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Abstract. Unification, a fundamental process for logic programming
systems, relies on the ability to efficiently look up values of variables in a
substitution. Triangular substitutions, which allow associations to vari-
ables that are themselves bound by another association, are an attractive
choice for purely functional implementations of logic programming sys-
tems because of their fast extension time and linear space requirement,
but have the disadvantage of costly lookup. We present several repre-
sentations for triangular substitutions that decrease the cost of lookup
to linear or logarithmic time in the size of the substitution while main-
taining most of their desirable properties. In particular, we show that
triangular substitutions can be represented efficiently using skew binary
random-access lists, and that this representation provides a significant
decrease in running time for existing programs written in miniKanren, a
declarative logic programming system implemented in a pure functional
subset of Scheme.

1 Introduction

Baader and Snyder [I] present the concept of unification as a fundamental pro-
cess for automated deduction systems, including logic programming systems. In
the model of logic programming considered here, the unification of two terms
with respect to a substitution s is the process of extending s with bindings for
the terms’ variables until the terms equate in s (or determining that no satis-
factory extension is possible). A substitution maps variables to terms and can
be represented simply using an association list.

Substitutions in triangular form [I] allow associations of variables to variables
that themselves may occur in the domain of the substitution. In a triangular
substitution the result of a variable lookup must itself be looked up recursively;
this process is known as walking the variable in s. For example, walking z in the
substitution ((b.2) (z.3) (¢ .1) (y . z) (z . y)) returns 3 because z is bound
to y, which is bound to z, which is bound to 3, a constant.

Walking a variable r in a triangular substitution s takes O(n?) timeﬂ in
the length of s, since each of the n bindings may potentially bind a variable to

! This time bound assumes that walk terminates, which is guaranteed if the substitu-
tion is acyclic.



another variable which must be walked in 5E| Given an association list represen-
tation of triangular substitutions and a var? predicate that checks its argument
for membership in the set of variables, we can define the walk procedure in
Scheme as follows:

(define walk
(lambda (v §)
(let loop ((s 3))
(cond
((or (not (var? v)) (null? s)) v)
((eq? v (Ihs (car s))) (walk (rhs (car s)) §))
(else (loop (cdr ))))))

If v is not a variable or does not appear as the left-hand sideE| of a binding in s,
(walk v s) simply returns v. Otherwise, we examine the first binding in s and, if
its left-hand side matches v, we recursively walk its right-hand side in s; if not,
we continue comparing v with the left-hand sides of the remaining bindings in s
until a match is found or s has been exhausted.

A substitution is idempotent if no variable in its domain occurs in any term
in its range. walk is trivial to implement for idempotent substitutions, because
once a match has been found, no further recursion is necessary; a walk of an
idempotent substitution therefore also runs in O(n) worst-case timeﬂ in the size
of the substitution. The substitution in the example above is, of course, not
idempotent because z and y appear on both the left-hand and right-hand sides
of bindings. Using our association list representation, triangular substitutions
are extendable in constant time with cons, but idempotent substitutions require
a more costly extension operation in order to maintain idempotency.

In summary, the fundamental tradeoff between idempotent and triangular
substitutions is in the choice of fast lookup and more costly extension versus
fast extension and more costly lookup. However, in a purely functional context,
triangular substitutions have a smaller total space requirement since each exten-
sion results in a new substitution comprising the new binding and a reference
to the unmodified previous substitution. Purely functional idempotent substitu-
tions have no such space bounds, as the addition of one binding may require us
to allocate and retain space for modified versions of some (in the worst case, all)
of the existing bindings. Triangular substitutions are therefore the focus of our
attention in this paper. We demonstrate techniques for improving the efficiency
of walking in triangular substitutions, first by optimizing walk itself, and second,

2 The name “triangular” can therefore be thought of as referring to the “shape” of
the recursion in the worst case, in which all n elements in s must be examined on
the first call to walk, followed by n — 1 elements on the first recursive call, and so
on.

3 We use lhs and rhs selectors for generality; these may be trivially implemented using
the Scheme primitives car and cdr, respectively.

4 This time bound assumes an association list representation of idempotent substi-
tutions; we note that any non-trivial map data structure has a better worst-case
bound.



by choosing representations for triangular substitutions that perform well when
tested on real programs written in miniKanren, a declarative logic programming
system implemented in a pure functional subset of Scheme [2].

The paper is organized as follows: We begin in section [2| by describing
miniKanren’s implementation of triangular substitutions and the optimizations
it already incorporates. In section [3] we make several attempts to improve the
performance of walk without altering the association list representation of sub-
stitutions. In section 4] we consider more efficient representations for triangular
substitutions. In section |5, we benchmark the performance of all our represen-
tations on a suite of tests. Finally, in sections [6] and [7] we set out our ideas for
future work and summarize our findings.

2 Substitutions in miniKanren

miniKanren uses triangular substitutions represented as association lists. Uni-
fication is implemented by miniKanren’s unify procedure, shown below, which
takes two terms, ¥ and @, and a substitution, s, and attempts to unify ¢ and @
with respect to s.

(define unify
(lambda (9 W s)
(let ((v (walk 9 s)) (w (walk @ s)))
(cond
((eq? v w) )
((var? v) (ext-s v w s))
((var? w) (ext-s w v s))
((and (pair? v) (pair? w))
(let (s (unify (car v) (car w) 5)))
(and s (unify (cdr v) (cdr w) s))))
((equal? v w) s)

(else #/)))))

A call to unify proceeds as follows: If ¥ and W are identical after being walked
in s, the incoming terms unify with respect to s and we return s unmodified.
Otherwise, if v (or w) is a variable, it was not bound in s and can be bound to
w (v), and the resulting extended substitution is returned. If both v and w are
unbound variables, unify binds v to w instead of w to v, which would be a valid
alternative. However, if neither v nor w is a variable, unify is recursively called
on their subterms. Otherwise, unification fails. (The equal? clause catches equal
constants that are not identical in the sense of Scheme’s eq?, which we use in
the first clause for efficiency.)

Since the performance of walk is critical to unify, miniKanren uses two tech-
niques to improve the average cost of walk: birth substitutions and right-hand-
side check. We discuss these optimizations in the following sections.

2.1 Birth Substitutions

When a variable has no binding, the cost of walking it is linear in the size of
the substitution, since every binding must be checked. miniKanren improves



this cost for many variables by exploiting the fact that when a new variable
x is created, any bindings in the existing substitution s cannot possibly refer
to z, because they were made before z was created. Therefore, when walking
z at some point in the future, if z’s “birth substitution” s is ever reached, no
match for z exists and walk can terminate, returning z. In miniKanren, variables
are represented as unique objects that contain a pointer to the variable’s birth
substitution, making it readily available to walk. Birth substitutions also allow
walk to avoid checking explicitly for the empty substitution, since all variables
have a birth substitution guaranteed to match either the current substitution or
a suffix thereof.

2.2 Right-Hand-Side Check

When walking a variable v, if v is ever found on the right-hand side of a binding,
walk can terminate, returning v. This “right-hand-side check” is possible because
unify first walks both 9 and . If the substitution is extended, either v will be
bound to w or w to v. Consider the case where v is bound to w. If w is a variable,
it cannot occur on the left-hand side of a binding deeper in the substitution, or
the initial walk would have found a match. During some later walk of w, if the
pair (v . w) is reached, walk can immediately return w because no deeper binding
for w can exist. (If w were bound to some z deeper in the substitution, then v
would have been bound to z instead of to w.) The case in which w is bound
to v is similar. Another benefit of right-hand-side check is that it guarantees
termination of walk even for cyclic substitutions.

Because of the above optimizations, a recursive call to walk will never reach
the end of the substitution because, at the very least, a right-hand-side check on
the pair just matched will terminate the recursive walk. Using this knowledge,
walk is split into the following two procedures, walk-sref and step-sref, which
incorporate both birth substitutions and right-hand-side check.

(define walk-sref
(lambda (v 3)
(let loop ((s 3))
(cond
((or (not (var? v))
(null? s)
(eq? s (var-birth v))
: (eq? v (rhs (car s))))
((eq? v (lhs (car s))) (step-sref (rhs (car s)) §))
(else (loop (cdr ))))))

(define step-sref
(lambda (v 3)
(let loop ((s 3))
(cond
((or (not (var? v)) (eq? v (rhs (car s)))) v)
((eq? v (Ihs (car s))) (step-sref (rhs (car s)) §))
(else (loop (cdr s)))))))



walk-sref performs the search before the first match, while step-sref continues the
search after the first match and omits the needless check for a birth substitution.

3 Potential Improvements to walk

Without altering the underlying representation of substitutions in miniKanren,
several changes can be made to walk to attempt to improve its performance.

3.1 Forward-Backward walks

The following variations on walk limit its worst-case time complexity to linear
in the size of the substitution. By taking advantage of the right-hand-side check,
we can see that if a variable z is found on the right-hand side of a binding b,
it cannot occur on the left-hand side of a binding deeper in the substitution.
Therefore, instead of recursively walking x from the front of the list, we begin
searching backwards from b. If a second match exists, we are certain to find
it before reaching the beginning of the list. We therefore traverse the entire
substitution at most twice, for an overall time complexity of O(n) in the size
of the substitution. walk-front-back, shown below, uses stack unwinding as a
mechanism for traversing the list backwards upon reaching p.

(define walk-front-back
(lambda (v §)
(call/cc
(lambda (k)
(let loop ((s 3))
(cond
((or (not (var? v))
(null? s)
(eq? s (var-birth v))
(eq? v (rhs (car s))))
(k v)
((eg? v (Ihs (car s))) (rhs (car s)))
(else
(let ((v (loop (cdr s))))

(cond
((not (var? v)) (k v))
((eq? v (Ihs (car s))) (rhs (car s)))

(else v))))))))))

A continuation £ is saved at the start of walk-front-back to permit immediate ter-
mination in the case of a successful right-hand-side or birth-substitution check,
or if v is ever a non-variable. For each binding in the substitution, the recursive
non-tail call (loop (cdr s)) will either invoke k, or will return without invok-
ing k, indicating that we have reached the binding again during the backward
traversal.



Another variation, walk-reverse-list, builds the reverse list using cons cells
as it traverses forwards through the list searching for the first match. This elim-
inates the dependency on call/cc and avoids using stack unwinding to reverse
the list.

(define walk-reverse-list
(lambda (v §)
(let loop ((s 8) (s-rev ()))
(cond
((or (not (var? v))
(null? s)
(eq? s (var-birth v))
) (eq? v (rhs (car s))))
((eq? v (Ihs (car s)))
(walk-reverse-list-back (rhs (car s)) s-rev))
(else (loop (cdr s) (cons (car s) s-rev)))))))

(define walk-reverse-list-back
(lambda (v s)
(cond
((or (not (var? v)) (null? s)) v)
((eq? v (lhs (car s)))
(walk-reverse-list-back (rhs (car s)) (cdr s)))
(else (walk-reverse-list-back v (cdr s))))))

Finally, a further variation, walk-pinch, reaches the first match and then steps
alternatively from the front of the list and the most recent match point, squeezing
the search window until a second match is found. This algorithm performs better
than walk-reverse-list when the second match is more likely to be closer to the
front of the list than to the initial match.

(define walk-pinch
(lambda (v )
(let loop ((s 8) (s-rev ()))
(cond
((or (not (var? v))
(null? s)
(eq? s (var-birth v))
) (eq? v (rhs (car s))))
((eg? v (Ihs (car s))) (pinch (rhs (car s)) § s-rev))
(else (loop (cdr s) (cons (car s) s-rev)))))))

efine pinch-fin
defi h-find
(lambda (e s)
(cond

((eq? e (car s)) (cdr s))
(else (pinch-find e (cdr s))))))



(define pinch
(lambda (v §-fwd §-rev)
(let loop ((s-fwd 3-fwd) (s-rev §-rev))
(cond

((or (not (var? v))
(null? s-rev)
(eq? s-fwd (var-birth v))

) (eq? v (rhs (car s-fwd))))

((eq? v (Ihs (car s-fwd)))

(pinch (rhs (car s-fwd)) §-fwd (pinch-find (car s-fwd) s-rev)))

((eq? v (Ihs (car s-rev))) (pinch (rhs (car s-rev)) §-fwd (cdr s-rev)))

(else (loop (cdr s-fwd) (cdr s-rev)))))))

miniKanren’s use of purely functional substitutions allows branching com-
putations to share substitution suffixes of various lengths. Unfortunately, this
precludes a doubly-linked list representation for substitutions in which the back-
wards list is built as a side effect of extension. When walking the substitution
from front to back, we traverse a list (there is only one path); however, when
walking from back to front, any particular branch of the computation has only
one path, but the substitutions for all branches together constitute a tree.

3.2 Path Compression

Path compression [4UT4] dynamically compresses chains of variables in a substi-
tution, in effect bringing it closer to idempotency. Consider a hypothetical case:
walking a variable v initially yields a binding to another variable w, which is
then recursively walked to yield a value, say, 1. During the walk, we have gained
a valuable piece of information: v and w are members of an equivalence class
in that they ultimately walk to the same value. However, this information is
not preserved; if we subsequently walk v again, we repeat the entire process.
We can preserve the equivalence of v and w by extending the substitution with
a new binding of (v . 1), so that subsequent walks of v immediately return 1.
This technique ensures that every variable in a path of equivalent variables is
bound directly to the shared value. For instance, if w above walked to x instead
of 1, pairs binding both v and w to the final returned value would be added to
the substitution. A version of walk that trades longer substitutions for shorter
paths, walk-flatten, is shown below. This version also incorporates the reverse
list-building technique from walk-reverse-list in the previous section.

(define walk-flatten
(lambda (v 3)
(let loop ((s 8) (s-rev ()))
(cond

((or (not (var? v))
(null? s)
(eq? s (var-birth v))
(eq? v (rhs (car s))))

(values v §))

((eg? v (Ihs (car s)))

(walk-flatten-back (rhs (car s)) ‘(,v) § s-rev))

(else (loop (cdr s) (cons (car s) s-rev))))))



(define walk-flatten-back
(lambda (v m s-fwd s)
(cond

((not (var? v)) (ret-flatten v m s-fwd))
((null? s) (values v s-fwd))
((eq? v (lhs (car s)))
(walk-flatten-back (rhs (car s)) (cons v m) s-fwd (cdr s)))
(else (walk-flatten-back v m s-fwd (cdr s))))))

(define ret-flatten
(lambda (v m s)
(let loop ((m m) (s s))
(cond
((null? m) (values v s))
(else (loop (cdr m) (cons (,(car m) . ,v) 5)))))))

At the point when walk-flatten normally would terminate, having matched a non-
variable value, it instead calls the auxiliary procedure ret-flatten. This procedure
accepts the return value v, a list of equivalent variables m, and the original
substitution s. ret-flatten extends the substitution, binding each member of m
to the final value v. ret-flatten, and hence walk-flatten, returns both v and the
possibly extended substitution § so that § can be used in the next call to walk-
flatten.

The techniques presented thus far optimize for substitutions containing very
long chains of variable bindings. Testing with existing miniKanren programs,
however, has shown that a typical substitution does not contain very long chains;
rather, very large substitutions with hundreds of bindings are common. Next,
we consider more fundamental changes to address this observation.

4 Searching for a Better Representation

Substitution representations based on sequential-access lists have an unavoidable
problem: the worst-case time complexity of walking a variable is at best linear in
the size of the substitution, and as we have seen, some algorithms are quadratic
in the worst case. This is true for idempotent substitutions as well as for any of
the representations shown in the previous section. In this section, we consider
alternative representations for which the asymptotic worst-case performance of
walk is logarithmic in the size of the substitution. Several of the representations
we discuss also have other desirable properties.

4.1 Binary Search Trees

Binary search trees (BSTs) are binary trees in which each node consists of data
and two subtrees: left and right. A non-negative integer key is associated with
each node such that the keys for all nodes in the left subtree of a node n are



less than or equal to n’s key, and keys for nodes in n’s right subtree are greater
than n’s key. If the tree is balanced, insertion, lookup, and update operations in
a BST are all logarithmic in the number of elements in the tree [7].

We can represent a triangular substitution with a BST by using the number
of previously created variables as the key for each variable. However, because
variables may be unified at arbitrary times relative to when they were created, we
have no guarantee that the BST will be balanced. Consider the case in which key
values are strictly increasing and the substitution is extended with a binding for
each variable in the same order in which they were created. In that case, lookup
of the most recently added element will be linear in the number of elements in
the tree.

An alternative choice for key values, such as those generated by a non-
repeating hash function, can ameliorate the balance problem somewhat. Bal-
anced binary tree representations such as red-black trees [11] could also be suit-
able, but have more complicated insertion operations.

4.2 Prefix Trees

Binary search trees only perform well with specially ordered data and when the
cost of key comparison is small. Prefix trees (or tries) offer another approach
that takes advantage of the structure of keys—in our case, the bits of binary
numbers—and distributes the cost of key comparison throughout the traversal
of the tree [I0]. Prefix trees are n-ary trees in which each non-leaf node represents
a prefix of the key determined by its depth in the tree, and one node exists for
every common key prefix.

A prefix tree representation of triangular substitutions that uses integers as
keys is a binary tree with data only at the leaf nodes. Each non-leaf node has two
subtrees: left and right. The left subtree contains all nodes whose keys have a 0
at the dth bit, where d is the current node’s depth. The right subtree similarly
contains all nodes whose keys have a 1 at the position corresponding to the
node’s depth. Each leaf node contains the portion of the key remaining after
traversing the tree to that leaf, along with its associated data. In other words,
the key stored in a given leaf upon insertion is the original key that was to be
inserted, but right-shifted by the leaf’s depth.

When performing a lookup for a given key in the prefix tree, the bits in the
key are considered in order from least significant to most significant. (At each
level, the key is shifted right by one, so the current least significant bit is always
the bit under consideration.) If the current node is a leaf and its key matches the
current value of the lookup key, the leaf is a match. Otherwise, the key was not
found, and the lookup fails. If the current node is not a leaf, the least significant
bit of the current search key determines the subtree in which to recur. If the
selected subtree is not present, the lookup fails.

Insertion, lookup, and update of a prefix tree all take time linear in the lesser
of the length of the key and the number of elements in the tree. As with BSTs,
there is no guarantee of balance. Moreover, when using fixed-precision integer
keys, distributing the cost of key comparison over the levels of the tree is not
significantly more efficient than comparing the full key at every level, since keys



have a fixed range and can be compared in constant time (relative to the size of
the prefix tree).

Besides their better average cost for access, prefix trees are preferable to
BSTs because common sequences of insertions result in more balanced trees.
Consider inserting the keys 0, 1, 2, and 3 into an initially empty BST. After this
sequence, the tree is maximally unbalanced with a depth of 4. After inserting
the same sequence into a prefix tree, the result is a balanced tree of depth 3.

Although BST and prefix tree representations of substitutions outperform
simple association lists in several ways, they both fall short in one respect: ex-
tending the substitution with a new binding takes time logarithmic in the size
of the substitution or, for prefix trees, linear in the size of the key. With associ-
ation lists, extension takes constant time. We next consider a representation of
substitutions that in many cases allows extension in constant time.

4.3 Skew Binary Random-Access Lists

Numerical representations—data structures that are patterned after number
systems—are a natural choice for implementing container data types such as
lists. In a numerical representation, a container object of size n is patterned af-
ter the representation of the number n in a given number system, and operations
on container objects are patterned after their analogous arithmetic operations.
Binary random-access lists [I0] are a general-purpose numerical representation
for lists based on binary numbers. For our purposes, a binary random-access list
(BRAL) of size n contains a complete binary tree (containing data only at leaf
nodes) for each 1 in the binary representation of n. The cons operation on BRALS
is analogous to the increment operation on binary numbers; likewise, an uncons
operation that deconstructs a list and returns its head and tail is analogous to
decrementing binary numbers. (The head and tail operations on BRALs can be
readily implemented in terms of uncons.)

In this section, we present a representation for substitutions based on skew
binary random-access lists (SBRALs) [10J9]. To motivate our discussion of the
advantages of SBRALs over standard BRALs, consider the problem of efficiently
incrementing and decrementing binary numbers. Incrementing a binary number
with a low-order bit of 0 takes constant time: we simply change the low-order bit
to 1. However, incrementing a binary number with a low-order bit of 1 requires us
to perform a carry; in the worst case, in which all the bits are 1, carrying requires
log(n) operations in the size of the number being incremented (or n operations
in the number of bits). By the same token, it is cheaper to decrement binary
numbers containing many 1s and more expensive to decrement those with many
0s. This property of worst-case log(n) carry operations is not specific to binary
numbers; it generalizes to any ordinary base system. If we plan to increment
and decrement often, we would do well to instead choose a representation for
numbers that allows us to perform these operations in constant time, regardless
of the number being incremented or decremented.

Consider an alternate representation in which the weight w; of the ith digit
is 20+ — 1, rather than 2¢ as in ordinary binary numbers. In this representation,
we allow the digits 0, 1, and 2, stipulating that 2 is only allowed as the lowest



non-zero digit. Such numbers are said to be in canonical skew binary form [80]
and have the desirable property that both increment and decrement operations
run in O(1) worst-case time, and yield a result that is still in canonical skew
binary formEI

We would like the representation we use for substitutions to support constant-
time cons and uncons operations corresponding to the constant-time increment
and decrement operations that we have seen for skew binary numbers. SBRALSs are
a list representation based on skew binary numbers that meet this requirement
elegantly. An SBRAL comprises a list of complete binary trees, with one tree for
each 1 and two trees for each 2 in the corresponding skew binary number.

We can represent a triangular substitution of size n using the SBRAL corre-
sponding to the skew binary number n. Each non-zero digit of n corresponds to
a pair containing its skew binary weight and a tree containing the bindings of
the substitution. Since the weights are explicitly represented in the SBRAL , the
representation can be sparse; we can omit zeros from the list of digits without
ambiguity.

When we extend the substitution, if the first and second elements of the list
have the same weight, they correspond to a single 2 and are replaced with a 0
digit in the same position—omitted because of the sparse representation—and
a 1 or 2 in the next higher digit. Again, a 2 is represented as two trees of the
same weight. If the first two elements do not have the same weight, or if the list
has fewer than two elements, digit 0 is incremented.

The following cons-sbral procedureﬁ implements the extend operation for
SBRALs. For clarity, we show here a simplified version; our full implementation
of SBRALSs is presented in the accompanying Appendix

(define cons-sbral
(lambda (v Is)
(pmatch Is
((Gwl . ,t1) (w2 . ,t2) . ,ls*)
(if (= w! w2)
(cons ‘(,(+ 1 (+ wl w2)) .
,(make-node v t1 t2)) lsx)
(cons (1. ,v) ls)))
(,ls (cons (1 . ,v) 1s)))))

To construct the weight for digit n + 1 from two weights at n, we must add 1.
Equivalently, we can observe that 1 +2-2/+1 —1 =27+2 _ 1,

SBRAL representations of triangular substitutions have a number of advan-
tages over BST and prefix tree representations. New bindings are added at the
front of the list, making lookups for recently bound variables very fast; programs
that exhibit a high degree of locality between variable creation and lookup per-
form especially well. However, because of this, the indices for existing elements

5 Myers [8] shows that every natural number has a unique skew binary canonical form.
We henceforth assume that all skew binary numbers we discuss are in their canonical
form.

5 Here we use pmatch, a simple pattern matcher for Scheme developed by Oleg Kise-
lyov and described in Byrd and Friedman [3].



grow as new elements are added. For example, if an element is located at index 7
and then 3 elements are added, its index becomes 10. To maintain invariant in-
dices, the current list size is stored with the variable instead of the index. When
performing a lookup or update, the saved size is subtracted from the current size
to determine the current correct index.

SBRALs have logarithmic bounds for update and lookup similar to BSTs and
prefix trees. Unlike those representations, they have constant extension time.
However, we cannot immediately take advantage of this. Because variables in
a substitution are shared across potentially many threads of computation, a
variable’s index must be set at the time it is created. Different threads cannot
attempt to bind the variable to different indices in the SBRAL.

One way to ensure this is to extend the substitution at variable creation time
with a binding to a placeholder. If the variable is subsequently bound to a value,
an update is necessary. This meets the requirement that a variable’s index is
determined before the computation can split, but we lose entirely the benefit of
constant-time extension; all bindings due to unification require logarithmic-time
updates. We note that even with this limitation, the SBRAL implementation is
faster than BSTs or prefix trees.

4.4 Deferred-Extension SBRALS

A better solution is to reserve indices in the SBRAL at variable creation time
without immediately extending it. During unification, when the substitution is
extended, the index of the variable being bound is compared against the instan-
tiated size of the SBRAL. If the variable index is lesser or equal, an update must
be performed. If it is greater, extension is performed until the instantiated size
reaches the variable index. Any intervening extensions are made with placeholder
values. The result is that if variables are bound in the substitution in the same
order they are created, extension is always constant time. In practice, some but
not all programs exploit this property. However, we can make one simple and
semantics-preserving optimization immediately: when two fresh logic variables
are unified, binding the newer variable to the older gives us constant-time exten-
sion. This optimization can be implemented with a straightforward modification
to unify.

An additional benefit of deferred extension occurs when performing a lookup.
If the variable’s index is greater than the instantiated size of the SBRAL, the
lookup fails in constant time. There is no need to even check the list, because
we know no binding could have been made to an index outside its bounds.

5 Performance

We compared the performance of association-list representations of triangular
substitutions using six versions of walk discussed in section [3] as well as the four
representations discussed in section [@} BSTs, prefix trees, SBRALs, and deferred-
extension SBRALsS. The tests were performed in miniKanren, with Chez Scheme



7.4 on a 3 GHz Intel Core 2 Duo E8400 machine running Red Hat Linux 5.2.
Figure 1 shows the running time (in milliseconds) of each representation on
six representative miniKanren programs. mktests is a suite of more than three
hundred short, functional tests for verifying implementations of miniKanren. The
log° and append® tests are both adapted from Friedman, Byrd, and Kiselyov [5];
log® generates all triples of positive integers b, ¢, such that the equation 68 =
b? + r holds, and append® computes the “append” relation on lists, generating
the first 700 answers when given all fresh variables. The perm? test generates all
permutations of a given input list once, finding the first 7 answers when given
all fresh variables. The leantap test runs the first 46 Pelletier problems [13] using
a version of aKanren, an extension to miniKanren with operators for nominal
logic programming [3]. Finally, the zebra test is the classic “zebra” logic puzzle
run 1000 times[]
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Fig. 1. Mean running time (in milliseconds) for ten runs of six representative miniKan-
ren programs using various representations of triangular substitutions.

" Omitted for brevity are standard deviation and memory usage statistics; these are
available, along with complete source code, at http://iucs-relational-research.
googlecode.com/files/subst.tgzl


http://iucs-relational-research.googlecode.com/files/subst.tgz
http://iucs-relational-research.googlecode.com/files/subst.tgz

Although all of the random-access representations perform well, the versions
using SBRAL representations generally perform the best. The superior perfor-
mance of random-access list representations is especially evident in the results
of the perm? test, in which they are several orders of magnitude faster than any
of the association-list representations, regardless of the version of walk being
used.

We also performed a test to measure the performance of variable lookup
independent of particular miniKanren programs. Figure 2 shows the running
time (in milliseconds) of these tests. The worst-case test performs a single lookup
in a 60,000-element substitution in which the first binding is vy to v; and each
subsequent binding is v; to v;41, requiring the maximum number of recursions
during lookup. Here we see clearly the difference among the implementations
with linear-, logarithmic-, or quadratic-bounded lookup.

worst—case

[ | (12996.7)

time {ms)

[ walk-front-back 3 walk-flatten 3 Prefix tree mm DESBRAL mm walk
B walk-reverse =3 walk-pinch HEE SBRAL [ BST 1 walk-sref

Fig. 2. Mean running time (in milliseconds) for ten variable lookups in a worst-case
substitution of 60,000 elements for various representations of triangular substitutions.

6 Future Work

We note that skew binary random-access lists are one of a host of numerical rep-
resentations that are potential candidates for efficiently representing triangular
substitutions. Of these, we hypothesize that finger trees [6], which are relatively
straightforward to implement and support amortized constant-time extension,
are a promising possibility.

SBRAL representations support constant-time extension if variables are bound
in the order they are created. This property suggests automatic reordering
of variable creation as a promising direction for future research. In principle,
compile-time or run-time program transformations that automatically reorder
variable creation could guarantee constant-time extension for a broad class of
miniKanren programs. More work remains to determine whether such transfor-
mations would be feasible in practice.

Finally, prefix trees that represent keys in big-endian format [12] have been
shown to have better sequential insertion performance than little-endian prefix
trees such as those shown in this paper. It may be that, for our application, the



benefit of fast sequential insertion outweighs prefix trees’ more expensive average
random insertion cost; future work could test this hypothesis.

7 Conclusion

The fast extension time and linear space requirement of triangular substitutions
make them an attractive choice for purely functional implementations of logic
systems such as miniKanren. However, typical implementations of triangular
substitutions have the disadvantage of costly lookup. We have demonstrated
a variety of representations for triangular substitutions that decrease the cost
of lookup while maintaining most of their desirable properties. Our most effi-
cient representations, based on skew binary random-access lists, combine loga-
rithmically bounded update and lookup operations with an often constant-time
extension operation, resulting in a substantial performance benefit for existing
miniKanren programs.
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Appendix

We present here the complete Scheme implementation for the deferred-extension
SBRAL representation of substitutions described in section 4.4

module skew-bral-de cempty kd:size kd:associate
dule skew-bral-def (kd kd kd
kd:lookup kd:update kd:get-value kd:reserve)
(import (scheme))
efine-syntar make-bra
defi ke-bral
(syntax-rules ()
((- size realized ls) “(,size ,realized . ,ls))))
efine bral-size car
defi bral
efine set-bral-size! set-car!
defi bral !
efine bral-realized cadr
define bral-realized cad
efine bral-Is cddr
defi bral-ls cdd
efine-record node ((immutable va
defi d nod bl [
(immutable even)
(immutable odd)))
(define kd:empty (lambda () (make-bral 0 -1 ())))
(define kd:reserve
(lambda (b)

(let ((n (bral-size b))) (set-bral-size! b (+ 1 n)) n)))
(define kd:size (lambda (b) (bral-size b)))
define kd:associate
(

(lambda (¢ v b)

(if (> i (bral-realized b))

(make-bral
(bral-size b)
7
(cons v (bral-ls b) (- ¢ (bral-realized b))))
(kd:update i v b))))
(define kd:lookup

(lambda (z b)

(if (> i (bral-realized b))

#f
(lookup (reverse-idz i b) (bral-ls b)))))
(define kd:update

(lambda (z v b)

(make-bral

(bral-size b)

(bral-realized b)

(update (reverse-idx i b) v (bral-ls b)))))
(define kd:get-value

(lambda (v) (cond ((node? v) (node-val v)) (else (car v)))))
(define br (vector ’br))
define reverse-idz
(

(lambda (7 b) (- (bral-realized b) 1)))
(define shift (lambda (n) (fxsra n 1)))
(define cons

(lambda (v Is n)



(let+ ((vx (if (= 1 n) v br))
(res (cond
((and (pair? ls)
(pair? (cdr ls))
( (= (caar ls) (caadr ls)))
G(+ 1 (+ (caar ls) (caadr 1s)))

,(make-node v (cdar ls) (cdadr 1s)))
(cddr 1s)))
(else (cons (1 . ,u%) 1s)))))
(if (= 1 n) res (cons v res (- n 1))))))
(define lookup-tree
(lambda (w 1 t)
(cond
((node? t)
(if (zero? i)
(if (eq? (node-val t) br) #f t)
(let ((w/2 (shift w)))
(if (<= i w/2)
(lookup-tree w/2 (- i
(

i 1) (node-even t))
lookup-tree w/2 (- (- 4 1

» ) w/2) (node-odd 1))))))

(if (zero? 4) (if (eq? t br) #f (cons t ())) #1)))))
(define lookup

(lambda (i Is)
(cond
((null? Is) #0)
(else
(let ((t (car ls)))
(if (< i (car 1)
(lookup-tree (car t) i (cdr t))
(lookup (- i (car t)) (cdr I5))))))))
(define update-tree
(lambda (w i v t)
(cond
((node? t)
(if (zero? 1)
(make-node v (node-even t) (node-odd t))
(let ((w/2 (shift w)))
(if (<=iw/2
(make-node
(node-val t)
(update-tree w/2 (- i 1) v (node-even t))
(node-odd t))
(make-node
(node-val t)
(node-even t)
(update-tree
w/2



(- (-2 1) w/2)
(node-odd 1))))))
(else
(if (zero? 1)
(error 'update-tree "illegal index “s” 1))))))
(define update
(lambda (i v ls)
(cond
((null? Is) (error ’k:update 7illegal index “s” 7))
(else
(let ((¢ (car ls)))
(if E< i (car t))
‘((car t) . ,(update-tree (car t) i v (cdr t)))
(cdr 1s))

(cons t (update (- i (car t)) v (cdrls))))))))))
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