
Why Power Laws?
An Explanation from Fine-Grained Code Changes

Zhongpeng Lin and Jim Whitehead
University of California, Santa Cruz, USA

Email: {linzhp, ejw}@soe.ucsc.edu

Abstract—Throughout the years, empirical studies have found
power law distributions in various measures across many soft-
ware systems. However, surprisingly little is known about how
they are produced. What causes these power law distributions?
We offer an explanation from the perspective of fine-grained
code changes. A model based on preferential attachment and self-
organized criticality is proposed to simulate software evolution.
The experiment shows that the simulation is able to render power
law distributions out of fine-grained code changes, suggesting
preferential attachment and self-organized criticality are the
underlying mechanism causing the power law distributions in
software systems.

I. INTRODUCTION

Power law distributions have been found in many areas,
such as the magnitude of earthquakes, the size of human
settlements, the intensity of wars, etc. [1] The abundance of
open-source software repositories permits statistical analyses
of software systems and their evolution, which reveals the
prevalence of similar distributions in software: in change sizes
[2], in-degree and out-degree in dependency networks [3],
number of subclasses [4], and so on. In fact, if one were
to analyze the distribution of another measure of software,
it would be most surprising to find it not following a power
law or other heavy-tailed distribution.

Given the multiplicity of empirical studies across many dif-
ferent kinds of software systems, the power law distributions
are unlikely to be accidental. Some mechanism is at work, but
which one? Developers might naturally come to mind, since
it is their hands that write the code that exhibits the many
power laws. Yet, assuredly, no developer intentionally sets out
to create these power law distributions. We have never heard
a developer say, “the distribution of file sizes on this project
is diverging from power law, so we should make changes to
fix this!” Indeed, accomplishing such a policy would involve
known bad practices. For example, power law tails in file size
distributions indicate the existence of large files, a code smell
[5], even in projects believed to be well-maintained, such as
those studied by Herraiz et al. [6]. Rather than the deliberate
result of intentional activity, power laws must be an emergent
phenomenon caused by software evolution dynamics not yet
fully understood.

It is challenging to explore the causes of power law dy-
namics. As an emergent phenomenon, they are caused by
the cumulative effect of a software change process working
over time. Achieving a high degree of control over a real
world change process is challenging, and expensive. There

is no cost-effective way to set up a controlled multi-year
software evolution experiment in actual settings. Instead, we
use software evolution simulations as a way to focus on
interesting factors within a complex overall process, and study
possible causes of power law distribution. Simulation has
the advantage of permitting a high degree of control over
software change processes, and the ability to quickly change
parameters and see the impact of these changes over a multi-
year evolution.

The causes of power law distribution have been studied
in non-software domains, with several generative mechanisms
proposed [1]. The two generative mechanisms that appear to
have the best explanatory power for describing software power
laws are preferential attachment and self-organized criticality,
described below. Preferential attachment—also known as a
Yule process—has been used to explain power law distri-
butions in many different areas, such as the expansion of
the World Wide Web [7]. During a preferential attachment
process, “entities get random increments of a given property
in proportion to their present value of that property” [4]. For
example, the probability of a new link pointing to a web
page is proportional to the in-degree of the web page. As
preferential attachment continues, the distribution of the given
property (e.g., in-degree of web pages) will eventually follow
a power law distribution.

Some other power law distributions, such as earthquakes
and extinction of species, can be explained with self-organized
criticality (SOC) [8]. In SOC, many small changes create
cumulative effects, leading the system into a series of critical
states, also called punctuated equilibrium, where different
sizes of avalanches occur. The evolution of such complex
systems consists of equilibriums, where small changes accu-
mulate, and punctuations, where large changes, or avalanches,
disturb the system. The sizes of avalanches follow power law
distributions. Bak [8] argues that there is no need to have
different models for equilibriums and avalanches; they are both
outcomes of self-organized criticality.

Bak’s classic example is a sandpile. Imagine that sand
trickles down at a constant rate onto a flat floor thus forming
a pile. For most of the time, individual grains do not move
after they land, and new grains only cause nearby gains move
slightly if at all (equilibrium). As sand grains accumulate,
the pile becomes steeper and steeper, eventually leading to
a threshold where dropping more grains onto the pile could
trigger a sand slide (avalanche), in which many grains are

displaced, some of them far away from the newly added grains.
Over the process, different sizes of sand slides occur, following
a power law distribution [8].

Similar to a sandpile, the evolution of self-organizing sys-
tems consists of elementary changes, like the movements
of individual sand grains. These changes are straightforward
individually, but collectively they produce complex patterns,
such as power law distributions, that cannot be explained with
simple aggregation of elementary changes. To understand the
origin of these complex patterns, one has to start with individ-
ual “grains” and their interactions. Since software source code
is semi-structured text that can be deterministically parsed into
abstract syntax trees (ASTs), the “grains” in our study are the
AST nodes. The fine-grained code changes on AST nodes are
the subject of our simulation.

Based on preferential attachment and self-organized criti-
cality, we propose a generative model to simulate source code
changes in order to answer the following research question:
How can individual fine-grained code changes lead to power
law distributions?

Preferential attachment in code changes is known to be
a possible cause of the power law distributions in several
static code measures [4], and evidence shows that software
evolution may also be a self-organized critical process [9].
However, to date there has been no research capable of
simulating an evolving software system that exhibits power
laws simultaneously in static measures, such as method calls,
and evolutionary measures, such as change size.

The remaining content of this paper starts by showing power
law distributions in change size (Section II). The simulation
model is presented in Section III with simulation results in
Section IV. Section V discusses the results and presents our
thoughts on future work, followed by threats to the validity
(Section VI). Section VII relates our work to others before
the paper is concluded in Section VIII.

II. POWER LAW DISTRIBUTIONS OF CHANGE SIZE

To provide an empirical background, we show that the
change sizes in software projects follow power law distribu-
tions, which is important evidence for self-organized criticality
in software evolution.

A. Data Collection and Analysis Approach

The data used in this section come from four open source
Java projects. We used CVSANALY1 to collect data from their
Git repositories. Table I shows the start and end dates of the
data collection, as well as the number of commits collected.
Only commits in their master branches were collected for
this study. However, some of these commits might have
been submitted in other branches before being merged into
the master branch. As Git keeps the branching and merging
history, the commits in the master branch of a project form
a directed acyclic graph, in which multiple commits may
derive from the same commit. As a result, we had to use

1http://metricsgrimoire.github.io/CVSAnalY/

TABLE I
DATA SOURCES

Project Start Date End Date Commits
jEdit 1998-09-27 2012-08-08 6486

Eclipse JDT 2001-06-05 2013-09-09 19321
Apache Maven 2003-09-01 2014-01-29 9723
Google Guice 2006-08-22 2013-12-11 1198

TABLE II
PARAMETERS AND p VALUES OF COMMIT SIZE DISTRIBUTIONS

Project xmin α ppower law plog−normal

jEdit 252 2.59 0.55 � 0.0001
Eclipse JDT 122 2.11 0.03 � 0.0001

Apache Maven 115 2.33 0.32 � 0.0001
Google Guice 120 2.42 0.56 � 0.0001

the branching graph in Git to decide the previous commit of a
given commit, rather than simply sorting the commits by their
time stamps. On the other hand, a commit may be the result of
merging two previous revisions due to parallel development.
Merging commits are ignored in this study, as they normally
do not bring meaningful new changes to software other than
repeating changes from two branches and resolving conflicts.

After collecting the raw data, we used CHANGEDISTILLER
[10] to extract fine-grained code changes by comparing the
ASTs in each commit to those in its previous one. Fine-grained
code changes extracted are changes to AST nodes down to the
statement level.

Change size in this study measures the number of fine-
grained code changes made during a period of time, such as
the changes in a commit or a month. For both commit size
(change size of a commit) and monthly change size, we first
visualize the distributions with their complementary cumula-
tive distribution function (CCDF), as proposed by Newman
[1]. Then, following the statistical approach of Clauset et al.
[11] as implemented in POWERLAW [12], we estimate the
parameters of power law distributions that best fit the data, test
the goodness of fit for the distributions, and compare power
law with other heavy-tailed distributions to see if any other
distribution provides a better fit.

B. Commit Size

On the CCDF of the commit size distribution (Fig. 1), the
dots in the right side of each plot closely follow a straight
line, which is an indication of power law distribution.

To test our hypothesis statistically on each data set, we
first estimated the transition point xmin, where the straight
line starts, as well as the exponent α of the power law. The
xmin and α for each project are shown in Table II. With
these parameters, we performed Kolmogorov-Smirnov tests
to decide whether it was possible that the right tails were
generated by power law distributions. As can be seen from the
ppower law column of Table II, most hypothesis tests report p
values greater than 0.05 except Eclipse JDT. Therefore, we
can only reject power law in the commit size distribution of
Eclipse JDT.

0.001

0.010

0.100

1.000

1 100 10000
Change size

C
C

D
F

(a)

1e-04

1e-02

1e+00

1 100 10000
Change size

C
C

D
F

(b)

0.001

0.010

0.100

1.000

1 20 400 8000
Change size

C
C

D
F

(c)

0.001

0.010

0.100

1.000

1 40 1600
Change size

C
C

D
F

(d)

Fig. 1. CCDF for commit size distribution: (a) jEdit; (b) Eclipse JDT; (c) Apache Maven; (d) Google Guice.

TABLE III
COMPARING POWER LAW WITH ALTERNATIVE DISTRIBUTIONS FOR

GOODNESS OF FIT TO COMMIT SIZE DATA

Project pl vs. log-normal pl vs. exponential pl vs. Poisson
R p R p R p

jEdit -0.251 0.802 3.43 0.000603 1.99 0.0468
JDT -1.62 0.105 5.27 � 0.0001 2.36 0.0183

Maven -0.176 0.860 5.79 � 0.0001 2.57 0.0102
Guice -0.649 0.516 2.09 0.0365 3.75 0.000176

TABLE IV
PARAMETERS AND p VALUES OF MONTHLY CHANGE SIZE DISTRIBUTIONS

Project xmin α ppower law plog−normal

jEdit 2765 3.17 0.63 0.0689
Eclipse JDT 12303 3.59 0.91 0.00157

Apache Maven 794 1.79 0 0.00105
Google Guice 249 1.87 0.14 � 0.0001

Although we cannot reject power law in most cases, other
distributions might fit the data better. To rule out this possibil-
ity, we conducted likelihood ratio tests to compare power law
with log-normal, exponential and Poisson distributions, which
often have similar tails. In the tests, a positive R indicates
power law fits the data better than the alternative, while a
negative R indicates otherwise. The p value indicates how
significant the corresponding R is.

Table III shows that power law fits the data better than
exponential and Poisson distributions in all data sets, while
log-normal distribution seems to fit the data better, although
the difference is insignificant. To further test whether the data
could be possibly drawn from log-normal distributions, we
performed Shapiro-Wilk tests on the logarithms of change
sizes. The resulting p values, reported as plog−normal in
Table II, reject log-normal distribution in all cases.

C. Monthly Change Size

The procedure from the previous subsection was performed
to analyze the distributions of monthly change size for the four
projects and the results are presented in Fig. 2, and Tables IV
and V.

The overall outcome of the monthly change size analysis is
the similar to commit size distribution with a few exceptions.
With regard to the monthly change size of Apache Maven

TABLE V
COMPARING POWER LAW WITH ALTERNATIVE DISTRIBUTIONS FOR

GOODNESS OF FIT TO MONTHLY CHANGE SIZE DATA

Project pl vs. log-normal pl vs. exponential pl vs. Poisson
R p R p R p

jEdit -0.794 0.427 1.65 0.0983 2.31 0.0208
JDT -0.0280 0.978 1.974 0.0484 4.79 � 0.0001

Maven -2.08 0.0374 0.408 0.683 2.83 0.00442
Guice -1.38 0.167 0.692 0.489 3.50 0.000469

project, the power law hypothesis was rejected and log-normal
distribution fitted the data significantly better than power law
in the follow-up likelihood ratio test. This trend can be visually
verified in Fig. 2c, where the dots form a smooth curve
rather than a straight line. Nevertheless, the result of the
Shapiro-Wilk test rejected log-normal distribution as the true
distribution of the data set, rendering the distribution unknown.
In other data sets, power law showed a good fit at the right
tails of their monthly change size distribution, and no other
distributions in our study have a better fit.

D. Summary

This section revealed that fine-grained code changes are yet
another software measure whose distribution can be described
by a power law. Combined with findings in earlier studies [2],
[9], we can see that the distribution of change size follows
power law regardless of the granularity of the changes, be
it at AST-node level, line level or file level. This scale-free
quality is an important feature of power law distributions. The
possible dynamics in source code changes that collectively
shape power law distributions will be explored in the next
sections.

III. CODE CHANGE SIMULATION

The simulation starts with a simple piece of Java source
code with one class and one method, which is parsed into an
AST. Then a series of simulated changes are made to the AST.
Changes simulated include adding classes, adding methods,
calling methods from other methods, deleting methods, and
adding statements to methods. At the end of the simulation,
the resulting ASTs are printed to source code files. This
section first introduces how the simulation model realizes

0.01

0.10

1.00

20 400 8000
Change size

C
C

D
F

(a)

0.01

0.10

1.00

25 1000 40000
Change size

C
C

D
F

(b)

0.01

0.10

1.00

2 40 800 16000
Change size

C
C

D
F

(c)

0.02

0.10

0.50

1.00

1 20 400 8000
Change size

C
C

D
F

(d)

Fig. 2. CCDF for monthly change size distribution: (a) jEdit; (b) Eclipse JDT; (c) Apache Maven; (d) Google Guice.

preferential attachment and SOC when making these code
changes. Then the model is presented, followed by the setup
of our experiment.

A. Preferential Attachment

Preferential attachment is used to simulate the growth of
software, including adding dependencies among its compo-
nents. Although there are several types of component depen-
dencies in software, only method calls and class inheritances
are simulated in this study. Based on preferential attachment,
the following rules are used during the simulation:

• The likelihood of a method to be called is proportional
to the number of times it is being called,

• The likelihood of a method or a class to grow is propor-
tional to its size, and

• The likelihood of a class to be subclassed is proportional
to the number of its subclasses.

It has been demonstrated that these simple rules, if running
alone, are able to produce power law distributions in class
size, number of method calls, and subclasses [1]. To repro-
duce punctuated equilibrium characteristics, to the preferential
attachment rules (above) we need to add additional rules.

B. Self-organized Criticality

An SOC process is often characterized by its avalanches,
e.g., sand slides in the sandpile model introduced in Section I.
Avalanches are analogous to source code changes of different
sizes during software evolution, as shown in Section II. In
the model, we create rules to facilitate avalanches of different
sizes, and see if the rules on fine-grained code changes could
lead to SOC behavior in the simulated software evolution.

In order to simulate the avalanches in software evolution,
we borrow a concept from biological evolution: fitness. For a
given method in a software class, fitness is a measure of how
well it endures throughout a software evolution, with values
ranging from near 0 (very susceptible to change) to 1 (very
stable). Initial fitness values are randomly assigned to methods
in simulation runs. During simulation, methods with the lowest
fitness values are selected for either a update operation, or for
deletion. When a method is changed, it gets a new random
fitness value. In addition, when a method signature is changed

or deleted, all its callers have to change as well, and thus are
assigned new fitness values.

During a simulation run, a threshold fitness value, f0, is
established, and every commit will have no methods with
fitness below threshold. Then a commit in our simulated
software evolution would comprise fine-grained code changes
between a step Si in our simulation model when all fitness
values are above f0, and the closest subsequent step Sj when
the minimal fitness value of all methods, fmin(Sj) is back
to above f0 again. Steps between Si and Sj constitute an
avalanche, with its size being the number of changes made in
between.

During an SOC process, the fmin would never exceed the
self-organized threshold fc. As a result, setting f0 above fc
would lead to no commit after the initial fluctuations. When
f0 is set just below fc, the avalanche (commit) sizes follow
a power law distribution [13]. fc can be identified in the
simulation result if SOC is produced.

C. Simulation Model

The rules for preferential attachment and SOC are im-
plemented as four interweaving processes in the simulation
model, corresponding to creating, calling, updating and delet-
ing methods, denoted as Pc, Pr, Pu and Pd, respectively. Each
process is associated with a probability pi, where

∑4
i=1 pi =

1. For each step in the simulation, one of the four processes
is chosen to run according to their probabilities.
Pc works as follows:
1. Create a empty method M , and assign it with a random

fitness value between 0 and 1;

2. With probability q1, add M to a new class, which is
created as follows:

(a) Create a empty class C;

(b) With probability q2, make C a subclass of an exist-
ing class in the system, chosen with a probability
proportional to the number of its current subclasses;

3. With probability 1 − q1, add M to an existing class in
the system, chosen with a probability proportional to the
number of its current methods.

Pr runs with following operations:

1. Choose a method S as the caller with a probability
proportional to the size of its body, measured by the
number of statements;

2. Choose a method T as the callee with a probability
proportional to the number of its current references;

3. Call T from S, and assign S with a new random fitness
number.

Pu inserts a statement into the method with the least fitness
value and assigns a new random fitness value to the method.
To delete a method with Pd, the following operations are
performed:

1. Find the method M with the lowest fitness value;

2. Remove all references to M :

(a) If the caller Mc becomes an empty method after
removing references to M , add Mc to V ;

(b) Else update Mc with a new fitness value;

3. Remove M from its class C;

4. If C is now empty, delete C;

5. Repeat operations 2-4 for all methods in V .
Note that Pd could lead to ripple effects, causing many

methods to be changed or deleted.

D. Experiment Setup

In our experiment, p1−4 were heuristically set to 0.1, 0.4,
0.45, and 0.05 respectively, while q1 and q2 were set to 0.1 and
0.8 respectively. During each simulation run, 200,000 steps
were executed, each executing one of Pc, Pr, Pu and Pd.
Twenty simulation runs were performed, with results reported
in the next section. For each simulation run, we recorded the
change size for each step, as well as the number of classes,
methods, method calls and lines of code at the end of the
simulation.

For reproducibility, the source code of the simulation is
made available on Github2.

IV. SIMULATION RESULTS

All simulation runs in our experiment produced similar
results, yielding 1484 classes, 9234 methods, 12900 method
calls, and 53940 lines of code on average. In addition, the
simulations produce very similar distributions of change size,
class size, number of method calls, and subclasses. Due to
space constraints, and for ease of description, below we report
on the distributions produced by a single randomly chosen
simulation run.

A. Change Size

The simulated software evolution exhibited SOC behavior.
The scatter plot of fmin(S) at different steps during the chosen
simulation is shown in Fig. 3. At the beginning of the simula-
tion, fmin could be any value between 0 and 1. Over simulated
time, the range of fmin values reduced as the system grew.
After around 20,000 steps, the system became stationary, and

2https://github.com/linzhp/Codevo3

0.00

0.25

0.50

0.75

1.00

0 50000 100000 150000 200000
S

f m
in
�S
�

Fig. 3. Minimal fitness value at different steps. The x-axis represents different
steps, y-axis is the minimal fitness value of all methods at the end of each
step.

TABLE VI
PARAMETERS AND p VALUES OF DISTRIBUTIONS PRODUCED BY

SIMULATION

Measure xmin α ppower law plog−normal

Change size 2 1.59 0.93 � 0.0001
of callers 11 4.42 0.94 � 0.0001
Class size 80 2.65 1 � 0.0001

of subclasses 2 2.68 0.05 � 0.0001

fmin never went beyond a self-organized threshold between
0.5 and 0.51.

With f0 set to 0.5, we obtained 1277 commits of different
sizes. It can be seen from Fig. 4a that the CCDF of commit
size distribution follows a straight line, indicating a possible
power law distribution.

Following the procedure from Section II, we tested the
goodness of fit to power law and compared power law with
other alternative distributions. Tables VI and VII show that it
is risky to rule out a power law distribution, which fits the
commit size distribution better than exponential and Poisson
distributions. Although a log-normal distribution seems to have
a better fit, a follow-up Shapiro-Wilk test rejects it.

B. Method Calls, Class Sizes and Subclasses

As the simulation produced Java source code with valid
syntax, static analyses can be performed. It can be seen from
Fig. 4 that the distributions of method in-degrees (number
of callers), class size measured by SLOC and the number
of subclasses all have tails closely following power law,
consistent with the empirical studies in [3], [6] and [4]. The
results of these hypothesis tests are shown in Tables VI and
VII.

C. Summary

From the simulation results, it can be seen that the code
change mechanisms in Section III-C, in spite of their sim-

0.001

0.010

0.100

1.000

1 200 40000
Change size

C
C

D
F

(a)

1e-04

1e-02

1e+00

1 7 49
Callers

C
C

D
F

(b)

0.001

0.010

0.100

1.000

4 80 1600
Class size (SLOC)

C
C

D
F

(c)

0.001

0.010

0.100

1.000

1 5 25
Subclasses

C
C

D
F

(d)

Fig. 4. The CCDFs of distributions in simulation result: (a) Commit size distribution with f0 set to 0.5; (b) In-degree (number of callers) distribution of
methods. To avoid taking logarithm of 0, the in-degree for every method has been increased by 1; (c) Class size distribution; (d) Number of subclasses
distribution. The number of subclasses has been increased by 1 for every class.

TABLE VII
COMPARING POWER LAW WITH ALTERNATIVE DISTRIBUTIONS FOR GOODNESS OF FIT TO SIMULATION RESULTS

Measure power law vs. log-normal power law vs. exponential power law vs. Poisson
R p R p R p

Change size -1.07 0.285 1.93 0.0532 3.19 0.00142
Number of callers -0.565 0.572 0.771 0.441 1.59 0.112

Class size 0.00647 0.948 2.67 0.00764 2.12 0.034
Number of subclasses -1.21 0.227 3.02 0.0025 1.58 0.114

plicity as compared to the complexity of real world software
development, are capable of producing the power law distri-
butions observed in software systems.

V. DISCUSSION AND FUTURE WORK

This section discusses the findings and our thoughts about
future extensions of this work.

A. Punctuated Equilibrium and SOC During Simulations

The change size distribution in Section IV-A exhibits a
punctuated equilibrium behavior: a large number of small
changes mixed with a small number of large ones. Most
changes are localized, and the rest of the system remains
stable. New methods often have lower fitness, thus evolve
faster and are also more likely to be deleted. However, they
tend to be relatively isolated from the other parts of the system,
so their changes are more localized. As the system evolves,
more method calls are added. Occasionally, when a highly
depended-upon method is changed, all its callers are changed
too, with new fitness values assigned to them, triggering a
ripple effect. Some stable methods are assigned low fitness
values and become actively evolving. It takes many steps
before all low fit methods evolve to a better fitness or are
deleted, and the system is back to equilibrium again.

Self-organized criticality in software evolution implies that
large, system-wide changes, though infrequent, are inevitable.
A significant external (hardware, requirement, market etc.)
change is not required to trigger large software changes. As the
size and complexity of the system grows, large changes can
come in the form of proactive refactorings or painful shotgun
surgeries [5]. This, though, does not imply that refactorings
are not necessary. As Turnu et al. [4] discovered, the power

law distribution can take different α values at different times.
So if a refactoring is overdue, shotgun surgeries could become
more frequent, driving α down.

Power law distributions of change size imply that it is very
difficult to predict change size. This is because the mean of
power law distributions is undefined when α is less than 2,
and the variance is infinite when α is less than 3. As we can
see from Tables II and IV, α values often fall below 3, and
sometimes even below 2. This implies that the central limit
theorem does not apply to such distributions, and hence the
sample mean and variance is a poor estimate of the population
mean and variance. Combined with the scale-free nature of
power law distributions [1], there is no “typical monthly
change size” or “typical number of changes in a commit”,
that we can use for prediction.

Limitations exist in our simulations, however. The change
size distributions in the simulated evolutions followed power
law throughout the full range (Fig. 4a), while in reality only the
tails follow the power law (Fig. 1), starting at xmin, which is
greater than 100 in all four projects studied. Towards the left of
xmin, change size follows different distributions, possibly log-
normal distributions, like Herraiz et al. [6] found in file size
distributions. More work is needed to understand the forces
that deviate change size from power law distribution at the
lower end.

The fitness value of a method simplifies the driving forces
of software evolution in our simulations. It is not clear yet
how the value could be obtained in real software evolution.

B. Preferential Attachment During Simulations

The use of preferential attachment in growing the software
system during the simulations turned out to be successful, as

it both helps to organize the system into critical states to allow
punctuations, and produce degree distributions similar to real
software systems.

The preferential attachment of method calls and subclasses
is based on the assumption that existing method calls and
subclasses indicate the usefulness of a method or class. If a
method or class is useful at present, it is likely to be used
in the future too. The preferential attachment of methods to
classes can be thought of as modeling the effort to place a
new method closer to the methods and data it uses (e.g., in
order to increase cohesion and reduce coupling). So the larger
a class is, the more likely one or more of its methods and
attributes will be used in a new method. So the new method
is more likely to be added to the class.

Software can be modeled with the dependency network of
its components. How well the network generated by pref-
erential attachment in this study resembles the dependency
networks in real software systems deserves more investigation.
The properties of software dependency networks discovered by
Myers [14] provide good pointers for future improvements to
our model.

C. Software Engineers as a Generative Process

The simulation we present is an abstract model of the kinds
of changes software developers make on a daily basis as
they work on a large project. In actual project work, instead
of following a statistical random process, developers make
rational decisions on which files to modify, and how many to
modify in a single change. Despite not trying to create them,
somehow the accumulated effect of all of these rational choices
results in the observed power law distributions. It would be
satisfying to connect these small scale rational decisions to
the random generative model presented herein, and show how
intentional decisions accumulate to produce power laws.

VI. THREATS TO VALIDITY

The possible threats to the validity of this study are:
1) Construct Validity: The threats to construct validity of

this study reside in the question of how well the rules and
processes used to produce power laws in our simulation reflect
the reality of software development. We believe all of the
rules are based on reasonable assumptions about software
development. Although more empirical studies are needed
to verify these assumptions, we were not able to find any
evidence to the contrary either.

2) Internal Validity: Since many details in software evo-
lution are removed from our simulation model, leaving only
the processes directly related to our study, it is unlikely for
other mechanisms than our proposed ones to produce the
distributions in our experiment.

3) Statistical Validity: We have to admit that, technically,
not being able to reject power law does not confirm that power
law is the true distribution of any the data set in Section II
and IV. However, several different statistical procedures were
taken to reduce the risk of our assumption about power law.

VII. RELATED WORK

The prevalence of the power law distribution has attracted
researchers from different areas to explore underlying mecha-
nisms. Newman [1] summarizes six generative mechanisms
for power law distributions, among which are preferential
attachment and self-organized criticality. Integrating preferen-
tial attachment and self-organized criticality in one simulation
model has not been tried to the best of our knowledge.

Models for self-organized criticality have been proposed
in many different areas. Our model is inspired by the Bak-
Sneppen model for biological evolution [13] and the forest-
fire model [15]. The Bak-Sneppen model was also modified
and used to describe software evolution by Gorshenev et al.
[2]. Instead of simulating the evolution, they performed a
mathematic analysis for a simpler version of their model,
and proved that the change size, in number of lines changed,
follows a power law distribution. Cook et al. [16] also tried to
adapt Bak-Sneppen to simulate software growth. They were
able to produce punctuated equilibrium but failed to produce
any power law behavior, which essentially means their system
did not organize itself into a critical state.

Modeling software systems as complex networks and sim-
ulating the network evolution are not unprecedented either.
Myers [14] proposed an abstract model based on string split-
ting to simulate refactoring. The model is able to capture many
salient features of software systems, such as in-degree and out-
degree distributions in software dependency networks, as well
as the relation between degrees and clustering coefficient in
different nodes. His model could be adapted to complement
our model. Turnu et al. [4] used a preferential attachment
process to produce the distributions of some object-oriented
measures. They also proposed methods to estimate parameters
of a preferential attachment process from empirical data.

From a very different perspective, Hatton [17] built a
statistical mechanical model to prove that, given a fixed total
number of bugs and system size, a software system is most
likely to be organized in such a way that its component
sizes will follow a power law distribution. However, such
assumptions may not hold for many software systems. For
example, it was found that the size of Linux kernel grew super-
linearly [18].

VIII. CONCLUSION

The distribution of many software system measures have
been found to follow a power law distribution, at least in
their tails. Few explanations have been provided for such
distributions.

In this article, we have presented a model to simulate fine-
grained source code changes based on preferential attachment
and self-organized criticality. Our experiment shows that the
model, running under some reasonable rules, is able to mod-
ify software and produce power law distributions in several
measures. The results indicate that preferential attachment and
self-organized criticality may be the driving forces behind the
power law distributions of measures such as file size, change
size and in-degrees of methods.

REFERENCES

[1] M. E. J. Newman, “Power laws, Pareto distributions and Zipf’s law,”
Contemporary Physics, vol. 46, pp. 323–351, 2005.

[2] A. Gorshenev and Y. Pis’mak, “Punctuated equilibrium in software
evolution,” Physical Review E, vol. 70, no. 6, p. 067103, Dec. 2004.

[3] P. Louridas, D. Spinellis, and V. Vlachos, “Power laws in software,”
ACM Transactions on Software Engineering and Methodology, vol. 18,
no. 1, pp. 1–26, Sep. 2008.

[4] I. Turnu, G. Concas, M. Marchesi, S. Pinna, and R. Tonelli, “A modified
Yule process to model the evolution of some object-oriented system
properties,” Information Sciences, vol. 181, no. 4, pp. 883–902, Feb.
2011.

[5] M. Fowler and K. Beck, Refactoring: Improving the Design of Existing
Code, 1st ed., ser. Addison-Wesley Object Technology Series. Reading,
MA: Addison Wesley, 1999.

[6] I. Herraiz, D. German, and A. Hassan, “On the distribution of source
code file sizes,” in International Conference on Software and Data
Technologies. Seville, Spain: SciTe Press, 2011.

[7] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins,
and E. Upfal, “Stochastic models for the Web graph,” Proceedings 41st
Annual Symposium on Foundations of Computer Science, pp. 57–65,
2000.

[8] P. Bak, How Nature Works: the science of self-organized criticality.
New York, NY, USA: Copernicus, 1996.

[9] J. Wu, R. C. Holt, and A. E. Hassan, “Empirical Evidence for SOC Dy-
namics in Software Evolution,” in 2007 IEEE International Conference
on Software Maintenance. IEEE, Oct. 2007, pp. 244–254.

[10] B. Fluri, M. Wuersch, M. PInzger, and H. Gall, “Change Distilling:Tree
Differencing for Fine-Grained Source Code Change Extraction,” IEEE
Transactions on Software Engineering, vol. 33, no. 11, pp. 725–743,
Nov. 2007.

[11] A. Clauset, C. R. Shalizi, and M. E. J. Newman, “Power-Law
Distributions in Empirical Data,” SIAM Review, vol. 51, no. 4, pp.
661–703, Nov. 2009.

[12] C. S. Gillespie, “Fitting heavy tailed distributions: the poweRlaw
package,” Journal of Statistical Software, 2014.

[13] P. Bak and K. Sneppen, “Punctuated equilibrium and criticality in a
simple model of evolution,” Physical Review Letters, vol. 71, no. 24,
pp. 4083–4086, Dec. 1993.

[14] C. Myers, “Software systems as complex networks: Structure, function,
and evolvability of software collaboration graphs,” Physical Review E,
vol. 68, no. 4, p. 046116, Oct. 2003.

[15] B. Drossel and F. Schwabl, “Self-Organized critical Forest-Fire Model,”
Physical Review Letters, vol. 69, no. 11, pp. 1629–1632, 1992.

[16] S. Cook, R. Harrison, and P. Wernick, “A simulation model of self-
organising evolvability in software systems,” in Proceedings of the 2005
IEEE International Workshop on Software Evolvability, 2005, pp. 17–22.

[17] L. Hatton, “Power-Law Distributions of Component Size in General
Software Systems,” IEEE Transactions on Software Engineering,
vol. 35, no. 4, pp. 566–572, Jul. 2009.

[18] M. Godfrey and Q. Tu, “Evolution in open source software: a case
study,” Software Maintenance, 2000. Proceedings. International Con-
ference on, pp. 131–142, 2000.

