Portable, Efficient, and Practical Library-Level
Choreographic Programming

SHUN KASHIWA, University of California, Santa Cruz, USA
GAN SHEN, University of California, Santa Cruz, USA

SOROUSH ZARE, University of California, Santa Cruz, USA
LINDSEY KUPER, University of California, Santa Cruz, USA

Choreographic programming (CP) is an emerging paradigm for programming distributed applications that
run on multiple nodes. In CP, instead of implementing individual programs for each node, the programmer
writes one, unified program, called a choreography, that is then transformed to individual programs for each
node via a compilation step called endpoint projection (EPP). While CP languages have existed for over a
decade, library-level CP — in which choreographies are expressed as programs in an existing host language,
and choreographic language constructs and endpoint projection are provided entirely by a host-language li-
brary —is in its infancy. Library-level CP has great potential, but the only existing implementation approaches
have portability, efficiency, and practicality drawbacks that hinder its adoption.

In this paper, we aim to advance the state of the art of library-level CP with two novel techniques for
choreographic library design and implementation: endpoint projection as dependency injection (EPP-as-DI),
and choreographic enclaves. EPP-as-DI is a language-agnostic technique for implementing EPP at the library
level. Unlike existing library-level approaches, EPP-as-DI asks little from the host language — support for
higher-order functions is all that is required — making it usable in a wide variety of host languages. Chore-
ographic enclaves are a language feature that lets the programmer define sub-choreographies within a larger
choreography. Within an enclave, “knowledge of choice” is propagated only among the enclave participants,
enabling the seamless use of the host language’s conditional constructs while addressing the efficiency lim-
itations of existing library-level implementations of choreographic conditionals. We implement EPP-as-DI
and choreographic enclaves in ChoRus, the first CP library for the Rust programming language. Our case
studies and benchmarks demonstrate that the usability and performance of ChoRus compares favorably to
traditional, non-choreographic distributed programming in Rust.

1 INTRODUCTION

In a distributed system, a collection of independent nodes communicate with each other by send-
ing and receiving messages. Programmers must ensure that nodes’ local behaviors — sending and
receiving messages, and taking internal actions — together amount to the desired global behavior
of the entire system. As a very simple example, consider a distributed protocol involving nodes
Alice and Bob, in which Alice sends a greeting to Bob and Bob responds. In traditional distributed
programming (assuming the existence of send and receive functions that implement message
transport), Alice might run a node-local program send("Hello!", Bob); receive(Bob). Mean-
while, Bob would run his own node-local program receive(Alice); send("Hi!", Alice). Al-
ice and Bob depend on each other to faithfully follow the protocol: if either of them forgets to call
send, for instance, then their counterpart will wait forever to receive a message (or time out and
report an error). This approach is prone to bugs, including deadlocks.

The emerging paradigm of choreographic programming [Carbone and Montesi 2013; Montesi
2013; Cruz-Filipe and Montesi 2020; Giallorenzo et al. 2020; Hirsch and Garg 2022; Shen et al.
2023; Montesi 2023] offers a way to rule out this class of bugs. Instead of programming individ-
ual nodes, the choreographic programmer writes a single program, called a choreography, that

Authors’ addresses: Shun Kashiwa, University of California, Santa Cruz, USA, Santa Cruz, shkashiw@ucsc.edu; Gan Shen,
University of California, Santa Cruz, USA, Santa Cruz, gshen42@ucsc.edu; Soroush Zare, University of California, Santa
Cruz, USA, Santa Cruz, sozare@ucsc.edu; Lindsey Kuper, University of California, Santa Cruz, USA, Santa Cruz, lkuper@
ucsc.edu.

HTTPS://ORCID.ORG/0009-0001-3665-0182
HTTPS://ORCID.ORG/0009-0006-0947-9531
HTTPS://ORCID.ORG/0009-0003-5558-4111
HTTPS://ORCID.ORG/0000-0002-1374-7715
https://orcid.org/0009-0001-3665-0182
https://orcid.org/0009-0006-0947-9531
https://orcid.org/0009-0003-5558-4111
https://orcid.org/0000-0002-1374-7715

2 Kashiwa et al.

expresses the behavior of the entire system from an objective, third-party point of view. For
example, the above protocol might be written as the choreography Alice("Hello!") ~> Bob;
Bob("Hi!") ~> Alice. The ~> operator denotes communication between a sender and a receiver.
Choreographies are transformed into collections of node-local programs via a compilation step
called endpoint projection (EPP) [Qiu et al. 2007; Carbone et al. 2007, 2012]. If EPP is correct, every
send in one of the resulting node-local programs is guaranteed to have a corresponding receive
in another node-local program, ensuring deadlock freedom [Carbone and Montesi 2013].

In the last ten years, several choreographic programming (CP) languages have been pro-
posed [Carbone and Montesi 2013; Montesi 2013; Dalla Preda et al. 2014, 2017; Giallorenzo et al.
2020; Hirsch and Garg 2022]. However, library-level CP — in which choreographies are expressed
as programs in an existing host language, and choreographic operators and EPP are provided en-
tirely by a host-language library — is just beginning to emerge.

Library-level CP has the potential to immensely improve the accessibility and practicality of
CP by meeting programmers where they are — in their programming language of choice, with ac-
cess to that language’s ecosystem. A library-level implementation of choreographic programming
in a given host language would enjoy the usual advantages of embedded DSLs [Hudak 1996]: it
would be installable just like any host-language library, compilable just like any host-language pro-
gram, and could use any host-language-specific tools for development, debugging, and deployment.
Library-level CP would also aid the integration of choreographies into larger systems, without any
need for the programmer to change languages just to implement certain components choreograph-
ically. Library-level CP would fit especially nicely into a workflow in which a programmer wishes
to port a non-distributed program — say, a turn-based game in which players sit next to each other
at the same machine — to a distributed implementation in which the players interact over a net-
work. With CP, we start and end the process with one program, and library-level CP further means
that we need never switch languages along the way.

Given these advantages, how can we accomplish library-level CP? So far, the only existing
library-level CP implementation is the recently proposed HasChor framework [Shen et al. 2023],
which implements support for CP by means of a domain-specific language embedded in Haskell.
In HasChor, choreographies are monadic computations in which choreographic operators such
as ~> may be used. Under the hood, the HasChor library uses a clever implementation technique
based on dynamic interpretation of freer monads [Kiselyov and Ishii 2015] to carry out EPP.

The HasChor framework represents the current state of the art of library-level CP. However,
HasChor’s implementation approach has several limitations that hinder its portability, efficiency,
and practicality. First, HasChor’s implementation relies on Haskell-specific language features and
is not easily portable to other languages that lack Haskell’s particular arsenal of programming
abstractions. In particular, HasChor’s use of freer monads to implement EPP makes it challenging
to port to other languages. Second, HasChor’s implementation of EPP — which is the only existing
library-level implementation of EPP for choreographies — results in inefficient runtime behavior
in node-local programs compared to what standalone choreographic languages can offer. Specifi-
cally, HasChor’s treatment of conditionals in choreographies results in unnecessary network traf-
fic, making it unsuitable for use in typical distributed deployments in which network bandwidth
is a scarce resource. The HasChor approach also requires programmers to use a HasChor-specific
language construct for conditionals, rather than using the control flow constructs of the host lan-
guage. Finally, HasChor lacks features that would make it easier to integrate choreographic com-
ponents into larger, non-choreographic software systems. This is unfortunate, since the ability to
seamlessly integrate choreographic and non-choreographic code should be a selling point of the
library-level CP approach, as opposed to standalone CP languages.

Portable, Efficient, and Practical Library-Level Choreographic Programming 3

In this paper, we aim to advance the state of the art of library-level CP by addressing the above
limitations. We make the following specific contributions:

e We propose endpoint projection as dependency injection (EPP-as-DI), a novel and language-
agnostic implementation technique for library-level CP (Section 3). Unlike the HasChor
implementation approach, EPP-as-DI asks little from the host language: support for higher-
order functions is all that is required. As such, the EPP-as-DI approach is straightforward
to use in a wide variety of host languages.

e We propose a novel design and implementation technique for implementing efficient con-
ditionals in library-level CP: choreographic enclaves (Section 4). Using enclaves, a program-
mer can sidestep the bandwidth inefficiency of a naive implementation of choreographic
conditionals, while still making seamless use of the host language’s conditional constructs.

e We present ChoRus, a choreographic programming library for Rust, implemented us-
ing our proposed techniques (Section 5). Along with EPP-as-DI and choreographic en-
claves, ChoRus is the first CP library to support located arguments and return values (Sec-
tion 5.2.2), a feature that aids the integration of choreographic components into larger, non-
choreographic software projects. We empirically evaluate the usability and performance of
ChoRus compared to traditional distributed programming in Rust (Section 6).

The ChoRus implementation, case studies and benchmarking code, and documentation are avail-
able at https://github.com/lsd-ucsc/ChoRus.

2 BACKGROUND ON CHOREOGRAPHIC PROGRAMMING

We begin in Section 2.1 with a brief overview of CP using an example implemented in the stand-
alone CP language Choral [Giallorenzo et al. 2020]. Then, in Section 2.2, we give an overview of
library-level CP using the HasChor framework [Shen et al. 2023], and we discuss the strengths
and limitations of library-level CP as it stands today. For a comprehensive introduction to CP, we
refer the reader to Montesi [2023, 2013].

2.1 The Elements of Choreographic Programming

To illustrate the key concepts of CP, let us consider a well-known example from the literature: the
“bookseller” protocol [Carbone et al. 2007, 2012; Honda et al. 2008; World Wide Web Consortium
2006]. This protocol describes the interactions between a bookseller and a potential book buyer.
First, the buyer sends the name of a book they wish to purchase to the seller. In response, the seller
looks up the catalog and sends back the price of the book to the buyer, who then checks whether
the price is within their budget. If the buyer has the means to purchase the book, they notify
the seller and obtain an estimated delivery date. Alternatively, if the book’s cost exceeds their
budget, they communicate to the seller their decision not to proceed with the purchase. Figure 1
shows how this protocol might be implemented in a traditional (non-choreographic) fashion as two
individual programs, running on the buyer and seller’s distinct nodes. We use Python in Figure 1
as a representative mainstream programming language. We assume that the send and receive
functions are provided by some library that implements network communication between nodes.

Even for simple protocols like the bookseller protocol, it is easy to introduce bugs. For example,
the programmer might forget to send the decision to the seller, in which case the seller will wait
indefinitely for the buyer’s response, causing a deadlock. The programmer might also use different
encodings for the delivery date in the buyer and seller programs, in which case the buyer will not
be able to parse the delivery date sent by the seller, causing a type error.

Choreographic programming addresses these problems by letting the programmer implement
a protocol as a single, unified program, called a choreography. Figure 2 shows an implementation

https://github.com/lsd-ucsc/ChoRus

© N U e W N =

= - N B N N

[
= o

4 Kashiwa et al.

def buyer():
title = input()
send(title, "seller")
price = receive("seller")
decision = price <= budget
if decision:
send(True, "seller")
delivery = receive("seller")
else:
send(False, "seller")

def seller():

title = receive("buyer")

price = catalog.get_price(title)

send(price, "buyer™)

decision = receive("buyer")

if decision:
delivery = catalog.get_delivery(title)
send(delivery_date, "buyer")

[I T N T

Fig. 1. The bookseller protocol implemented as individual node-local programs

String@Buyer title_buyer = UI@Buyer.input();
String@Seller title_seller = c.<String>com(title_buyer);
Integer@uyer price = c.<Integer>com(catalog.quote(title_seller));
boolean@Buyer decision = price <= budget;
if(decision) {
c.<EnumBoolean>select (EnumBoolean@Buyer.True);
String@Seller delivery = catalog.get_delivery(title_seller);
String@Buyer delivery2 = c.<String>com(delivery);
} else {
c.<EnumBoolean>select (EnumBoolean@Buyer.False);

}

Fig. 2. The bookseller protocol implemented in the Choral choreographic language

of the bookseller protocol as a choreography in Choral [Giallorenzo et al. 2020], a standalone
CP language. Taking Figure 2’s implementation of the bookseller protocol as an example, let us
consider four key elements of CP:

e Located data and computation. The bookseller protocol involves two locations, Buyer
and Seller, and data and computation reside at one of these locations. On line 1 of Figure 2,
the call to the function input happens at the buyer, as indicated by the @Buyer annotation
on the function call. Likewise, the value returned by input is located at the buyer, which
we see in its type, String@Buyer. Choral’s type system ensures that data at one location
cannot be accessed at a different location without an explicit communication.’

e A unified language construct for communication. Choreographies replace explicit
calls to send and receive with a single language construct representing communication
between a sender and a receiver. In the bookseller protocol, the buyer sends the title of the
book to the seller (and the seller receives it) on line 2 of Figure 2, using the com method.
Here, com takes a string located at the buyer and returns a string located at the seller. Ad-
ditional calls to com on lines 3 and 8 express communications from the seller to the buyer.

e Propagation of “knowledge of choice”. On line 4 of Figure 2, the buyer checks whether
the price of the book is within their budget, and depending on the decision, the choreogra-
phy takes different branches. Conditionals in choreographic programming are challenging
because of the problem known as “knowledge of choice” [Castagna et al. 2011]. When
the branches of a conditional expression encode different communication patterns, all af-
fected locations must be notified of the outcome of evaluating the conditional. In Choral,
the select method is used to express selections, which indicate that the choreography has

1While choreographic languages often represent locations at the type level, the notion of located data and computation is
always present in choreographic programming, whether or not locations are made explicit in a type system like Choral’s.

Portable, Efficient, and Practical Library-Level Choreographic Programming 5

1 bookseller :: Choreo I0 (Maybe Day @ "buyer")

2 bookseller = do

3 title’ <- (buyer, title) ~> seller

4 price <- seller ‘locally' \un -> return (priceOf (un title'))
5 price’ <- (seller, price) ~> buyer

6 decision <- buyer ‘locally‘ \un -> return (un price’ <= budget)
7

8 cond (buyer, decision) \case

9 True -> do

10 date <- seller ‘locally‘ \un -> return (deliveryDate (un title'))
11 date’ <- (seller, date) ~> buyer

12 buyer ‘locally® \un -> return $ Just (un date')

13 False -> do

14 buyer ‘locally*® _ -> return Nothing

Fig. 3. The bookseller protocol implemented in Haskell using HasChor [Shen et al. 2023]

taken a particular branch and propagate the information to relevant locations. On line 6,
the buyer uses select to send True to the seller if the price is within the budget; otherwise,
the buyer sends False to the seller on line 10. The seller will receive True or False and
take the appropriate branch.

¢ Endpoint projection. By itself, a choreography is useful as a global specification of the
behavior of a protocol. If we wish to have a runnable implementation, however, we need a
way to perform endpoint projection (EPP).2 EPP transforms a choreography into an individ-
ual program for each target node. For the bookseller protocol, the Choral compiler carries
out EPP and generates Java programs similar to those in Figure 1.

So far, we have been using Choral to illustrate the key concepts of CP. Choral exemplifies
language-level CP, where choreographies are programs in a standalone language with its own syn-
tax, type system, compiler, and so on. Nearly all existing choreographic programming languages
are implemented as standalone languages. Section 7 discusses Choral and other standalone chore-
ographic languages in more detail. We now turn to library-level CP, the focus of this paper.

2.2 CPImplemented as a Library

As discussed in Section 1, the only existing library-level CP framework is HasChor [Shen et al.
2023], which implements CP as a Haskell library. Figure 3 shows Shen et al.’s implementation of
the bookseller protocol as a Haskell program using HasChor.

With HasChor, choreographies are written as computations that run in the Choreo monad pro-
vided by the library. The bookseller choreography’s type signature on line 1 of Figure 3 shows
that it returns a value of type Maybe Day at the "buyer" location. In general, HasChor supports
located values of type a @ 1, implemented using GHC Haskell’s support for type-level symbols.
The (~>) operator, seen on lines 3, 5, and 11 of Figure 3, implements communication between a
sender and a receiver and is HasChor’s counterpart of the com method in Choral. The locally op-
erator, on lines 4, 6, 10, 12, and 14 of Figure 3, implements local computation at a particular node —
for instance, looking up the book’s price on the seller’s node (line 4), and computing whether the
book is in budget on the buyer’s node (line 6). A located value of type a @ 1 may be “unwrapped”
and used at the specified location 1 using the special un function passed to locally. Finally, the

2Unlike in the literature on multiparty session types [Honda et al. 2008], in which endpoint projection refers to projecting a
global type to a collection of local types, in choreographic programming we are concerned with projecting a global program
(that is, a choreography) to a collection of local programs.

6 Kashiwa et al.

cond operator on line 8 of Figure 3 implements a choreographic conditional expression. Unlike
with the Choral bookseller implementation in Figure 2, the HasChor programmer does not need
to use anything like select to solve the knowledge-of-choice problem. Instead, in HasChor, cond
automatically inserts the necessary communication to propagate knowledge of choice. While this
design choice saves the programmer the tedium of writing calls to select, it has unfortunate
consequences for efficiency, as we will discuss in Section 4.

To run Choreo computations, the HasChor framework provides a runChoreography function
that performs endpoint projection. Given a choreography of Choreo type (such as bookseller)and
a location name (such as "buyer"), runChoreography acts something like a just-in-time compiler:
it dynamically generates (and runs) a node-local program at the specified location, by dynamically
interpreting the choreography. This approach to library-level EPP is possible because HasChor
implements Choreo as a freer monad [Kiselyov and Ishii 2015], whose operations can be given
different semantics depending on the location at which they are run. For instance, in HasChor the
~> operator is interpreted as send for the sender, receive for the receiver, and as a no-op for other
participants in a choreography.

Library-level CP has the usual advantages of embedding a DSL in an existing host language, in-
cluding ability to piggyback on the host language’s ecosystem and tooling, a gentle learning curve
for host-language users, and seamless integration with existing host-language code. HasChor en-
joys all of these advantages. It is therefore tempting to directly port the HasChor library to lots
of languages in which programmers might benefit from CP. A world with PyChor, JSChor, Java-
Chor and RustChor libraries would surely make CP more practical and accessible than it is today.
Unfortunately, this “port HasChor to your favorite language” plan has some flaws:

o Tight coupling with Haskell and monads. HasChor’s monadic implementation approach re-
lies on Haskell-specific language features. While these implementation choices are appro-
priate (and elegant) in the context of Haskell, they are not necessarily easily portable to
other languages. To make choreographic programming more widely accessible, a more
general approach to implementing library-level CP is called for.

o Inefficient conditionals. HasChor’s implementation of conditionals in choreographies in-
volves broadcasting the value of the condition expression to all nodes participating in the
choreography, even those nodes that are not involved in the execution of the conditional.
Implementing conditionals efficiently is a particular challenge for library-level CP: while
standalone choreographic languages can statically analyze choreographies to insert only
the minimum ammount of inter-node communication needed, such an analysis would be
difficult (if not impossible) to accomplish in HasChor, given its implementation approach
that relies on dynamic interpretation of free monads. Therefore, HasChor’s implementa-
tion of conditionals is unlikely to scale well to systems with large numbers of nodes, or
those where network bandwidth is a bottleneck.

o Lack of support for located arguments and return values. One of the biggest advantages of
library-level CP is that it can easily be integrated with existing host-language code. How-
ever, HasChor does not support providing located arguments to choreographies or return-
ing located values from choreographies. This limitation makes it difficult to use HasChor
as part of a larger application.

In summary, HasChor aims to make CP easy to use, and it succeeds at that goal — provided that
the user is a Haskell programmer. But the HasChor design does not make CP easy to implement in
one’s language of choice, and it suffers from efficiency and practicality drawbacks. Our aim in the
rest of this paper is to democratize the implementation of library-level choreographic programming
while improving its efficiency and practicality.

Portable, Efficient, and Practical Library-Level Choreographic Programming 7

a: Type

I : Location
a @l = Local a + Remote (Located Values)
Unwrapl=a@! — a (Unwrap)
Choreo a = Ops — a (Choreography)
Ops = Locally x Comm X Bcast (Choreographic Operators)
Locally = Va. (I: Location) — (Unwrapl — a) » a@ ! (Local Computation)
Comm =Va. (sr: Location) > a@s > a@r (Communication)
Bcast = Va. (I : Location) > a@![— a (Broadcast)

Fig. 4. The interface provided by the host-language library for expressing choreographies.

3 ENDPOINT PROJECTION AS DEPENDENCY INJECTION

A central concept of CP is that a single choreography exhibits different behaviors depending on the
location to which it is projected. Each local computation may or may not be executed, and each
communication becomes a send, a receive, or a no-op. Allowing a caller (in this case, endpoint
projection) to modify the behavior of the callee (in this case, a choreography) is a common pattern
in software engineering to improve code reusability and testability. One technique to achieve this
is through dependency injection (DI) [Fowler 2004]. In DI, the callee receives its dependencies
from the caller, who can alter the callee’s behavior by providing different dependencies.

In this section, we present endpoint projection as dependency injection (EPP-as-DI), a new tech-
nique for implementing library-level choreographic programming. The key idea of EPP-as-DI is
that we can implement CP by representing a choreography as a host-language function that takes
choreographic operators as arguments. Then, endpoint projection can change the behavior of the
choreography by injecting specialized implementations of the choreographic operators, depending
on the projection target. This technique can be used in any host language that supports higher-
order functions, enabling the straightforward implementation of choreographic programming li-
braries in a wide variety of languages. We introduce a simple host language as a stand-in for an
arbitrary host language in Section 3.1, then show how EPP-as-DI is implemented in Section 3.2.

3.1 Choreographies as Host-Language Programs

To introduce EPP-as-DI, we assume a simple ML-like host language that supports higher-order
functions. For ease of exposition in this section, our host language is typed; however, types are
not essential to implement EPP-as-DI. Choreographies are expressed as host-language functions
using the interface presented in Figure 4, which we now describe.

3.1.1 Located Values. We assume a set of Locations with decidable equality and write them as [.
A located value, written a @ [, is a value of type a at location I. A located value can either be a
Local a, meaning the value is at the current location, or a Remote, meaning the value is at some
remote location. We maintain the invariant that, when doing endpoint projection for I, a @ [is
always a Local. To use a located value at [, it needs to be unwrapped first. Since it does not make
sense to unwrap a remote value, we provide an Unwrap I function that can only unwrap values at
I. Given a value of type a @ I, Unwrap [produces a value of type a.

38 Kashiwa et al.

bookseller : Choreo (Option Date @ buyer)
bookseller(locally, comm, bcast) =
let titlepyyer = locally(buyer, A(un) — input()) in
let titleseier = comm(buyer, seller, titlepyyer) in

let pricey. o, = locally(seller, A(un) — catalog.get_price(un(titlegejier))) in

let pricey,, ., = comm(seller, buyer, price|ie,) in

let decisionp,ye, = locally(buyer, A(un) — un(pricebuyer) < budget) in

let decision = bcast(buyer, decisionyer) in

if decision then
let deliverygie, = locally(seller, A(un) — catalog.get_delivery(un(titleseier))) in
let deliveryy,, o, = comm(seller, buyer, deliveryg) in
locally(buyer, A(un) — Some(un(deliverybuyer)))

else

locally(buyer, A(un) — None)

Fig. 5. Bookseller Choreography

3.1.2 Choreographies. A choreography Choreo a is a function that takes a set of choreographic
operators Ops as dependencies and returns some result of type a. The host-language library inter-
face provides three choreographic operators that are sufficient to realize the key elements of CP
described in Section 2.1. We will use lower-case locally, comm, and bcast as the names of operators
that have types Locally, Comm, and Bcast, respectively:

e locally performs a local computation: it takes a location and a function and runs the func-
tion locally at the location.

e comm communicates a value between two locations: it takes a sender and a receiver loca-
tion, a value at the sender, and returns the same value at the receiver.

e bcast broadcasts a value to the group of locations involved in the interaction: it takes a
sender location, a value at the sender, and returns a value at all locations.

We can write choreographies as functions of type Choreo a by using the provided choreographic
operators in the body of the function. To illustrate, Figure 5 shows the bookseller protocol imple-
mented in our notional host language using the API of Figure 4. We assume that the host language
supports standard language constructs such as let ... in and if ... then ... else. The bookseller
choreography uses bcast to propagate knowledge of choice and implement conditionals. When
the buyer makes a decision (decisionpuyer), it is broadcasted to all locations (decision). Since all lo-
cations have the same data, it is safe to use the control-flow constructs of the host language, such
as if, to implement conditionals in choreographies.

3.2 Endpoint Projection as Injecting Dependencies

Since a choreography is a function that takes choreographic operators as dependencies, we can
determine the meaning of these operators by injecting specialized implementations of them, lead-
ing to the definition of endpoint projection as a host-language function epp, shown in Figure 6.
We assume the existence of send and recv functions in the host language that implement message
transport, for instance, by calling into a host-language networking library. epp takes a choreogra-
phy ¢, a list of locations participating in the choreography Is, and a target location [, then projects

Portable, Efficient, and Practical Library-Level Choreographic Programming 9

epp : Choreo a — [Location] — Location — a

epp(c,Is 1) =
let unwrap(v) = if let Local(a) = v then a else error(“impossible”) in
let locally(!’, f) = if == I’ then Local(f(unwrap)) else Remote in
let comm(s,r,a) =
if Il == s then send(unwrap(a), r); Remote else if [== r then Local(recv(s)) else Remote in
let bcast(s, a) = if [== s then Vr € Is. send(unwrap(a), r); unwrap(a) else recv(s) in

c(locally, comm, bcast)

Fig. 6. Endpoint Projection as Injecting Dependencies

the choreography to a node-local program for the target location. Inside epp, we construct the
three choreographic operators from the viewpoint of [and supply them to c:

e For operator locally(l’, f), if [is the same as I, we perform the local computation f; other-
wise, no action is taken.

e For operator comm(s, r, a), if [is the same as the sender location s, we perform a send of
a to the receiver; or if [is the same as the receiver location r, we perform a recv from the
sender; otherwise, no action is taken.

o For operator bcast(s, a), if [is the same as the sender location s, we perform a series of
sends of a to all the locations participating in the interaction; otherwise, no action is taken.

We used the EPP-as-DI technique to implement ChoRus, a choreographic programming library
for Rust. We describe the design and implementation of ChoRus in Section 5.

4 EFFICIENT CONDITIONALS WITH CHOREOGRAPHIC ENCLAVES

As discussed in Section 2.1, implementing conditionals in choreographic programming is chal-
lenging because of the “knowledge of choice” problem [Castagna et al. 2011]. A CP language must
ensure — either statically or dynamically — that choreographies propagate knowledge of the out-
come of evaluating a conditional expression to all locations that are affected by the choice. If CP is
implemented as a standalone language, then the compiler can perform static analysis to check this
property, and a choreography that fails to propagate knowledge of choice is deemed unprojectable.
Standalone CP languages can even support choreography amendment [Cruz-Filipe and Montesi
2020; Lanese et al. 2013; Basu and Bultan 2016; Cruz-Filipe and Montesi 2023], a procedure that
determines if a choreography is unprojectable as-is and then automatically inserts the minimum
necessary communication to make it projectable.

Without access to the full AST of programs in the CP language, however, static analysis becomes
infeasible. In particular, with both the EPP-as-DI approach of Section 3 and in HasChor’s freer-
monad-based approach, we cannot perform static analysis on choreographies to determine how
knowledge of choice needs to be propagated. With static analysis off the table as an option, then
propagation of knowledge of choice needs to be handled some other way. In Section 3, we solved
the problem in a naive way by implementing conditionals with broadcast, which ensures that
all locations receive the knowledge of choice, whether they are affected by the choice or not.
HasChor’s cond operator internally uses broadcast as well. Not only does this naive approach
introduce unnecessary communication, it may cause an undesired leak of information to locations
who should not have it.

10 Kashiwa et al.

Alternatively, we could do without static analysis another way: by requiring the programmer
to provide annotations to convey their intent. In fact, in the absence of choreography amendment,
this is the typical approach even in standalone CP languages: the programmer must annotate the
branches of a conditional with selection annotations that indicate to the compiler that knowledge
of choice must be propagated, as we see in the Choral code in Figure 2 that uses the select method.
Yet the approach of adding selection annotations is somewhat unsatisfying, because we must add
annotations to make our code correct (that is, projectable). If we must annotate our code for the
benefit of the compiler, it would be preferable if we could begin with a choreography that is correct,
but inefficient, and then add annotations to make it efficient.

In this section, we address this design challenge with choreographic enclaves, a novel CP lan-
guage feature. Enclaves are sub-choreographies that execute at a specified subset of the locations
involved in a larger choreography. One may broadcast within an enclave, just like in any other
choreography, but the broadcast will only go to those locations that are in the specified subset.
Enclaves allow finer control over the propagation of knowledge of choice, enabling an efficient
implementation of conditionals in library-level CP without static analysis.

In Section 4.1, we present a variant of the bookseller protocol to motivate the need for fine-
grained control over propagation of knowledge of choice. Then, in Section 4.2 we introduce chore-
ographic enclaves. We define an enclave operator and present its type signature and implementa-
tion, and we show how to implement the two-buyer protocol with enclave and compare it with
the naive approach and the selection-annotation approach.

4.1 The Two-Buyer Protocol

To illustrate the problem of inefficient conditionals, let us consider a variant of the bookseller
protocol: the two-buyer protocol [Honda et al. 2008; Hirsch and Garg 2022]. In this protocol, there
are two buyers who wish to collectively buy a book from the seller. First, buyer1 sends the title
to the seller, and the seller sends the price to both buyers. Then, buyer2 tells buyer1 how much
they can contribute, and buyer1 decides whether to buy the book by comparing the price with the
buyers’ combined budget. If buyer1 decides to buy the book, they send their intent to buy to the
seller, and the seller sends the delivery date to buyer1. Otherwise, buyer1 tells the seller that they
will not buy the book.

Using the bcast choreographic operator that we introduced in Section 3.1, we can implement
the two-buyer protocol in our notional host language, as shown in Figure 7. Figure 8a shows a
sequence diagram of the execution of the protocol. After buyer1 makes a decision, to perform the
conditional, it broadcasts the decision to all locations, i.e., the seller and buyer2. It is important
that the seller receives the decision because the seller needs to know whether to send a deliv-
ery date to buyerT, but buyer2 does not need to receive the decision, as its subsequent behavior
does not depend on it. Nonetheless, because of broadcast, buyer2 receives the decision, causing
unnecessary communication between buyer1 and buyer2, shown in red in Figure 8a. While this
communication does not affect the correctness of the choreography, it is inefficient and can be
problematic in more complex choreographies with many participants. Moreover, it leaks informa-
tion about choice, which can be a security concern. For example, buyer2 might infer the budget
of buyer1 by observing the decision, and this type of information leakage might be undesirable in
some applications.

Portable, Efficient, and Practical Library-Level Choreographic Programming

two_buyer : Choreo (Option Date @ buyer1)
two_buyer(locally, comm, bcast) =
let title, yerr = locally(buyer1, A(un) — input()) in
let titlesejier = comm(buyerT, seller, titlepyyert) in

let price = locally(seller, A(un) — catalog.get_price(un(titlesgjier))) in

seller
let pricey,, e 1 = comm(seller, buyer1, pricegi,) in

let pricey,, e, = comm(seller, buyer2, priceyi,) in
let contribution = comm(buyer2, buyer1, buyer2_budget) in
let decisionpyyert = locally(buyer1, A(un) — un(pricebuyeﬂ) < buyer1_budget + contribution) in
let decision = bcast(buyer1, decisionpyyer1) in
if decision then
let delivery e, = locally(seller, A(un) — catalog.get_delivery(un(titleseer))) in
let delivery},, oy = comm(seller, buyer1, deliveryie,) in
locally(buyer1, A(un) — Some(un(deliverybuye”)))
else

locally(buyer1, A(un) — None)

Fig. 7. A naive version of the two-buyer protocol with bcast

|
contribution amount

[buyerl] [seller} { buyer2]

I . |

! book title : [buyerl } [seIIerJ buyer2

l book price l 1 | |

i i 1 book title !

| ! q ‘

! M) | book price |
<

I

I,

I

|
|
|
|
|
1 1 . I
<z ‘ ! ! book price !
| alt /J [buybookl | _ contribution amount |
I | I~ 1 I
| true | Enclave /J i :
I | T 1 I
| true } - alt [buy book] !
I [- true | }
. delivery date | i I |
< ' _delivery date ' !
<
[decccccccccccccccaaaaadl baad] i J
[not enough budget] i [not enough budget] | |
: : | | false | |
false ‘ | > ‘
> n I
I | |
' false } ! ‘
et [buyerl } [seIIer] buyer2
I | |
| | |
[buyerl] [seIIer] [buyer2] (b) With enclave

(a) Using broadcast naively

Fig. 8. Sequence diagrams of the two-buyer protocol with and without enclave

12 Kashiwa et al.

two_buyer : Choreo (Option Date @ buyer1)

two_buyer(locally, comm, bcast, enclave) =

let decisionpyert = locally(buyer1, A(un) — un(pricebuyen) < buyer1_budget + contribution) in
let c(locally, comm, bcast, enclave) =
let decision = bcast(buyerT, decisionpyyert) in
if decision then
let delivery),e, = locally(seller, A(un) — catalog.get_delivery(un(titlegejier))) in
let deliveryy,, oy = comm(seller, buyer1, deliverygie,) in
locally(buyer1, A(un) — Some(un(deliverybuyeﬂ)))
else
locally(buyer1, A(un) — None)
in

enclave([buyer1, seller], c)

Fig. 9. A more efficient version of the two-buyer protocol using an enclave

4.2 The Enclave Operator

To prevent unnecessary communication, we introduce the enclave choreographic operator. The
enclave operator executes a sub-choreography at a specified set of locations. Inside the sub-
choreography, the broadcast operator sends data only to locations in the specified set. This allows

us to perform conditionals without sending data to unaffected locations.
We extend the interface of our host-language library from Figure 4 to add support for an enclave
operator with the type Enclave, specified below:

Ops = Locally x Comm X Bcast X Enclave (Choreographic Operators)

Enclave = Va, 1. [Location] —» Choreoa @l — a @ (Enclave)

The first argument to enclave is a list of locations where the sub-choreography is to be exe-
cuted, and the second argument is the sub-choreography. It returns the result of running the sub-
choreography. To implement endpoint projection for enclave, we update the definition of epp from
Figure 6 as follows:

epp : Choreo a — [Location] — Location — a

epp(c, s) =

let enclave(ls’,c’) = if I € Is’ then epp(c’,Is’, 1) else Remote in

c(locally, comm, bcast, enclave)

The enclave operator recursively calls the sub-choreography by calling epp with the sub-
choreography and the list of locations where the sub-choreography is executed if the projection
target is one of the specified locations. The behavior of bcast inside the sub-choreography depends
on the s’ argument to the recursive call to epp, so bcast inside the sub-choreography will only
send data to the specified locations. Using enclave, we can rewrite the last part of the two-buyer
protocol, as shown in Figure 9. After buyer1 makes a decision, we define a sub-choreography ¢
that uses bcast to perform conditionals. Then, we call the sub-choreography at buyer1 and seller

Portable, Efficient, and Practical Library-Level Choreographic Programming 13

using enclave. Because the sub-choreography is not executed at buyer2, bcast does not send the
decision to buyer2, as shown in Figure 8b.

While we have shown how to implement endpoint projection for enclave using the EPP-as-
DI technique, the use of choreographic enclaves is orthogonal to the use of EPP-as-DI. For in-
stance, one could extend HasChor with an enclave operator without departing from HasChor’s
freer-monad-based implementation of EPP.

5 CHORUS: LIBRARY-LEVEL CHOREOGRAPHIC PROGRAMMING FOR RUST

In this section, we present ChoRus, the first choreographic programming library for the Rust pro-
gramming language. ChoRus is implemented using EPP-as-DI, supports choreographic enclaves,
and has other features that make it a practical choice for distributed programming in Rust. We de-
scribe how we encode EPP-as-DI in Rust Section 5.1, and give a brief tour of ChoRus features Sec-
tion 5.2. The code shown in this section is simplified for presentational purposes. ChoRus is open
source, and its implementation, case studies and benchmarking code, and documentation are avail-
able at https://github.com/Isd-ucsc/ChoRus.

5.1 EPP-as-DIl in ChoRus

5.1.1 Locations. ChoRus represents each location at which node-local code runs as a distinct type.
In Rust, we can create a new type by defining a struct. Locations must be comparable for equality
to perform endpoint projection. To that end, ChoRus defines the ChoreographylLocation trait,
which all location types must implement:
trait ChoreographylLocation: Copy {

fn name() -> &'static str;
}
The name method returns the string representation of the location, which is used to compare loca-
tions for equality. Thanks to Rust’s macro system, ChoreographyLocation can be derived auto-
matically. For example, the following code defines a location named Alice:

#[derive(ChoreographylLocation)]
struct Alice;

5.1.2 Located Values. Located values are values that reside at a specific location. ChoRus defines
the Located<V, L1> struct to represent a located value of type V at location L1:

struct Located<V, L1: ChoreographyLocation> {
value: Option<V>,
phantom: PhantomData<L1>,

The value field holds a value of type Option<V>; it is Some if the current projection target is L1
and None otherwise. We use std: :marker: :PhantomData to indicate to the compiler that the L1
parameter is not used at run time.

5.1.3 Choreography Trait. In Section 3, we represented choreographies as functions. To pro-
vide a more ergonomic API, ChoRus represents choreographies as structs that implement the
Choreography trait. The Choreography trait is defined as follows:
trait Choreography<R = ()> {
fn run(self, op: &impl ChoreoOp) -> R;

3

The R type parameter represents the return type of the choreography. The run method takes
a reference to an object that implements the ChoreoOp trait, which provides the choreographic
operators.

https://github.com/lsd-ucsc/ChoRus

14 Kashiwa et al.

trait ChoreoOp {
fn locally<V, L1: ChoreographyLocation>(
&self,
location: L1,
computation: impl Fn(Unwrapper<L1>) -> V,
) —-> Located<V, L1>;
/] ...

Fig. 10. The ChoreoOp trait (excerpt).

5.1.4 ChoreoOp Trait. ChoRus supports the four choreographic operators locally, comm,
broadcast, and enclave, as described in Section 3 and Section 4.

Figure 10 shows an excerpt of the ChoreoOp trait that implements the locally operator. The
locally method takes a location location and a function computation and returns a Located
value. The computation function takes an argument of type Unwrapper<L1>, which it can use
to unwrap located values at location L1. Other choreographic operators are defined similarly as
methods of the ChoreoOp trait.

5.1.5 Transport. The Transport trait represents the message transport layer. Users can imple-
ment the Transport trait by providing the send and receive methods. ChoRus has two built-in
transport implementations: LocalTransport and HttpTransport. The LocalTransport imple-
mentation models each location as a thread and uses an inter-thread channel to send messages.
The HttpTransport implementation uses HT TP to send messages.

5.1.6 Endpoint Projection. ChoRus provides the Projector struct to perform endpoint projection
and execute choreographies. First, users construct a Projector by passing the projection target
and the transport. Then, they can call the epp_and_run method to perform endpoint projection
and execute the choreography. The epp_and_run method takes a choreography, defines EppOp —
an object that implements ChoreoOp for the projection target — and calls the run method of the
choreography with it. Figure 11 shows an excerpt of the epp_and_run method and the implemen-
tation of locally.

5.2 Advanced Features

ChoRus supports all the features supported by HasChor [Shen et al. 2023], such as swappable
transport backends, higher-order choreographies, and location polymorphism. In this section, we
present two new features of ChoRus: location sets and located input/output.

5.2.1 Location Sets. In ChoRus, the set of locations at which a choreography runs is represented
at the type level. We call this type the location set of the choreography. Each choreography has an
associated type L that represents its location set. ChoreoOp is parametrized by the location set of the
choreography and prevents users from using locations that are not in the location set. For example,
the following code defines a choreography AliceBobChoreography that runs on locations Alice
and Bob. LocationSet! isamacro that constructs a special location set type. Inside the run method,
we can only use locations Alice and Bob. If we try to use location Carol, the Rust compiler will
report an error. Location sets are especially useful when defining choreographic enclaves, as they
prevent us from accidentally using locations outside the enclave.

5.2.2 Located Input/Output. When a choreography is used as part of a larger program, it is often
useful to be able to pass located values to and from the choreography. For example, consider a
simple password authentication protocol between a client and a server. The client reads a password

Portable, Efficient, and Practical Library-Level Choreographic Programming 15

impl<...> Projector<...> {
pub fn epp_and_run<...>(&'a self, choreo: C) -> V {
struct EppOp<...> {...}
impl<...> ChoreoOp for EppOp<...>

{
fn locally<V, L1: ChoreographyLocation>(
&self,
location: L1,
computation: impl Fn(Unwrapper<L1>) -> V,
) -> Located<V, L1> {
if L1::name() == Target::name() {
let value = computation(Unwrapper::new());
Located: :local(value)
} else {
Located: :remote()
}
}
/] ...
}

choreo.run(&EppOp {...3})

Fig. 11. The epp_and_run method of the Projector struct.

struct AliceBobChoreography;
impl Choreography for AliceBobChoreography {
type L = LocationSet!(Alice, Bob);
fn run(self, op: &impl ChoreoOp<Self::L>) {
op.locally(Carol, |_| println!("Hello from Carol!"));
3

Fig. 12. Invalid use of location Carol in AliceBobChoreography

from the user and sends it to the server. The server checks the password and sends the result back
to the client. The client then prints the result. The inputs to this choreography are (1) the typed
password on the client, and (2) the correct password on the server, and the output is the result of the
authentication on the client. Morally, these are all located values; for example, when running the
choreography on the client, we do not have access to the correct password on the server. However,
from outside the choreography, we do not have a way to talk about their locations. To solve this
problem, ChoRus provides a located input/output feature that provides a convenient and type-safe
way to handle located values.

Projector plays an important role in the located input/output feature. Projector is parame-
terized by the projection target and can construct (1) local located values at the projection target,
and (2) remote located values at other locations. It can also unwrap located values at the projection
target, but not at other locations.

Figure 13 shows the password authentication choreography and code to execute the choreog-
raphy as the client and as the server. When running the choreography as the client, we use an
instance of Projector that is parameterized by the client location. We provide the password at-
tempt as a local located value and the correct password as a remote located value on the server.
Conversely, when running the choreography as the server, we provide the password attempt as a

16 Kashiwa et al.

struct PasswordAuthChoreography {
attempt_password: Located<String, Client>,
correct_password: Located<String, Server>,
3
impl Choreography<Located<bool, Client>> for PasswordAuthChoreography {
type L = LocationSet!(Client, Server);
fn run(self, op: &impl ChoreoOp<Self::L>) -> Located<bool, Client> {
let password = op.comm(Client, Server, &self.attempt_password);
let result = op.locally(Server, |un| {
un.unwrap(&password) == un.unwrap(&self.correct_password)

DR

op.comm(Server, Client, &result)

(a) Password authentication choreography

let result = client_projector.epp_and_run(PasswordAuthChoreography {
attempt_password: client_projector.local("1234".to_string()),
correct_password: client_projector.remote(Server),

DE

println! ("Result: {3}", client_projector.unwrap(result));

(b) Client code

server_projector.epp_and_run(PasswordAuthChoreography {
attempt_password: server_projector.remote(Client),
correct_password: server_projector.local("password".to_string()),

DE

(c) Server code

Fig. 13. The password authentication choreography (a), along with node-local code to invoke it on the client
(b) and server (c).

remote value and the correct password as a local value. The result can only be unwrapped at the
client location using the unwrap method of Projector.

6 EVALUATION

In this section, we assess the utility and practicality of library-level CP with ChoRus. First, to
demonstrate that ChoRus indeed brings the advantages of CP to Rust, we present a case study
involving a key-value store (Section 6.1). In this case study, we implement a simple replicated
key-value store as a choreography and as a traditional Rust program. We compare these two im-
plementations and highlight how choreography helps to track the flow of data and control. Next,
to illustrate that library-level CP enables code reuse, we conduct a second case study: a multi-
player tic-tac-toe game (Section 6.2). We begin by showing the code for a tic-tac-toe game that
runs locally, then we use ChoRus to modify the program to run across multiple computers over
a network with minimal changes. We observe that library-level CP allows a substantial portion
of the local code to be reused for the distributed implementation. Finally, we measure the perfor-
mance overhead incurred by using ChoRus (Section 6.3). Through benchmarking, we show that
ChoRus introduces very minimal overhead, making it sufficiently practical for use.

Portable, Efficient, and Practical Library-Level Choreographic Programming 17

struct PrimaryBackupKvsChoreography {...}
impl Choreography<Located<Response, Client>> for PrimaryBackupKvsChoreography {
type L= L;
f cLiont(0 run(self, op: &impl ChoreoOp<Self::L>) — Located<Response, Client> {
transport: HttpTransport<LocationSet!(...), Client>, let request = op.comm(Client, Primary, &self.request);
request: Request, struct DoBackup<'a>
) > Respanse { request: Located<Request, Primary>,
tromsport.send(CUiant cuame(), Priery:iosme(; Erequest); state: Located<a'a State, Backups,
transport. »

+
inpl<'a> Choreography for DoBackup<'a> {
#0 prinary(type L = LocationSet! (Primary, Backup);
transport: &Nup(ransnnr(qacaunnse!!(v.,), Primary>, fn run(self, op: &impl ChoreoOp<Self::L>) {
state: &Sta let is_mutating = op.locally(Primary, |un| un.unwrap(&self.request).is_nutating());
P 12 R — - n— let is_nutating = op.broadcast(Prinary, is_nutating);
Tet is_mutating = request.is_nutating(); if is_mutating { .
transport. senn(anary name(), Backup::name(), &is_mutating); let request = op.comm(Primary, Backup, &self.request);
if is_mutatin let response = op.locally(Backup, |un
ransport. cena(pranary sinane(), Backup:: a0, trequest); handle_request (xun.unwrap(self.state), un.unurap(&request))
ranspor 5

2H
Tet response = handle_request (state, &request); N op.conn(Backup, Primary, &response);

transport. send(Prinary ::nane(), Client::name(), Gresponse); "

}
n " .), Backup>, state: &State) = () { op.enclave(DoBackup {
"(lgsmu:;::;v,(— AraRBOONEATGGR Ve EAROTUS RFARGFY ARG e AR L137 request: request.clone(),
1t request = transport.. yiinane(), 0;
let response = handle_request(state, Grequest); ;
transport. send(Backup :nane(), Prinary::nane(), Gresponse); Tet response = op.locally(Primary, lun| {
handle_request (xun.unwrap(&self.state.0), un.unwrap(&request))

state: self.state.1,

Hi
op.conm(Primary, Client, &response)

(a) Handwritten Rust KVS '

(b) Choreographic ChoRus KVS

Fig. 14. Comparison of the flow of control between the handwritten and choreographic KVS

6.1 Case Study 1: Replicated Key-Value Store

To demonstrate how ChoRus helps developers to implement distributed systems, we consider a
simple replicated key-value store. Our key-value store supports two operations: get and put. The
get operation takes a key and returns the value associated with the key. The put operation takes a
key and a value, and associates the key with the value. Our system consists of three nodes: Client,
Primary, and Backup. The Client node takes a request from the user and sends the request to the
Primary node. The Primary node checks the type of the request. If the request is a get request, it
looks up the requested key in its local state and returns the response to the client. If the request is
a put request, it forwards the request to the backup node. The backup node updates its local state
and returns the response to the Primary node. Once Primary receives the response from Backup,
it applies the update to its local state and returns the response to the client.

While the protocol is simple, implementing it is error-prone. Figure 14a shows the implementa-
tion of the protocol without using choreographic programming. The code defines three functions
for each node. The highlight and arrows show the flow of data between the nodes. Because sends
and receives are interleaved, it is difficult to track the flow of data and control.

Figure 14b shows the implementation of the same protocol as a choreography in ChoRus.
The choreography communicates the request from Client to Primary using comm. Then, it uses
the enclave operator to call the DoBackup sub-choreography at Primary and Backup. The sub-
choreography branches on the type of the request, and if the request is put, it forwards the request
to the backup node. After the sub-choreography returns, the primary node processes the request
and returns the response to the client. The choreographic version is easier to understand because
both data and control naturally flow from top to bottom.

While we could implement the KVS protocol as a choreography in HasChor, the naive imple-
mentation of conditionals in HasChor would present a problem. When we branch on the type of
the request on the primary node, it broadcasts the type, and in HasChor, this broadcast would
also go to the client, leaking an implementation detail. By using enclaves, we can implement the
protocol in a more efficient (and secure) manner.

6.2 Case Study 2: Multiplayer Tic-Tac-Toe

An advantage of library-level choreographic programming is that it allows developers to reuse
existing code. This is especially useful for implementing a distributed version of an existing local

18 Kashiwa et al.

1 let mut board = Board::new(); 1 let mut board = Board::new();
2 loop { 2 loop {

board = brain_for_x.think(&board); 3 board = Gpsbroadeast(
PlayerX,
op. locally(PlayerX, |un| un.unwrap(&self.brain_for_x).think(&board)),
'
4 if tboard.check().is_in_progress() { if tboard.check().is_in_progress() {
break;

©® N o u s

5 break;
6 } }

7 board = brain_for_o.think(&board); 10 board = op.broadcast(
11 Playero,
12 op.locally(Player0, |un| un.unwrap(&self.brain_for_o).think(&board)),
13 H

8 if !board.check().is_in_progress() { 14 if Iboard.check().is_in_progress() {
9 break; 15 break;

10 } 16 }

11} 17}

Fig. 15. Diff between the local Rust and distributed ChoRus implementations of the tic-tac-toe game

program. In this case study, we implement a distributed version of a tic-tac-toe game using ChoRus.
We start with a local implementation of the game where two players play on the same computer.
Then, we use ChoRus to port the local implementation to a distributed version, which lets the
players play on different computers over the network, with minimal changes to the code. Finally,
we compare the ChoRus implementation with a handwritten distributed version of the game.

Let us start with the local implementation of the game. The left side of Figure 15 shows the
structure of the main game loop written in Rust. We omit the definitions of the structs and traits
that capture the core logic of the game, such as board, brain_for_x, and brain_for_o. The game
starts with an empty board. Then, the game enters a loop in which the two players take turns to
make a move. After each move, we check the status of the board, and if the game is over, we break
out of the loop. Finally, we print the result of the game.

Because ChoRus is a library, we can reuse the existing local Rust code to implement the dis-
tributed version of the game. The right side of Figure 15 shows the distributed implementation of
the game written as a choreography in ChoRus. For brevity, we only show the run method of the
choreography. Just like its local counterpart, the choreography starts with an empty board. Then,
the choreography enters a loop in which the two players make a local move and broadcast the new
board. After each move, we check the status of the board, and if the game is over, we break out of
the loop. Finally, we print the result of the game from the perspective of each player.

As highlighted in Figure 15, changing the local implementation to the distributed implementa-
tion requires minimal changes to the code. All game logic and control flow are reused, and the only
changes are the addition of the locally and broadcast operators to specify the location of data
and computation. This is a significant advantage of library-level CP as opposed to a standalone CP
language, because it allows developers to reuse existing code for local computation and focus on
the distributed aspects of the program.

6.3 Performance

To employ CP in production, the performance overhead of using CP must be acceptable. Perfor-
mance is a particular concern for library-level CP, which involves carrying out EPP at runtime.
In this section, we measure the performance overhead of using ChoRus compared to traditional
distributed programming in Rust. We focus on the overhead of running a choreography with EPP-
as-DI. We conducted two experiments. First, we performed microbenchmarking to measure the
overhead of EPP-as-DI in isolation. Second, we measured and compared the performance of the
two versions of the key-value store from Section 6.1. All experiments in this section were per-
formed on a MacBook Pro 2020 with an Apple M1 chip, 16 GB of RAM, and macOS Sonoma 14.0.

Portable, Efficient, and Practical Library-Level Choreographic Programming 19

10 ° 3.0 ° 500 4

—e— Choreographic —e— Choreographic
Handwritten Handwritten /
25
8 o o 400 4
/ 2.0 /

o 300

/ -/

Time (ms)

Time (us)
(o]
\.
Time (ms)
&

100 A

0.5
2000 4000 6000 8000 10000 2000 4000 6000 8000 10000 T T
Number of iterations Number of iterations Choreographic Handwritten
(a) locally (b) comm (c) KVS Benchmark Results

Fig. 16. Benchmark Results

6.3.1 Microbenchmarks. With microbenchmarking, we measured the performance overhead of
using two of the choreographic operators in ChoRus: locally and comm.

To measure the overhead of the locally operator, we implemented a simple counter program
as a handwritten Rust program and as a ChoRus choreography. The program initializes a counter
and repeatedly increments it a given number of times. The ChoRus version is written as a choreog-
raphy that runs only at one location and uses the locally operator to perform initialization and
increments. We use endpoint projection to execute the choreography. We measured the runtime
of the two versions of the program with different numbers of iterations. Figure 16a shows the
result of the microbenchmark. There is a small, constant overhead of using ChoRus. Because the
overhead does not grow with the number of iterations, the overhead is likely due to the cost of
endpoint projection, and there is no observable overhead of using the locally operator.

We also measured the performance of the comm operator. We implemented a simple protocol
that moves data from one location to another as a handwritten Rust program and as a ChoRus
choreography. In both the handwritten Rust and the ChoRus versions, to isolate the performance
overhead of using EPP, we used ChoRus’ LocalTransport message transport layer to send data
between the two locations. Figure 16b shows the result. The message passing is dominating the
running time in both versions, and the overhead of endpoint projection is not observable. The
ChoRus version performed slightly worse for larger iterations, with a difference of <0.5 ms.

6.3.2 Key-Value Store Benchmark. We also benchmarked the two versions of the key-value store
from Section 6.1 to measure the system-level performance overhead of using ChoRus . We gen-
erated 100 random requests of 50% get and 50% put requests. We measured the runtime of the
two versions of the program. We used HttpTransport for communication between nodes in both
versions. Figure 16¢ shows a violin plot of 100 runs of the benchmark. The median runtime of
the choreographic version was 225.09 ms, while the median runtime of the handwritten version
was 224.93 ms. Even though the nodes are running on the same computer, the running time is
dominated by the network latency, and we did not observe significant overhead of using ChoRus.

7 RELATED WORK

Choreographies were originally a specification mechanism for distributed systems [World Wide
Web Consortium 2006]. Researchers soon began to explore the notion of endpoint projection for
choreographies [Mendling and Hafner 2005; Qiu et al. 2007; Carbone et al. 2007, 2012; Lanese et al.
2008; McCarthy and Krishnamurthi 2008]. The Chor language [Carbone and Montesi 2013; Montesi

20 Kashiwa et al.

2013] pioneered the use of choreographies as executable programs by means of endpoint projec-
tion. Much of the subsequent literature on CP places emphasis on its formal foundations [Cruz-
Filipe et al. 2021; Hirsch and Garg 2022; Pohjola et al. 2022; Cruz-Filipe et al. 2022; Graversen et al.
2023] rather than on practically usable implementations. An exception to this rule is Choral [Gi-
allorenzo et al. 2020], arguably the most practical option among existing CP languages. Choral
has been used to implement widely used real-world protocols as choreographies [Lugovi¢ and
Montesi 2023]. ChoRus and Choral share practicality and accessibility as goals, but make differ-
ent design decisions in service of those goals. As a Rust library, ChoRus enjoys the advantages of
library-level CP discussed in Section 1; as a standalone language with its own compiler, Choral
has limited tooling and IDE support, although it prioritizes interoperability with Java, the target
language for its EPP. On the other hand, as a standalone CP language, Choral can statically gen-
erate local code for each endpoint to run, whereas ChoRus (and HasChor [Shen et al. 2023], the
only other library-level CP implementation, which we discussed in Section 2.2) must dynamically
generate node-local programs at run time.

ChoRus and Choral differ in their treatment of message transport. Choral provides a hierarchy of
channel types, a very flexible abstraction that enables use of many types of user-defined channels
within a single choreography. The closest counterpart in ChoRus is the Transport trait. While
users may implement their own Transport types, they must choose a single implementation of
Transport for each Projector. This design decision is orthogonal to ChoRus’s implementation
of CP as a library, and a Choral-like channel abstraction would be feasible at the library level. For
our ChoRus case studies so far, though, the existing Transport mechanism has sufficed.

ChoRus and Choral also handle propagation of knowledge of choice differently. As we have
seen, ChoRus supports choreographic enclaves (Section 4), which improve on the naive broadcast-
based approach used in previous library-level CP implementations [Shen et al. 2023]. Choral, like
other choreographic languages before it [Carbone and Montesi 2013; Montesi 2013], supports se-
lection annotations via the select method. Although enclaves are more fine-grained than naive
broadcast, selection annotations give the programmer even more fine-grained control over how
knowledge of choice is propagated. Not all standalone CP languages use selection annotations; for
instance, the language AIOC [Dalla Preda et al. 2014, 2017] uses an endpoint projection approach
that automatically broadcasts to the locations involved in both branches of a conditional expres-
sion — a granularity similar to what enclaves offer, made possible by the ability to carry out static
analysis on the branches.

ScalaLoci [Weisenburger et al. 2018] is a language for multitier programming [Weisenburger
et al. 2020], implemented as an embedded DSL in Scala. Multitier programming can be seen as a
close relative of CP [Giallorenzo et al. 2021], and ChoRus and ScalaLoci are both “library-level”: a
ScalaLoci program is a Scala program, just as a ChoRus program is a Rust program. We observe that
ScalaLoci — and, perhaps, multitier programming generally — seems to be a natural fit for asyn-
chronous, reactive distributed applications, while ChoRus — and perhaps CP generally — seems to
be a natural fit for synchronous, turn-based distributed applications, such as our tic-tac-toe case
study or password authentication example. We posit that the library level is a fruitful place to
continue to explore the evident relationship between multitier and choreographic programming.

HasChor [Shen et al. 2023] uses freer monads to embed CP in Haskell. Another popular tech-
nique to implement eDSLs in functional languages is tagless final [Carette et al. 2007], where pro-
grammers use typeclasses to express abstract operations whose implementations are provided im-
plicitly as typeclass instances. Our EPP-as-DI technique is similar in spirit, but uses higher-order
functions to explicitly pass choreographic operators as function arguments.

Portable, Efficient, and Practical Library-Level Choreographic Programming 21

8 CONCLUSION

Library-level choreographic programming holds great promise. In this paper, we aim to democra-
tize library-level CP with techniques that make CP possible, efficient, and practical to implement
in a wide variety of host languages. In particular, we presented endpoint projection as dependency
injection (EPP-as-DI), a technique for library-level implementation of EPP in any host language that
supports higher-order functions, and choreographic enclaves, a language feature that improves on
the efficiency of existing library-level CP. We have implemented EPP-as-DI and choreographic
enclaves in ChoRus, a library for CP in Rust. Our case studies and benchmarks demonstrate that
programming wtih ChoRus compares favorably with traditional distributed programming in Rust.
We hope that in the future, our proposed techniques will bring CP libraries to many host languages,
and a subsequent expansion and diversification of CP in many communities.

REFERENCES

Samik Basu and Tevfik Bultan. 2016. Automated Choreography Repair. In Fundamental Approaches to Software Engineering,
Perdita Stevens and Andrzej Wasowski (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 13-30.

Marco Carbone, Kohei Honda, and Nobuko Yoshida. 2007. Structured Communication-Centred Programming for Web
Services. In Programming Languages and Systems, Rocco De Nicola (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,
2-17.

Marco Carbone, Kohei Honda, and Nobuko Yoshida. 2012. Structured Communication-Centered Programming for Web
Services. ACM Trans. Program. Lang. Syst. 34, 2, Article 8 (June 2012), 78 pages. https://doi.org/10.1145/2220365.2220367

Marco Carbone and Fabrizio Montesi. 2013. Deadlock-Freedom-by-Design: Multiparty Asynchronous Global Programming.
In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Rome,
Italy) (POPL °13). Association for Computing Machinery, New York, NY, USA, 263-274. https://doi.org/10.1145/2429069.
2429101

Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. 2007. Finally Tagless, Partially Evaluated. In Programming Lan-
guages and Systems, Zhong Shao (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 222-238.

Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, and Luca Padovani. 2011. On Global Types and Multi-party Sessions.
In Formal Techniques for Distributed Systems, Roberto Bruni and Juergen Dingel (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 1-28.

Luis Cruz-Filipe, Eva Graversen, Lovro Lugovi¢, Fabrizio Montesi, and Marco Peressotti. 2022. Functional choreographic
programming. In International Colloquium on Theoretical Aspects of Computing. Springer, 212-237.

Luis Cruz-Filipe and Fabrizio Montesi. 2020. A core model for choreographic programming. Theoretical Computer Science
802 (2020), 38-66. https://doi.org/10.1016/j.tcs.2019.07.005

Luis Cruz-Filipe and Fabrizio Montesi. 2023. Now It Compiles! Certified Automatic Repair of Uncompilable Protocols. In
14th International Conference on Interactive Theorem Proving (ITP 2023) (Leibniz International Proceedings in Informatics
(LIPIcs), Vol. 268), Adam Naumowicz and René Thiemann (Eds.). Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik,
Dagstuhl, Germany, 11:1-11:19. https://doi.org/10.4230/LIPIcs.ITP.2023.11

Luis Cruz-Filipe, Fabrizio Montesi, and Marco Peressotti. 2021. Formalising a Turing-Complete Choreographic Language
in Coq. In 12th International Conference on Interactive Theorem Proving (ITP 2021) (Leibniz International Proceedings in In-
formatics (LIPIcs), Vol. 193), Liron Cohen and Cezary Kaliszyk (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
Dagstuhl, Germany, 15:1-15:18. https://doi.org/10.4230/LIPIcs.ITP.2021.15

Mila Dalla Preda, Maurizio Gabbrielli, Saverio Giallorenzo, Ivan Lanese, and Jacopo Mauro. 2017. Dynamic Choreographies:
Theory And Implementation. Logical Methods in Computer Science Volume 13, Issue 2 (April 2017). https://doi.org/10.
23638/LMCS-13(2:1)2017

Mila Dalla Preda, Saverio Giallorenzo, Ivan Lanese, Jacopo Mauro, and Maurizio Gabbrielli. 2014. AIOC]J: A choreographic
framework for safe adaptive distributed applications. In Software Language Engineering: 7th International Conference,
SLE 2014, Visteras, Sweden, September 15-16, 2014. Proceedings 7. Springer, 161-170.

Martin Fowler. 2004. Inversion of control containers and the dependency injection pattern. https://martinfowler.com/
articles/injection.html

Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti. 2020. Object-Oriented Choreographic Programming. https:
//doi.org/10.48550/ARXIV.2005.09520

Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti, David Richter, Guido Salvaneschi, and Pascal Weisenburger. 2021.
Multiparty languages: The choreographic and multitier cases. In ECOOP 2021-European Conference on Object-Oriented
Programming.

https://doi.org/10.1145/2220365.2220367
https://doi.org/10.1145/2429069.2429101
https://doi.org/10.1145/2429069.2429101
https://doi.org/10.1016/j.tcs.2019.07.005
https://doi.org/10.4230/LIPIcs.ITP.2023.11
https://doi.org/10.4230/LIPIcs.ITP.2021.15
https://doi.org/10.23638/LMCS-13(2:1)2017
https://doi.org/10.23638/LMCS-13(2:1)2017
https://martinfowler.com/articles/injection.html
https://martinfowler.com/articles/injection.html
https://doi.org/10.48550/ARXIV.2005.09520
https://doi.org/10.48550/ARXIV.2005.09520

22 Kashiwa et al.

Eva Graversen, Andrew K Hirsch, and Fabrizio Montesi. 2023. Alice or Bob?: Process Polymorphism in Choreographies.
arXiv preprint arXiv:2303.04678 (2023).

Andrew K Hirsch and Deepak Garg. 2022. Pirouette: higher-order typed functional choreographies. Proceedings of the
ACM on Programming Languages 6, POPL (2022), 1-27.

Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty Asynchronous Session Types. In Proceedings of
the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Francisco, California,
USA) (POPL °08). Association for Computing Machinery, New York, NY, USA, 273-284. https://doi.org/10.1145/1328438.
1328472

Paul Hudak. 1996. Building Domain-Specific Embedded Languages. ACM Comput. Surv. 28, 4es (dec 1996), 196—es. https:
//doi.org/10.1145/242224.242477

Oleg Kiselyov and Hiromi Ishii. 2015. Freer Monads, More Extensible Effects. In Proceedings of the 2015 ACM SIGPLAN
Symposium on Haskell (Vancouver, BC, Canada) (Haskell ’15). Association for Computing Machinery, New York, NY,
USA, 94-105. https://doi.org/10.1145/2804302.2804319

Ivan Lanese, Claudio Guidi, Fabrizio Montesi, and Gianluigi Zavattaro. 2008. Bridging the Gap between Interaction- and
Process-Oriented Choreographies. 2008 Sixth IEEE International Conference on Software Engineering and Formal Methods
(2008), 323-332. https://api.semanticscholar.org/CorpusID:11388743

Ivan Lanese, Fabrizio Montesi, and Gianluigi Zavattaro. 2013. Amending Choreographies. In Proceedings 9th International
Workshop on Automated Specification and Verification of Web Systems, WWV 2013, Florence, Italy, 6th June 2013 (EPTCS,
Vol. 123), Anténio Ravara and Josep Silva (Eds.). 34-48. https://doi.org/10.4204/EPTCS.123.5

Lovro Lugovi¢ and Fabrizio Montesi. 2023. Real-World Choreographic Programming: An Experience Report. arXiv preprint
arXiv:2303.03983 (2023).

Jay A. McCarthy and Shriram Krishnamurthi. 2008. Cryptographic Protocol Explication and End-Point Projection. In
European Symposium on Research in Computer Security. https://api.semanticscholar.org/CorpusID:15429446

Jan Mendling and Michael Hafner. 2005. From Inter-Organizational Workflows to Process Execution: Generating BPEL
from WS-CDL. In Proceedings of the 2005 OTM Confederated International Conference on On the Move to Meaningful
Internet Systems (Agia Napa, Cyprus) (OTM’05). Springer-Verlag, Berlin, Heidelberg, 506-515. https://doi.org/10.1007/
11575863_70

Fabrizio Montesi. 2013. Choreographic Programming. Ph.D. Thesis. IT University of Copenhagen. https://www.
fabriziomontesi.com/files/choreographic-programming.pdf.

Fabrizio Montesi. 2023. Introduction to Choreographies. Cambridge University Press.

Johannes Aman Pohjola, Alejandro Goémez-Londofio, James Shaker, and Michael Norrish. 2022. Kalas: A Verified, End-To-
End Compiler for a Choreographic Language. In 13th International Conference on Interactive Theorem Proving (ITP 2022)
(Leibniz International Proceedings in Informatics (LIPIcs), Vol. 237), June Andronick and Leonardo de Moura (Eds.). Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany, 27:1-27:18. https://doi.org/10.4230/LIPIcs.ITP.2022.27

Zongyan Qiu, Xiangpeng Zhao, Chao Cai, and Hongli Yang. 2007. Towards the Theoretical Foundation of Choreography.
In Proceedings of the 16th International Conference on World Wide Web (Banff, Alberta, Canada) (WWW ’07). Association
for Computing Machinery, New York, NY, USA, 973-982. https://doi.org/10.1145/1242572.1242704

Gan Shen, Shun Kashiwa, and Lindsey Kuper. 2023. HasChor: Functional Choreographic Programming for All. Proc. ACM
Program. Lang. 7, ICFP (Aug. 2023). https://doi.org/10.1145/3607849

Pascal Weisenburger, Mirko Kohler, and Guido Salvaneschi. 2018. Distributed system development with ScalaLoci. Pro-
ceedings of the ACM on Programming Languages 2, OOPSLA (2018), 1-30.

Pascal Weisenburger, Johannes Wirth, and Guido Salvaneschi. 2020. A survey of multitier programming. ACM Computing
Surveys (CSUR) 53, 4 (2020), 1-35.

The World Wide Web Consortium. 2006. Web Services Choreography Description Language: Primer. https://www.w3.
org/TR/ws-cdl-10-primer/

https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/242224.242477
https://doi.org/10.1145/242224.242477
https://doi.org/10.1145/2804302.2804319
https://api.semanticscholar.org/CorpusID:11388743
https://doi.org/10.4204/EPTCS.123.5
https://api.semanticscholar.org/CorpusID:15429446
https://doi.org/10.1007/11575863_70
https://doi.org/10.1007/11575863_70
https://www.fabriziomontesi.com/files/choreographic-programming.pdf
https://www.fabriziomontesi.com/files/choreographic-programming.pdf
https://doi.org/10.4230/LIPIcs.ITP.2022.27
https://doi.org/10.1145/1242572.1242704
https://doi.org/10.1145/3607849
https://www.w3.org/TR/ws-cdl-10-primer/
https://www.w3.org/TR/ws-cdl-10-primer/

	Abstract
	1 Introduction
	2 Background on Choreographic Programming
	2.1 The Elements of Choreographic Programming
	2.2 CP Implemented as a Library

	3 Endpoint Projection as Dependency Injection
	3.1 Choreographies as Host-Language Programs
	3.2 Endpoint Projection as Injecting Dependencies

	4 Efficient Conditionals with Choreographic Enclaves
	4.1 The Two-Buyer Protocol
	4.2 The Enclave Operator

	5 ChoRus: Library-Level Choreographic Programming for Rust
	5.1 EPP-as-DI in ChoRus
	5.2 Advanced Features

	6 Evaluation
	6.1 Case Study 1: Replicated Key-Value Store
	6.2 Case Study 2: Multiplayer Tic-Tac-Toe
	6.3 Performance

	7 Related Work
	8 Conclusion
	References

