient conditions for convergence. A data type that satisfies these con-
ditions is called a Conflict-free Replicated Data Type (CRDT). Replicas
of any CRDT are guaranteed to converge in a self-stabilising manner,
despite any number of failures. This paper formalises two popular ap-
proaches (state- and operation-based) and their relevant sufficient con-
ditions. We study a number of useful CRDTs, such as sets with clean
semantics, supporting both add and remove operations, and consider in
depth the more complex Graph data type. CRDT types can be composed
to develop large-scale distributed applications, and have interesting the-
oretical properties.

Keywords: Eventual Consistency. Replicated Shared Objects, Large-
Scale Distributed Systems.

1 Introduction

Replication and consistency are essential features of any large distributed system,
such as the WWW, peer-to-peer, or cloud computing platforms. The standard
“strong consistency” approach serialises updates in a global total order [I0].
This constitutes a performance and scalability bottleneck. Furthermore, strong
consistency conflicts with availability and partition-tolerance [8].

When network delays are large or partitioning is an issue, as in delay-tolerant
networks, disconnected operation, cloud computing, or P2P systems, eventual
consistency promises better availability and performance [17]21]. An update ex-
ecutes at some replica, without synchronisation: later, it is sent to the other

—
[Shapiro et al,, SSS "I 1]

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

Amazon.com

One of the lessons our organization has learned from operating

*=1azon’s platform is that the reliability and scalability of a
tem is dependent on how its application state is managed.
1azon uses a highly decentralized, loosely coupled, service
snted architecture consisting of hundreds of services. In this
rdronment there is a particular need for storage technologies
t are always available. For example, customers should be able
view and add items to their shopping cart even if disks are
ing, network routes are flapping, or data centers are being
troyed by tornados. Therefore, the service responsible for
naging shopping carts requires that it can always write to and
d from its data store, and that its data needs to be available
oss multiple data centers.

ABSTRACT

aling with failures in an infrastructure comprised of millions of
nponents is our standard mode of operation; there are always a
all but significant number of server and network components
t are failing at any given time. As such Amazon’s software
tems need to be constructed in a manner that treats failure
dling as the normal case without impacting availability or
formance.

—————— T —

meet the reliability and scaling needs, Amazon has developed

. number of storage technologies, of which the Amazon Simple

perating Systems]: Reliability; D.4.2 [Operating Systems]: Storage Service (also available outside of Amazon and known as
Performance; Amazon S3), is probably the best known. This paper presents the
design and implementation of Dynamo, another highly available
and scalable distributed data store built for Amazon’s platform.
Dynamo is used to manage the state of services that have very
Reliability. high reliability requirements and need tight control over the
e " it consistency, cost-effectiveness and

'm has a very diverse set of

‘e requirements. A select set of

chnology that is flexible enough

n 1s aware of the data schema 1t & i oy

n method that 1s best suited for ““W
;, the application that maintains Mm
se to “merge” the conflicting =™ "™
ed shopping cart.

General Terms
Algorithms, Management, Measurement, Performance, Design,

“ known techniques to achieve
¢ 1s partitioned and replicated
1d consistency is facilitated by
sistency among replicas during
uvorum-like technique and a
ion protocol. Dynamo employs

_,W

—
[DeCandia et al,, SOSP '07]
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A non-invasive DSL embedded inJUIIa
Accelerates existing language constructs with @acc
Supports additional runStencil construct

A combination compiler-library solution

‘ _brary mode for development and debugging

X

Native mode for high performance at deployment

github.com/IntellLabs/ParallelAccelerator.jl



@acc example: Black-Scholes option pricing

using ParallelAccelerator

@acc function blackscholes(sptprice, strike, rate, volatility, time)
logterm = loglO(sptprice ./ strike)

powterm = .5 .* volatility .* volatility
den = volatility .* sqgrt(time)
dl = (((rate .+ powterm) .* time) .+ logterm) ./ den

d2 = dl .- den
NofXdl = 0.5 .+ 0.5 .* erf(0.707106781 .* dl)
NofXd2 = 0.5 .+ 0.5 .* erf(0.707106781 .* d2)
futurevValue = strike .* exp(- rate .* time)
cl = futurevValue .* NofXd2
call = sptprice .* NofXdl .- cl
put = call .- futureValue .+ sptprice

end

put = blackscholes(sptprice, initStrike, rate, volatility, time)

B ——
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@acc example: Black-Scholes option pricing

using ParallelAccelerator

@acc function blackscholes(sptprice,
logterm
powterm

(

den
dl
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NofXdl
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futureValue

cl
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put
end

put

dl

logl

0 (sptprice

.5

. x

volatili

Lt

, *

sgrt (

((rate

. +

powterm)

den

.t

0.5 er

0.5
0.5

.+

0.5 er

sptpric
call

strike |[. *

*

*

e NofXdl
futureValue

blackscholes(sptprice,

volatility

exp(- rate
NofXd?2

strike, rate, volatility, time)
strike)

L*| volatility
time)

. *| time)

./

.+ den

logterm) [Z

, *

£(0.707106781
£(0.707106781

. x

dl)
d2)
time)

L *

cl
sptprice

:

initStrike, rate, volatility, time)

1000 —

E——

20



@acc example: Black-Scholes option pricing

using ParallelAccelerator

@acc function blackscholes(sptprice,
logterm
powterm
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den
dl
d2
NofXdl
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futureValue
futureValue
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put
end
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@acc example: Black-Scholes option pricing

using ParallelAccelerator

@acc function blackscholes(sptprice,

strike, rate, volatility, time)

logterm = loglQ(sptprice | /| strike)
powterm = .5 |L* volatility L*] volatility
den = volatility | *| sqgrt(time)
dl = (((rate |+ powterm) |.* time) |+ logterm) [Z den
d2 = dl [-| den
Nofxdl = 0.5 |.H 0.5 ¥ erf(0.707106781 [*| d1)
NofXd2 = 0.5 |.H 0.5 |.* erf(0.707106781 L*| d2)
futurevValue = strike |.* exp(- rate [.* time)
cl = futurevValue | * NofXd2
call = sptprice L* NofXdl Eg cl
p put = call -] futureValue +| sptpri Translates pointwise array
operations like .+, .=, . *,and ./
put = blackscholes(sptprice, initStrike +Q data_Para”eI map Opera'tions
e
— T —————
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@acc example: Black-Scholes option pricing

100y
; i Matlab (1 thread)
B Matlab
Julia (1 thread)
mw Julia (explicit loops, 1 thread)
10t B @acc (1 thread)
% : Bl @©@acc (36 threads)
K 2.9x
Q
Q.
vy __1.0x__
0.1 (22.0 s)
‘-

Running on arrays of |00 million elements

2 Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.3GHz processors, |8 cores each (36 cores total) 128 GB RAM
Julia version 0.5.0; Matlab version R2015a

41.6X

*
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runStencil example: Gaussian blur

using ParallelAccelerator

@acc function blur(img, iterations)
buf = Array(Float32, size(img)...)
runStencil (buf, img, iterations, :oob skip) do b, a

b[0,0] =
(a[-2,-2] * 0.003 + a[-1,-2] * 0.0133 + a[0,-2] *
a[-2,-11] * 0.0133 + af-1,-1] * 0.0596 + a[0,-1] *
a[-2, 0] * 0.0219 + af-1, 0] * 0.0983 + a[0, 0] *
a[-2, 11 * 0.0133 + a[-1, 1] * 0.0596 + a[0, 1] *
a[-2, 2] * 0.003 + a[-1, 2] * 0.0133 + a[0, 2] *
return a, b
end
return img

end

img = blur(img, iterations)

10— *



runStencil example: Gaussian blur

using ParallelAccelerator

@acc function blur(img, iterations)
buf = Array(Float32, size(img)...)
runStencil (buf, img, iterations, :oob skip) do b, a

b[0,0] =
(a[-2,-2] * 0.003 + a[-1,-2] * 0.0133 + a[0,-2] *
a[-2,-11] * 0.0133 + af-1,-1] * 0.0596 + a[0,-1] *
a[-2, 0] * 0.0219 + af-1, 0] * 0.0983 + a[0, 0] *
a[-2, 11 * 0.0133 + a[-1, 1] * 0.0596 + a[0, 1] *
a[-2, 2] * 0.003 + a[-1, 2] * 0.0133 + a[0, 2] *
return a, b
end
return img

end

img = blur(img, iterations)

0 — *



runStencil example: Gaussian blur

using ParallelAccelerator

@acc function blur(img, iterations)
buf = Array(Float32, size(img)...)
runStencil (buf, img, iterations, :oob skip) do b, a

b[0,0] =
(a[-2,-2] * 0.003 + a[-1,-2] * 0.0133 + a[0,-2] *
a[-2,-11] * 0.0133 + af-1,-1] * 0.0596 + a[0,-1] *
a[-2, 0] * 0.0219 + af-1, 0] * 0.0983 + a[0, 0] *
a[-2, 11 * 0.0133 + a[-1, 1] * 0.0596 + a[0, 1] *
a[-2, 2] * 0.003 + a[-1, 2] * 0.0133 + a[0, 2] *
return a, b
end
return img

end

img = blur(img, iterations)

0 — *



runStencil example: Gaussian blur

1000¢
: Matlab (1 thread)

B Matlab

Julia (1 thread)
100 | mm @acc (1 thread)
| Bl @acc (36 threads)

o
- _
o 10
8_ | 4.7X
N | 2.6X
1_ ________________ 1 _Q)S o
0_1- (339.5 5) (185.9 s) (876.9 s)

00—

Running on a /095x5322 source image for 100 iterations

2 Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.3GHz processors, |8 cores each (36 cores total) 128 GB RAM
Julia version 0.5.0; Matlab version R2015a
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Impact of ParallelAccelerator...
[ Truong et al., PLDI "[ 6]
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HPAT: High Performance Analytics with Scripting Ease-of-Use

Ehsan Totoni
Intel Labs, USA

ehsan.totoni@intel.com

ABSTRACT

Big data analytics requires high programmer productivity and high
performance simultaneously on large-scale clusters. However, cur-
rent big data analytics frameworks (e.g. Apache Spark) have prohib-
itive runtime overheads since they are library-based. We introduce
a novel auto-parallelizing compiler approach that exploits the char-
acteristics of the data analytics domain such as the map/reduce
parallel pattern and is robust, unlike previous auto-parallelization
methods. Using this approach, we build High Performance Analyt-
ics Toolkit (HPAT), which parallelizes high-level scripting (Julia)
programs automatically, generates efficient MPI/C++ code, and pro-
vides resiliency. Furthermore, it provides automatic optimizations
for scripting programs, such as fusion of array operations. Thus,

Todd A. Anderson
Intel Labs, USA
todd.a.anderson@intel.com

Tatiana Shpeisman
Intel Labs, USA

tatiana.shpeisman@intel.com

as MATLAB, R, Python, and Julia since they express mathemati-
cal operations naturally and are the most productive languages in
practice [14, 30]. High performance requires efficient execution
on large-scale distributed-memory clusters due to extreme dataset
sizes.

Currently, there is a significant productivity and performance
gap in the big data analytics domain. A typical High Performance
Computing (HPC) approach of writing low-level codes (e.g. MPI/C++)
is beyond the expertise of most data scientists and is not practical in
their interactive workflows. Existing big data analytics frameworks
such as Apache Hadoop [37] and Apache Spark [40] provide better
productivity for big data analytics on clusters using the MapReduce
programming paradigm [15]. However, this productivity comes at
the cost of performance as these frameworks are orders of mag-

HPAT is 369X to 2033X fast r

[ Totoni et al., ICS "1 /]
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With CPU core counts on the rise, Python developers and data scientists
often struggle to take advantage of all of the computing power available
to them. CPUs with 20 or more cores are now available, and at the
extreme end, the Intel® Xeon Phi" has 68 cores with 4-way Hyper-
Threading. (That's 272 active threads!)

To use multiple cores in a Python program, there are three options. You
can use multiple processes, multiple threads, or both. Multiple processes
are a common way to split work across multiple CPU cores in Python.

Source: www.anaconda.com/blog/developer-blog/parallel-python-with-numba-and-parallelaccelerator/
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Policy Compression for
Aircraft Collision Avoidance Systems

Kyle D. Julian*, Jessica Lopez!, Jeffrey S. Brush, Michael P. Owen? and Mykel J. Kochenderfer*
*Department of Aeronautics and Astronautics, Stanford University, Stanford, CA, 94305
TApplied Physics Laboratory, Johns Hopkins University, Laurel, MD, 20723
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, 02420

Abstract—One approach to designing the decision making logic
for an aircraft collision avoidance system is to frame the problem
as Markov decision process and optimize the system using
dynamic programming. The resulting strategy can be represented
as a numeric table. This methodology has been used in the
development of the ACAS X family of collision avoidance systems
for manned and unmanned aircraft. However, due to the high
dimensionality of the state space, discretizing the state variables
can lead to very large tables. To improve storage efficiency, we
propose two approaches for compressing the lookup table. The
first approach exploits redundancy in the table. The table is
decomposed into a set of lower-dimensional tables, some of which
can be represented by single tables in areas where the lower-
dimensional tables are identical or nearly identical with respect
to a similarity metric. The second approach uses a deep neural
network to learn a complex non-linear function approximation

is extremely large, requiring hundreds of gigabytes of floating
point storage. A simple technique to reduce the size of the
score table is to downsample the table after dynamic program-
ming. To minimize the deterioration in decision quality, states
are removed in areas where the variation between values in
the table are smooth. This allows the table to be downsampled
with only minor impact on overall decision performance. The
downsampling reduces the size of the table by a factor of 180
from that produced by dynamic programming. For the rest of
this paper, we refer to the downsampled ACAS Xu horizontal
table as our baseline, original table.

Even after downsampling, the current table requires over
2GB of floating point storage. Discretized score tables like
this have been_compressed with Gaussian processes [6] and

of the table. With the use.of an.asunpmetticlossfunctionand-a—
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[Julian et al., 2016]

to a similarity metric. The second appro'ach uses a deep neural
network to learn a complex non-linear function approximation
of the table. With the use of an asymmetric loss function and a

=

preserving the relative preferences of the possible advisories
for each state. As a result, the table can be approximately
represented by only the parameters of the network, which reduces
the required storage space by a factor of 1000. Simulation

studies show that system performance is very similar using either
-l SO A Attt - et -

crete representation. Although there are significant certification
concerns with neural network representations, which may be

addressed in the future, these results indicate a promising way
: et tr— et * :
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Input: sensor data Output: one of five resolution advisories
once per second  (COC, weak left, weak right, strong left, strong right)
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Source: www.ll.mit.edu/publications/technotes/TechNote_ ACASX pdf
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5

right)
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9 fully-connected layers with RelLU activations (f(x) = max(0, x))

e
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O
~()-

.
&EX — COC: 0230892
@ — weak right: 0.703941

@é/

9 fully-connected layers with RelLU activations (f(x) = max(0, x))

[Julian et al., 2016]

Original Table

Neural Network

;).

B zy).

10 T T

—10

10
g |
S
= 0]
S  _5
@)

10

0

Advisories:

10 20 30
Downrange (kft)

coc M —30°/s

|
0 10 20 30
Downrange (kft)

—1.5°/s .1.5°/s .3.0°/s

0000

e
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Verification strategy

SAT: determine If a
Boolean formula
(containing only
Boolean variables,
parens, A, V, 7) IS
satisfiable

SMT.: determine
satisfiability of a formula
with respect to some
theory (e.g., theory of
inear real arithmetic)

Description of network Property to be shown

“If intruder is near and
approaching from left,
network will advise
‘strong right™

SMT formula /

wnN=5+m)v (p A -qg) .

l

SMT Solver

/ N

satisfiable unsatisfiable
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The virtues of laziness

Eager approach: convert
whole SMT formula to SAT
formula iImmediately, then
solve with SAT solver

Lazy approach: use theory
solvers, each specific to a
particular theory

Arithmetic Arrays

.- —

Core

Lazy SMT solver

architecture

Source: fm.csl.sri.com/SSFT | 6/slides.pdf
—— ————
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The virtues of laziness A e

N\
Eager approach: convert .
whole SMT formula to SAT - - L

Core
formula iImmediately, then
solve with SAT solver

&

Lazy SMT solver
archrtecture

Lazy approach: use theory .

&
solvers, each specific to a -

particular theory

Source: fm.csl.sri.com/SSFT | 6/slides.pdf
10— =




The virtues of laziness — e

N\

Eager approach: convert

/

whole SMT formula to SAT = Core -
formula iImmediately, then X

solve with SAT solver Lazy SMT solver

archrtecture
Lazy approach: use theory

(f;)
solvers, each specific to a -

particular theory

Source: fm.csl.sri.com/SSFT | 6/slides.pdf

To exploit domain knowledge and unlock efficiency, we need

theory solvers specifically for handling neural networks
[SysML '18]




Lazily handling RelLU activations [katz et al,2017]

Description of network Property to be shown

“if intruder is near and
approaching from left,
network will advise
‘strong right™”

SMT formula /

w(n=5+m v (pA-q) .

SMT Solver

/ N\

satisfiable unsatisfiable




Lazily handling RelLU activations [katz et al,2017]

Description of network

Property to be shown

“if intruder is near and
approaching from left,
network will advise
‘strong right™

SMT formula

/

w n=5+m)v (pA-q) .

SMT solver l

LP solver =———" Solve

/

satisfiable

- - >

unsatisfiable
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Lazily handling RelLU activations [katz et al,2017]

Description of network Property to be shown

“if intruder is near and
approaching from left,
network will advise
‘strong right™

SMT formula /

w n=5+m)v (pA-q) .
SMT solver l
LP solver Solver core
satisfiable unsatisfiable

Rel .U constraints like x

max (0, y) can only be encoded as disjunctions!
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Lazily handling RelLU activations [katz et al,2017]

Description of network Property to be shown

“if intruder is near and
approaching from left,
network will advise
‘strong right™

SMT formula /

w n=5+m)v (pA-q) .
SMT solver l
LP + RelLU
Solver core
solver
satisfiable unsatisfiable

Rel .U constraints like x

max (0, y) can only be encoded as disjunctions!
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Lazily handling RelLU activations [katz et al,2017]

Description of network Property to be shown

“if intruder is near and
approaching from left,
network will advise
‘strong right™

SMT formula /

w n=5+m)v (pA-q) .
SMT solver l

I_l:)sJ(r)I\I:/{eerLU \ Solver core
. .

satisfiable unsatisfiable

RelU constraints like x = max (0, y) can only be encoded as disjunctions!
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Lazily handling RelLU activations [katz et al,2017]

Max. ReLU
split depth
(out of 300)

Does it Solver
hold? time

Property description

“If intruder is directly ahead and is moving towards

ownship, network will not advise COC” J 78l =
“if Intruder Is near and approaching from left,

network advises ‘strong right™” J >4 th
“If Intruder is sufficiently far away, network advises

Lo v | 5o 50

“for large vertical separation and previous ‘weak
left’ advisory, network will either advise COC or x | 1h 69
continue advising ‘weak left"”

..and more

0 T

RelU constraints like x = max (0, y) can only be encoded as disjunctions!
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Lazily handling RelLU activations [katz et al,2017]

o Does it Solver Ma.x. el
Property description hold? i split depth
o 'ME " (out of 300)
“if Intruder is directly ahead and i1s moving towards
ownship, network will not advise COC” J 78l =
fintruder s near and spproaching fom et | (f | sqn|  ag
netwc
ggﬂéf Extension:
—landle non-RelU activations using
“forla Plecewise-linear approximations
left ac  [SysML 18]
contin - . ‘
T — TTmotgTrmorc
e T

RelU constraints like x = max (0, y) can only be encoded as disjunctions!
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A future research agenda o OOQ&

Description of network Property to be shown

o« QO ®\ “if intruder is near and
”@ s}\2&(}@;*. approaching from left,

<o e Develop new domain-specific theory solvers
SMT formula \ /

~o-='wie.w.  for parallel and distributed computing problems

C A Core SAT )

S N

satisfiable unsatisfiable




A future research agenda o OOQ&

Description of network Property to be shown

Q,/O@ VQGD\ “if intruder is near and
Y908 1O-@ @~ | | approaching from left,

<o e Develop new domain-specific theory solvers
SMT formula \ /

~o-='wie.w.  for parallel and distributed computing problems

C A Core SAT )

S N

satisfiable unsatisfiable

1, &1 0

Parallelize and distribute SMT solving = >~ fi@?gq
with strong determinism guarantees 1 S /




A future research agenda o o%&

Description of network Property to be shown

“if intruder is near and
approaching from left,

“wmeer” | Develop new domain-specific theory solvers

~o-='wie.w.  for parallel and distributed computing problems

LP+

/ N

satisfiable unsatisfiable

Parallelize and distribute SMT solving
with strong determinism guarantees

Performance

Long term: Democratize solver hacking!
Create tools to make 1t readlly easy to build
high-performance domain-specific solvers

Productivity Generality

Source: Olukotun et al.,, 2012
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composition.al/CMP52905-2018-09/

CMPS290S, Fall 2018 Home Course Overview Readings

Languages and Abstractions for
Distributed Programming

Welcome to CMPS290S, fall 2018 edition!

For more information, read the first-day-of-class course overview,

then check out the reading list.

Blog posts

e Mixing Consistency in a Programmable Storage System

e Conflict resolution in collaborative text editing with operational

transformation (Part 1 of 2)

e Manufacturing Consensus: An Overview of Distributed

Consensus Implementations

e Time is Partial, or: why do distributed consistency models and
weak memory models look so similar, anyway?

e Implementing a Garbage-Collected Graph CRDT (Part 1 of 2)

e Welcome to the "Languages and Abstractions for Distributed

Programming" blog




Thank you!

Email: kupen@ucsc.edu
Papers, etc.: users.soe.ucsc.edu/~lkuper/
Research blog: composition.al

‘SMTfOrm:u:\a \ / ‘
7 — 1 1] SMT Solver
Lattice-based data structures (LVars)  Non-invasive DSLs for SMT-based verification of
for deterministic programming productive parallelism safety-critical neural networks
[POPL 14, PLDI '14, FHPC ' I3, WoDet '14] [ECOOP'17] [SysML '18]

\_____V__J

Guiding principle:
Find the right high-level abstractions
to enable efficient computation

Special thanks to Jason Reed for drawings!
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