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Abstract

Understanding and Simulating Software Evolution

by

Zhongpeng Lin

The important roles of software in modern life have prompted people to study soft-

ware evolution. This dissertation takes a scientific perspective to model the dy-

namics of software evolution, and verify the model by simulation.

Empirical studies of software evolution have discovered many emergent

phenomena, such as the power law distributions in different metrics of software

systems and the complex network of relationships among software components. By

reviewing the literature, we found similar phenomena in other fields too, as well as

generative mechanisms proposed to account for the phenomena. A model of soft-

ware evolution that incorporates preferential attachment and self-organized criti-

cality (SOC) is proposed in this thesis research and the simulation runs using this

model reproduce several emergent phenomena in software evolution. To further

explore how individual developers’ local changes accumulate to produce high-level

phenomena, and to explore the possible causes of log-normal behavior at the body

of the commit size distribution, we propose another model based on agents to simu-

late the interaction between developers and a manager. This simulation shows that

power law distributions can emerge from low-level changes without explicit pref-

erential attachment process, and the lower-end of commit size distribution may be



shaped by log-normal task size.

This dissertation research reveals that large software changes are inevitable

in software evolutions, and the change size follows a heavy-tailed distribution,

making it very difficult to estimate. The simulations also show that large changes

are not necessarily caused by significant external factors; the power law structure

of software systems can also lead to large changes, as part of the power law change

size.
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Chapter 1

Introduction

1.1 Emergent Phenomena in Software

Software systems are fully intentional products of human intelligence.

Hence, one should expect that every aspect of software, except for defects due to

human mistakes, will encode some human intention: either from a black box point

of view, such as the behavior of an interface element, or from a white box point of

view, such as the way a method calls another method.

Nevertheless, empirical studies of software systems have revealed phe-

nomena beyond human intention. A well-known example is the prevalence of

power laws, found in the distributions of file size (Herraiz et al., 2011), file change

size (Gorshenev and Pis’mak, 2004), commit size (Hattori and Lanza, 2008), num-

ber of subclasses, variable and method names (Turnu et al., 2011), and many more.

Computer software often consists of many components of different granu-

1



larity, such as libraries, modules, classes, and functions. These components are not

isolated, but instead have various inter-relationships, via function/method calls,

class inheritance, package imports, etc. Hence, software can be modeled as a net-

work, with the components as vertices and their relations as the edges.

Looking into software component networks, it has been found that they

are not random graphs, but instead exhibit properties of complex networks. Class

graphs, method call graphs, and library and package dependency networks in soft-

ware systems are all scale-free networks, i.e., their degree distributions follow a

power law (Valverde and Solé, 2003; Louridas et al., 2008; Turnu et al., 2011).

Meanwhile, Valverde and Solé (2003) also found that software class graphs have

high degree of clustering—another feature not found in random graphs.

Given the multiplicity of empirical studies across many different kinds of

software systems, the power law distributions and the properties of complex net-

works are unlikely to be accidental. Some mechanism is at work to create these

properties, but which one? Developers might naturally come to mind, since it is

their hands that write the code that exhibits these phenomena. Yet, assuredly, no

developer intentionally sets out to create them. We have never heard a developer

say, “the distribution of file sizes on this project is diverging from power law, so

we should make changes to fix this!” Indeed, accomplishing such a policy would

involve known bad practices. For example, power law tails in file size distributions

indicate the existence of large files, a code smell (Fowler and Beck, 1999). Nev-

ertheless, this code smell exists even in projects believed to be well-maintained,

2



such as those studied by Herraiz et al. (2011). Rather than the deliberate result

of intentional activity, power laws and the properties of complex networks must be

emergent phenomena caused by software evolution dynamics not yet fully under-

stood.

1.2 Simulation of Software Evolution

It is challenging to explore the dynamics leading to the emergent phenom-

ena in software evolution, as they are caused by the cumulative effect of a software

change process working over time. Achieving a high degree of control over a real

world change process is challenging, and expensive. There is no cost-effective way

to set up a controlled multi-year software evolution experiment in a realistic set-

ting. Instead, we use software evolution simulations as a way to focus on interest-

ing factors within a complex overall process, and study possible causes of power

law distributions and complex networks.

Simulations are widely used in many areas to model natural systems, hu-

man systems or technologies for various purposes.1 They are often used when the

real process is not repeatable, e.g., urban development in response to different gov-

ernment policies (Waddell and Ulfarsson, 2004; Deal and Sun, 2006). Simulations

can also be effective when the real process takes too long to finish. For exam-

ple, IKEA uses various simulators to test the durability of furniture (Figure 1.1).

Without such simulators, it would take years to observe how a piece of furniture
1Wikipedia: https://en.wikipedia.org/wiki/Simulation

3
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Figure 1.1: A durability simulator (Location: IKEA, East Palo Alto, California).

deteriorates.

A software evolution process is both unrepeatable and longstanding. Sim-

ulation has the advantage of permitting a high degree of control over software

change processes, and the ability to quickly change parameters and see the impact

of these changes over a multi-year evolution.

1.3 Research Outline

Based on empirical studies that revealed emergent power law distribu-

tions and complex networks in software evolution, this research builds models to

explain the empirical findings, tests the models by simulating them, and compares

the outcomes with the empirical findings, thus improving our understanding of the

dynamics of software evolution.

4



The rest of this dissertation starts by reviewing some emergent phenom-

ena found by previous empirical studies (Chapter 2). Not satisfied with the mea-

sure of change size in the literature, we propose a new measure and conducted our

empirical study of change size based on the new measure (Chapter 3 and 4). Chap-

ter 5 presents generative mechanisms for similar emergent phenomena in other

fields, among which self-organized criticality (SOC) and preferential attachment

are used in this thesis study. Then Chapter 6 describes a model that uses preferen-

tial attachment in a SOC process, yielding distributions and networks resembling

actual software evolution processes. To address the issues found in this model, an

agent-based model is explored to simulate human interactions during software evo-

lution (Chapter 7). This dissertation then provides an overview of related models

for software evolution (Chapter 8), and thoughts about the extension of this work

(Chapter 9). Finally, Chapter 10 concludes the dissertation.
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Chapter 2

Power Law and Complex Networks

This chapter provides some brief theoretical background on power law dis-

tributions and complex networks, as well as empirical evidence from the literature

demonstrating their presence in software systems.

2.1 Power Law

Mathematically, a power law distribution can be described by its probabil-

ity density function:

p(x) = Cx−α, where C > 0 and α > 0

The constant α is the exponent or scaling parameter of the power law, while

the constant C is determined by the requirement that the probability function

sums up to 1. As this density function diverges when x → 0, there should be a

lower bound to the power law behavior, denoted as xmin. In many real world cases,

6



there is some non-power-law behavior at the lower end of the distribution, making

xmin � 0.

Unlike other distributions, a power law distribution does not have a typi-

cal or characteristic scale, and the distribution is the same “whatever scale we look

at it on” (Newman, 2005). When we increase x by a factor of k, the shape of the

distribution does not change. A typical example is the distribution of computer file

size. If we find that files of size 2kB are 1/4 as frequent as those of size 1kB, we

may also find those of size 2MB to be 1/4 as frequent as those of 1MB, and those of

2GB to be 1/4 as frequent as 1GB, and so on. This is because:

p(kx)

p(x)
=
C(kx)−α

Cx−α
= k−α, ∀x > xmin and k > 1

Note that k−α is a constant. Newman (2005) proved that only the power law distri-

bution has this feature. The mean of the power law distribution is given by:

EX =

∫ ∞
xmin

xp(x) dx = C

∫ ∞
xmin

x−α+1 dx =
C

2− α
x−α+2

∣∣∣∣∞
xmin

When α ≤ 2, the mean of the power law distribution goes to infinity. The

infinite mean implies that it is impossible to obtain an accurate estimate of the

mean from sample data, because sample data always have a finite average and the

average values have very large fluctuations from sample to sample.

When α > 2, the mean is given by:

EX =
α− 1

α− 2
xmin

7



The second moment of the distribution is given by:

EX2 =

∫ ∞
xmin

x2p(x) dx = C

∫ ∞
xmin

x−α+2 dx =
C

3− α
x−α+3

∣∣∣∣∞
xmin

which diverges when α ≤ 3. Since the variance of the distribution is given by:

VarX = EX2 − (EX)2

when α ≤ 3, the variance diverges as well. When α > 3, the variance is well

defined, taking the value:

VarX = [
α− 1

α− 3
− (

α− 1

α− 2
)2]x2min

The above equations and deductions have been focused on power law dis-

tributions for continuous random variables. However, many random variables in

this thesis study are discrete, such as change size and class size. The difference is

trivial in most cases, as only the tail of the distribution follows power law, and the

xmin is often large enough that the values in the range can be considered continu-

ous. The derivation presented above can be generalized to the discrete case, but it

is more tractable to work with integrals.

Visually, a power law distribution can be illustrated using a log-log scale,

where its probability function p(x) becomes a straight line:

ln p(x) = ln(Cx−α) = −α lnx+ lnC

When plotting the frequency distribution of sample data, however, the

probability of a large x value is so small that there are very few data points with

8



large values, resulting in a noisy curve at the right end. As a result, Newman

(2005) suggests plotting the complementary cumulative density function (CCDF)

instead, which is given by:

CCDF (x) = P (X ≥ x) =
∫ ∞
x

Ct−α dt =
C

α− 1
x−α+1, when α > 1

The CCDF is also a power law function. On the log-log scale, it is a straight

line with shallower slope than p(x):

lnP (X ≥ x) = (−α+ 1) lnx+ ln
C

α− 1

2.2 Complex Networks

A complex network is a graph with topological features not found in sim-

ple networks, such as random graphs. Often used as a benchmark, a random graph

with N vertices and M edges is generated by randomly picking M pair of vertices

out of all possible vertex pairs to add edges. Hence, the vertex degrees of ran-

dom graphs follow binomial distributions. Many complex networks, however, have

power law degree distributions. Such networks are known as scale-free networks,

due to the scale-free nature of the power law.

Some topological features that distinguish complex networks from ran-

dom graphs are based on the concept of clustering coefficient, which measures the

tendency of vertices in a graph to cluster together. One can evaluate a graph gen-

eration model by comparing the clustering coefficient of the synthesized graph to

that of the real graph. It is one of few measures that can be computed efficiently

9



on very large graphs, and provides useful insights into the overall characteristics

of a graph.

Given a vertex vi with degree ki, its clustering coefficient is the fraction

of vertex pairs in its neighborhood that are linked to each other, and thus forming

triangles with vi. If vi participates in ti triangles, the clustering coefficient of vi is

given by:

Ci =
2ti

ki(ki − 1)

A wedge in a graph is defined as a pair of edges with a shared vertex. The

global clustering coefficient, also known as transitivity,1 of a graph is the fraction

of wedges that form triangles in the graph:

C = 3× #triangles

#wedges

Take social network for example, if A and B know each other, B and C

know each other, clustering coefficient tells us how likely A and C know each other

too. In random graphs, whether there is a edge between two vertices is indepen-

dent of the vertices, so the clustering coefficient of a random graph is simply the

probability of any pair of vertices being connected, which is its density:

Crandom = D =
2M

N(N − 1)
(2.1)

The clustering coefficient of complex networks is often much higher than

that of random graphs with the same size (i.e., same number of vertices and edges).

For example, in the collaboration graph of film actors, its clustering coefficient is
1Clustering coefficient: https://en.wikipedia.org/wiki/Clustering_coefficient
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almost 3000 times greater than the corresponding random graph’s (Watts et al.,

1998).

One can also group vertices by their degrees, calculate the average cluster-

ing coefficient for each group, and see how degrees of vertices affect their clustering

coefficient. In random graphs, the clustering coefficient of a vertex does not depend

on the degree of the vertex, so the average clustering coefficient of all k-degree

vertices is approximately the density of the graph:

C(k) ≈ D =
2M

N(N − 1)

In many complex networks, however, the clustering coefficient is nega-

tively correlated to degree, following the scaling law:

C(k) ∝ k−1

Another useful metric is the characteristic path length of a graph, which

measures how tightly connected a graph is. The path length between two vertices

in a graph is the number of edges in the shortest path between them. One can cal-

culate path length between each pair of vertices in a graph and take the average

over all vertex pairs in the graph, which is the characteristic path length of the

graph. Short characteristic path length means that it typically takes only a few

edges to travel from any vertex to almost any other vertex in the graph. In some

graphs, there is not always a path between any pair of vertices, i.e., the graphs are

not connected. In this case, one can only measure the characteristic path length for

each connected component—a subgraph in which there is at least a path between

11



any pair of vertices. A connected graph itself is a connected component. The char-

acteristic path length is often very short in large real world networks. A famous

example is the social network of the world. A well-accepted theory by Milgram

(1967), known as “six degrees of separation”, states that many pairs of seemly dis-

tant people can be connected by a short acquaintance chain with a typical length

of six.

If a network has high clustering coefficient and short characteristic path

length, it is called a small world by Watts et al. (1998)—a definition of small

world that is commonly used in previous empirical studies of software systems

(e.g., Valverde et al., 2002; de Moura et al., 2003), and will be followed throughout

this dissertation.

2.3 Empirical Studies of Software Evolution

Software systems are complex systems with many interacting components.

It is natural to model them as graphs. While software engineering practition-

ers and researchers have used such graphs to express software architecture and

design, identify potential design issues, etc., some other researchers, especially

physicists, have been intrigued by the overall properties of these graphs.

Valverde et al. (2002) pioneered this stream of studies by looking at the

class diagram of the Java Development Kit (JDK), thereby discovering that it has a

scale-free and small-world structure. Wheeldon and Counsell (2003) built separate

12



graphs for different types of couplings between Java classes: inheritance, interface,

aggregation, parameter type and return type. They found power law in the degree

distributions of all five types of graphs in JDK, Apache Ant and Tomcat projects.

Myers (2003) studied the class collaboration graphs for three C++ systems

and call graphs for three procedural systems written in C. In the class collaboration

graphs, each vertex is a class, and a directed edge goes from class A to class B when

A makes a reference to B through inheritance or aggregation. In the call graphs,

vertices are subroutines, and edges go from callers to callees. Myers found power

law behavior in the distributions of both in-degrees and out-degrees. The class col-

laboration graphs and call graphs can also be converted to undirected graphs by

removing the directions on the edges. In the undirected class collaboration graphs,

a k degree vertex means that the class has references to or from k other different

classes, i.e., it has k neighbors; while a k degree vertex in call graphs means that

the subroutine calls or is called by k other different subroutines. With k neighbors,

there are k(k−1)/2 pairs of classes or subroutines. The clustering coefficient of the

vertex is defined as the portion of these pairs that also have references or calls to

each other. Clustering coefficient of a class or a subroutine measures the coupling

of software components at its neighborhood. Myers found that the more neighbors

a class or subroutine has, the less coupled its neighbors are on average, as indi-

cated by the average clustering coefficient of k-degree vertices drops as k increases

(Figure 2.1).

For C/C++ systems, graphs can also be built from their header files. De
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Figure 2.1: Average clustering coefficient C(k) of all k-degree vertices in class col-
laboration graphs of six software systems: (a) VTK, (b) Digital Material, (c) Abi-
Word, (d) Linux kernel, (e) MySQL, (f) XMMS (figures reprinted from Myers, 2003)
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Moura et al. (2003) explored such graphs where two header files are considered

functionally related if they are included in the same source file. The graphs of

header files in Linux kernel, XFree86 and Mozilla were found to be scale-free, with

small-world structure.

Using a larger data set of 80 software systems in C++ and Java, Valverde

and Solé (2003) examined the class graphs of inheritance and membership, and

again found scale-free and small-world properties. Similar empirical studies in

other types of software systems found power laws in SmallTalk class graph (Concas

et al., 2007), dependency graphs of Debian packages (Maillart et al., 2008), Perl

packages, shared libraries in Unix and Linux distributions, Windows Dynamically

Linked Libraries, FreeBSD ports, TEX and Metafont modules, Ruby libraries, and

others (Louridas et al., 2008).

Power law degree distributions were not only observed in static graphs,

but also in runtime object graphs. Taking 60 runtime snapshots from 35 Java

programs, Potanin et al. (2005) found power law distributions in both in-degree

and out-degree of the object graphs. Later, other properties of software graphs

were also explored, such as motif (Valverde and Solé, 2005), community structure

(Šubelj and Bajec, 2011) and PageRank (Bhattacharya et al., 2012).

Besides degree distributions of software graphs, power law was also found

in source code size, such as Java method and class size (Concas et al., 2007) and

C/C++ file size (Herraiz et al., 2011).

Change size is another area where power law distributions were found.
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Gorshenev and Pis’mak (2004) studied the CVS repositories of the Mozilla web

browser, FreeBSD and GNU Emacs, and found power law behaviors in their com-

mit sizes, measured by the number of added and deleted lines. Also from CVS

repositories, Wu et al. (2007) found the logical and structural change sizes of nine

C/C++ software systems followed power law distribution. In their study, logical

change size is defined as the commit size as measured by the number of files

changed, while structure changes are defined as the differences in the file depen-

dency graphs obtained by comparing daily snapshots. Hattori and Lanza (2008)

confirmed that commit size, measured by the number of changed files, closely fol-

lows power laws in nine software projects developed in many different program-

ming languages. Using a very large dataset of 9363 projects, Arafat and Riehle

(2009) confirmed similar commit size distributions again, with commit size mea-

sured by changed lines of code.

Power law also exits in many other measures of software systems, such as

the number of methods, fields, constructors, subclasses, instance variable names

and method names (Wheeldon and Counsell, 2003; Concas et al., 2007; Turnu et al.,

2011), as well as the number of bugs in a module (Concas et al., 2011).

However, not all measures follow power law. It was found that the out-

degree of dependency networks in some systems do not exhibit power law behavior

(Concas et al., 2007; Kohring, 2009). Baxter et al. (2006) studied 17 measures on

a corpus of 56 Java projects, and found power law in some measures, but not in

others. They observed that if the programmers are aware of a property at the time
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the software is being written, the property will not follow a power law distribu-

tion, as there is a tendency to avoid “big things,” thus truncating the tail of the

distribution. For measures such as the number of callers of a method, they are not

immediately visible to programmers, so they follow power law distributions.

2.4 Summary

This chapter briefly introduces power law distributions and complex net-

works, then presents empirical evidence in the literature indicating their existence

in software evolution. In our later simulations, we will evaluate our simulation

models based on whether they are able to reproduce the empirical findings in soft-

ware evolution.

As can been seen from Section 2.3, there are different measures for change

size in the literature. The easiest way is to count the number of changed files with-

out looking into the file content. However, this is a very coarse measure. In a

well-designed software system, changes are often localized. The number of files

changed each time may be very small, while the actual change size is large. This

problem is avoided when change size is measured at line level by comparing the

textual difference between two revisions of source code. Nevertheless, textual line

comparison is sensitive to some trivial changes such as formatting. In fact, Hin-

dle et al. (2008) found many large commits were caused by reformatting the code.

To overcome the shortcomings of previous work on change size, we define a new
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measure for change size and conducted our own empirical study.

In the next two chapters, we first introduce our data collection and extrac-

tion approach (Chapter 3). The data analysis methodology and result are presented

in Chapter 4.
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Chapter 3

Data Set and AST Differences

This chapter describes the data used in this empirical study, as well as the

way we extracted the changes from them.

3.1 Data Set

All data come from four open source Java projects: jEdit, Eclipse JDT

Core, Apache Maven and Google Guice. CVSAnalY1 was used to collect data from

their Git repositories or Git mirrors,2 and store them in a MySQL database. We

developed the Content extension to CVSAnalY to store all revisions of all source
1CVSAnalY: http://metricsgrimoire.github.io/CVSAnalY/
2The Git mirror of jEdit from which we collected data had been removed at the time of writing. For

reproducibility, we published our clone of the Git mirror at https://github.com/linzhp/jEdit-
Clone. The Git repositories of other projects are listed below:

• Eclipse JDT Core: http://git.eclipse.org/c/jdt/eclipse.jdt.core.git/

• Apache Maven: https://github.com/apache/maven.git

• Google Guice: https://github.com/google/guice.git
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Table 3.1: Data source

Project Start Date End Date Commits

jEdit 1998-09-27 2012-08-08 6486
Eclipse JDT Core 2001-06-05 2013-09-09 19321

Apache Maven 2003-09-01 2014-01-29 9723
Google Guice 2006-08-22 2013-12-11 1198

code files in a database for easy analysis. Table 3.1 shows the start and end dates

of the data collection, as well as the number of commits/revisions collected. Only

commits in their “master” branches were used for this empirical study.

A commit of changes to a Git repository produces a new revision. To ex-

tract changes in a commit, one has to compare its revision of source code with its

previous revision. A naive approach is to sort commits by their time stamp and

compare each revision with its preceding one. However, this approach does not

work if there is more than one Git branch. As Git keeps the branching and merg-

ing history, the revisions in the master branch of a project form a directed acyclic

graph, like the black nodes and solid arrows in Figure 3.1. Sorting commits in the

“master” branch results in a sequence: A-B-C-D-E-F-H. The naive approach would

compare the revision at E with the one at D in order to extract the changes in E.

However, as can be seen from Figure 3.1, E is changed from C, rather than D. In

order to reliably identify the revision history, we enhanced CVSAnalY to maintain

a commit graph while loading the repository data.

On the other hand, a commit may be the result of merging two previous

revisions due to parallel development, such as F in Figure 3.1. Merge commits
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Figure 3.1: A simple Git commit graph. Black nodes are commits in the “master”
branch; gray nodes are not.

are ignored in this empirical study, as they normally do not bring meaningful new

changes to software other than repeating changes from branches and resolving con-

flicts. However, some projects examined in this empirical study used other version

control systems such as CVS or Subversion at the beginning. After migrating to

Git, commits in other branches are often not reachable from the master branch. In

this case, merge commits were not excluded from our study, otherwise those branch

changes would be lost. Considering Figure 3.1, if the link from D to F is broken,

we should not exclude F, even if we know F is a merge commit, for example, from

its commit log.

3.2 ChangeDistiller

Source code is semi-structured text; a valid piece of source code can be

deterministically parsed into an abstract syntax tree (AST). Code changes can be

obtained by comparing the ASTs of two revisions of source code, using tree differ-
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encing algorithms. We call the code changes extracted in this manner AST differ-

ences. The empirical study in this thesis work used ChangeDistiller (Fluri et al.,

2007) to extract AST differences. Given two revisions of a piece of Java source code,

ChangeDistiller is able to parse each of them into an AST, and use the tree differ-

encing algorithm proposed by Chawathe et al. (1996) to compare the differences

between the two ASTs. In the end, ChangeDistiller not only returns the changed

nodes, but also classifies the types of changes according to a taxonomy proposed by

Fluri and Gall (2006). Each change extracted by ChangeDistiller has information

about the type of the changed AST node (e.g., if statement, method), the parent

and the children of the node, and the change type (e.g., METHOD_RENAMING, AD-

DITIONAL_CLASS). It also has information about the position of the node in the

source code, allowing for inspection at even finer granularity if necessary.

ChangeDistiller was initially developed as an Eclipse plugin, and later

adapted as a stand-alone open source library.3 It is currently only capable of ex-

tracting changes in Java code, but it was designed to be extended to support more

languages.

ChangeDistiller provides a convenient API for comparing revisions of source

code. One drawback, however, is that when a class or method is added or deleted,

ChangeDistiller only reports the insertion or deletion of the class or method node,
3The source code of ChangeDistiller can be found at https://bitbucket.org/sealuzh/

tools-changedistiller. We made several bug fixes and enhancements to ChangeDistiller. How-
ever, the authors of the repository did not agree with the implementation of some enhancements. So
they accepted our pull requests, hosted those enhancements in a separate branch called “fileversion,”
and planned to reimplement the enhancements. Unfortunately, all the authors left the project before
the reimplementation. We used the latest revision at the “fileversion” branch of ChangeDistiller in
this study.
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but not the descendants of the node. For example, when an inner class is added

with several methods in it, ChangeDistiller only reports an ADDITIONAL_CLASS

change, but not the accompanying insertion of methods of the inner class. Fortu-

nately, the changes given by ChangeDistiller have information about the positions

(line numbers) of the changed nodes. With the information regarding the start line

and end line of an inserted or deleted node, one could parse the source code, and

then work out the nodes falling into the line number range, and thereby determin-

ing the missing sub-nodes. In this work, the above mentioned approach is used to

include the AST nodes within a added or deleted subtree.

3.3 Data Collection Work Flow

To prepare the data for this empirical study, we first ran CVSAnalY to

load commit data from Git repositories into a MySQL database. Then, we wrote a

program4 to read every commit in the database, decide which files were changed in

each commit, retrieve the revisions before and after the changes for each file, and

call ChangeDistiller to extract the AST differences. Finally, the extracted changes

were stored in a MongoDB database for further analysis.5

4The source code of the program can be found at https://github.com/linzhp/
ChangeAnalyzer.

5The MongoDB version we used was 2.6. A dump of the MongoDB is at https://users.soe.
ucsc.edu/~linzhp/dissertation/change-data.tar.gz.
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Chapter 4

Change Size in Four Open Source

Software Projects

To avoid the issues of measuring change size discussed in Section 2.4, we

count the number of AST differences, and use it as the measure of change size

throughout the rest of this dissertation, unless otherwise noted. In this chapter, we

analyze the distributions of change size from different angles. Given the outcome

of previous studies in change size (see Section 2.3), it is likely that change sizes

as measured by the number of AST differences will also follow power law distri-

butions. We will use this as our hypothesis in this section, and perform statistical

tests to verify.
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4.1 Methodology

A power law distribution is a highly skewed distribution, for which mean

and standard deviation give little information. Instead, order statistics (Casella

and Berger, 2002), such as min., max., median, and other quantiles, provide a

better description of the data. For each change size distribution in this section, we

first provide its order statistics and visualize its CCDF. The CCDF(x) of a dataset

keeps track of the portion of the data at or above x. The CCDF at the minimal value

of the dataset is always 1, because the all data points are equal to or greater than

the minimal value. As x increases, CCDF(x) decreases. When x is the maximal

value of the dataset, there is only 1 data point that is greater than or equal to x,

and CCDF takes the value of one over the size of the dataset. The CCDF charts in

this dissertation were produced using the ggplot2 package (Wickham, 2009) in R.1

Following the statistical approach of Clauset et al. (2009), we estimate the

parameters of power law distributions that best fit the data, test the goodness of

fit, and compare power law with other heavy-tailed distributions to see if any other

distribution provides a better fit.

The output of a goodness-of-fit test is a p-value, which quantifies the prob-

ability that the dataset is drawn from the hypothesized distribution. The goodness-

of-fit test suggested by Clauset et al. (2009) is based on the Kolmogorov-Smirnov

(KS) statistic, which measures how well the hypothesized distribution (e.g., the
1The R source code can be found at:

https://gist.github.com/linzhp/46e514251a8138ad1656
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best-fit power law distribution) fits the data. Smaller KS statistic indicates better

fit. In order to decide whether the dataset is from the hypothesized distribution,

we can compare its KS statistic with that of a synthesized dataset of the same

size that is drawn from the distribution. For each goodness-of-fit test in this dis-

sertation research, we produce 100 synthesized datasets, and count the portion of

synthesized datasets that has KS statistic greater than the empirical data, using

that as the p-value. For example, if there are 10 out of 100 synthesized datasets

with KS statistic greater than the empirical data, then the p-value is 0.1. If there

is none, we report the p-value as <0.01 rather than 0, because if we increase the

number of synthesized datasets, it is possible that some of them might have greater

KS statistic. As we use 0.05 as the significance level to reject a hypothesis in the

dissertation research, there is no need to know the exact p-value when we know it

is less than 0.01.

The goodness-of-fit test can reject a distribution with small a p-value, but

a large p-value does not assure the dataset is actually drawn from a distribution. In

fact, the tails of power law, log-normal, exponential and Poisson distributions are

often similar. Goodness-of-fit tests may fail to rule out two or more distributions for

the same dataset. One way to compare the competing distributions is the likelihood

ratio test. The idea is to calculate the likelihood of each competing distribution

given the data. The one with a higher likelihood wins. To compare the likelihoods,

we compute the logarithm of the ratio of them, denoted as R, which can be positive

or negative depending on which distribution is more likely to produce the data.
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However, an R close to zero may be caused by statistical fluctuation when the two

distributions actually have equal likelihoods. We have to decide how far from zero

is enough for an R value to rule out this possibility. Clauset et al. (2009) provides

a way to compute the p-value that quantifies the probability we obtain a non-zero

R when the true value is zero. A small p-value means that the two distributions

should not have equal likelihoods, otherwise it is unlikely to observe such an R.

This research uses an R package called poweRlaw (Gillespie, 2015) to per-

form the parameter estimation of heavy-tailed distributions and above-mentioned

hypothesis tests.

4.2 Commit Size

Commit size is defined as the number of AST differences across all changed

source code files in one commit in the version control system (in our case, Git). This

section looks into how changes are distributed among commits, that is, the distri-

bution of commit size across commits.

Not all commits have code changes, because some of them do not modify

any Java code, while some others only have code formatting changes and thus are

transparent when comparing their ASTs. Commits without any code changes are

excluded from this thesis study. Table 4.1 shows very skewed distributions in all

projects, where about 90% of commits have less than 200 changes, while a small

number of commits have up to 40,551 changes.
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Table 4.1: Order statistics for commit size

Project Min. Median 90% Quantile 95% Quantile Max.

jEdit 1 16 164.3 282.15 6960
Eclipse JDT 1 14 124 236 40551

Apache Maven 1 12 106 179 5989
Google Guice 1 26.5 178.9 324.6 3130

The CCDF of commit size distribution is shown in Figure 4.1, in which the

x-axis is the number of changes, and the y-axis is the portion of commits with at

least that number of changes. On the CCDF charts, the dots in the right side of

each plot closely follow a straight line, which is an indication of power law distri-

bution.

To test the power-law hypothesis on each data set, we first estimated the

lower-bound xmin of the power law region in the distribution, as well as the ex-

ponent α of the power law (Table 4.2). With these parameters, we performed

Kolmogorov-Smirnov (KS) tests to decide whether it was possible that the right

tails were generated by power law distributions. As can be seen from Table 4.2,

most hypothesis tests report p-values greater than 0.05 except for Eclipse JDT.

Therefore, with a significance level of 0.05, we can only reject power law as a pos-

sible distribution of commit size for Eclipse JDT; for others, a power law interpre-

tation cannot be rejected by KS tests.

Comparing Table 4.1 and 4.2, one may find that the power law region

only accounts for about 10% of the commits of each project, making it incapable
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Figure 4.1: CCDF for commit size distribution.

Table 4.2: Parameters and p-values of fitting power law distributions to commit
size distributions

Project xmin α p

jEdit 252 2.59 0.55
Eclipse JDT 122 2.11 0.03

Apache Maven 115 2.33 0.32
Google Guice 120 2.42 0.56
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of describing the majority of the data. However, the largest 10% commits are the

most interesting ones, because they change a very large portion of the software

system. Table 4.2 also shows that the exponent α of the power law distributions

are all less than 3, suggesting that the variance is infinite, as we have seen in

Section 2.1. Infinite variance in the tail of a distribution makes the variance of the

whole distribution infinite too. Therefore, if the tails of commit size distributions

in jEdit, Apache Maven and Google Guice follow power laws, it is very difficult to

estimate their commit size.

Although we cannot reject power law tails in most cases, other distribu-

tions might fit the data better. To rule out this possibility, we conducted likeli-

hood ratio tests to compare power law with log-normal, exponential and Poisson

distributions, which often have similar tails. To compare with the power law dis-

tribution, the xmin of each alternative distribution is set to be the same as the

lower-bound of the corresponding power law distribution. Then we estimated the

parameters of each alternative distribution that best-fits the data down to xmin.

Finally, a likelihood ratio test was performed to compare the power law distribu-

tion with each alternative one. In the output of the tests, a positive R indicates

power law fits the tails better than the alternative, while a negative R indicates

otherwise. The p-value indicates how likely the corresponding R is produced by

random fluctuation.

Table 4.3 shows that power law fits the tails better than exponential and

Poisson distributions in all data sets. Although log-normal distribution fits the
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Table 4.3: Comparing power law with alternative distributions for goodness of fit
to commit size data

Project pl vs. log-normal pl vs. exponential pl vs. Poisson

R p R p R p

jEdit -0.251 0.802 3.43 0.000603 1.99 0.0468
Eclipse JDT -1.62 0.105 5.27 �0.0001 2.36 0.0183

Apache Maven -0.176 0.860 5.79 �0.0001 2.57 0.0102
Google Guice -0.649 0.516 2.09 0.0365 3.75 0.000176

tails slightly better, the difference is insignificant and could be a result of statistical

fluctuation.

Note that in the likelihood ratio tests, the lower-bound of the log-normal

distribution is set to be that of the best-fit power law distribution in each project.

However, the best-fit log-normal distribution may have a different, possibly smaller,

lower-bound in each project, since log-normal distributions are at least as good as

power law distributions at fitting the commit size greater than the power law lower-

bounds. So we further estimated the lower-bound and the parameters of best-fit

log-normal distributions, and performed hypothesis tests in a similar way to what

we did for power law distributions. Comparing the medians in Table 4.1 and the

xmin’s in Table 4.4, we can see that log-normal distributions are able to describe a

much larger portion of the commits, covering the bodies and the right tails of the

commit size distributions.

To sum up, the tails of commit size distributions (the portion above power

law lower-bound) can be power law or log-normal distributions, but the body of

the distributions (the portion between log-normal and power law lower-bounds)
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Table 4.4: Parameters and p-values of fitting log-normal distributions to commit
size distributions

Project xmin mean log std log p

jEdit 20 3.4 1.51 0.25
Eclipse JDT 3 2.16 1.76 0.03

Apache Maven 3 2.56 1.66 0.16
Google Guice 17 3.73 1.33 0.61

can be fitted by log-normal, but not power law distribution. Both power law and

log-normal distributions are considered heavy-tailed distributions,2 and their vari-

ance are very large, if not infinite. Therefore, regardless of whether the true tail

distributions are power law or log-normal, one cannot estimate change size with

mean and standard deviation, which is a common approach to estimate a random

variable.

4.3 Monthly Change Size

In this section, code changes are binned according to the calendar month

in which they are made, and the number of AST differences for each month is used

as the measure of monthly change size.

The order statistics of the monthly change size are shown in Table 4.5.

Compared to Table 4.1, the variance of monthly change size is less than that of

commit size, due to the smoothing effect, i.e., there are often multiple commits in a

month. Take jEdit as an example, the maximal monthly change size is only about
2Heavy-tailed distribution:

https://en.wikipedia.org/wiki/Heavy-tailed_distribution
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Table 4.5: Order statistics for monthly change size

Project Min. Median 80% Quantile Max.

jEdit 20 1090 2923.2 12593
Eclipse JDT 28 4037.5 10552.2 48126

Apache Maven 2 848 3791.8 13657
Google Guice 1 428 1338 5684

Table 4.6: Parameters and p-values of fitting power law distributions to monthly
change size distributions

Project xmin α p

jEdit 2765 3.17 0.63
Eclipse JDT Core 12303 3.59 0.91

Apache Maven 794 1.79 0.01
Google Guice 249 1.87 0.14

12 times as large as the median, but the largest commit has 435 times as many

changes as the median commit.

The CCDF plots of monthly change size in Figure 4.2 are similar to Fig-

ure 4.1, indicating power law tails. The procedure from the previous subsection was

performed to test the tail distribution of monthly change size for the four projects

and the results are presented in Tables 4.6 and 4.7.

The overall outcome of the hypothesis test is similar to that of commit size

Table 4.7: Comparing power law with alternative distributions for goodness of fit
to monthly change size data

Project pl vs. log-normal pl vs. exponential pl vs. Poisson

R p R p R p

jEdit -0.794 0.427 1.65 0.0983 2.31 0.0208
Eclipse JDT -0.0280 0.978 1.974 0.0484 4.79 �0.0001

Apache Maven -2.08 0.0374 0.408 0.683 2.83 0.00442
Google Guice -1.38 0.167 0.692 0.489 3.50 0.000469
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Figure 4.2: CCDF for monthly change size distribution.

34



distribution with a few exceptions. With regard to the tail distribution of monthly

change size for the Apache Maven project, the power law hypothesis was rejected

and log-normal distribution fitted the tail significantly better than power law in the

follow-up likelihood ratio test. This trend can be visually verified in Figure 4.2c,

where the dots form a smooth curve rather than a straight line. In other data sets,

both power law and log-normal showed a good fit at the right tails of their monthly

change size distributions.

Table 4.6 shows that the lower-bounds of power law regions are high, es-

pecially in Eclipse JDT Core project. The variances of the power law regions are

very high, as indicated by the small power law exponents α, even if they are not in-

finite (α > 3). Power law regions account for larger portions in monthly change size

distributions than in commit size distributions, covering about 20% to over 50% of

the months, if we compare the medians and 80% quantiles in Table 4.5 with the

xmin’s in Table 4.6. Nevertheless, we still want to see whether log-normal distri-

butions can cover even larger portion. Fitting log-normal distributions to monthly

change size in the four projects confirmed our conjecture (Table 4.8). Although the

variances of log-normal distributions are generally smaller than power law distri-

butions, they are still very large. Even if monthly change size follows log-normal

distributions, estimations of monthly change size are still inaccurate.
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Table 4.8: Parameters and p-values of fitting log-normal distributions to monthly
change size distributions

Project xmin mean log std log p

jEdit 1535 7.84 0.65 0.88
Eclipse JDT 6293 8.78 0.776 0.84

Apache Maven 5 6.66 1.71 0.27
Google Guice 125 6.18 1.18 0.52

4.4 Summary

This chapter first examined the tail distributions of commit size and monthly

change size, and found power law to be a plausible distribution in most cases. Com-

bined with findings in earlier studies (Gorshenev and Pis’mak, 2004; Wu et al.,

2007; Hattori and Lanza, 2008; Arafat and Riehle, 2009), we can see that the

distribution of change size follows power law regardless of the granularity of the

changes, be it at AST-node level, line level or file level. This scale-free quality is

an important feature of power law distributions. We can also see from Table 4.2

and 4.6 that the exponent α of power law is often less than 3, or even less than 2.

According to Section 2.1, this implies that change size cannot be estimated with

confidence.

However, we also found that log-normal distributions could be an expla-

nation to the tails of change size distributions too, and they are able to explain a

larger portion of change sizes than power law distributions. From a statistical point

of view, there is no evidence to show whether power law or log-normal distribution

is the true distribution of change size. This was also observed by Clauset et al.
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(2009), who suggested that it is important to look at their generative mechanisms

to make a sensible judgment.

Clearly, there is no incentive for developers to shape the change size distri-

butions into either power law or log-normal forms, both of which have heavy tails.

On the contrary, if developers ever had a chance to choose the change size, they

would definitely prefer all changes to be small. In fact, software engineering books

often characterize a good design as having the property, “with this design, future

changes to do X will be small.” What are the underlying forces that are so strong

that no developers, collectively or individually, can resist? Let us demystify them

in the next chapter.
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Chapter 5

Generative Models for Power Law and

Complex Networks

The prevalence of power law distributions and complex networks has in-

trigued scientists across several fields, inspiring them to study the underlying

causes. This chapter provides an overview of some of these explanations.

5.1 Generative Models for Power Law

Power law distributions have been found in many areas, such as the mag-

nitude of earthquakes, the size of human settlements, the intensity of wars, etc.

(Newman, 2005). The causes of power law distributions have been studied exten-

sively in non-software domains. Mitzenmacher (2004a) first reviewed the genera-

tive mechanisms for power law distributions and for the closely related log-normal

distributions. He suggested that power law distributions can be produced by both
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preferential attachment and optimization, while log-normal distributions can be

generated by multiplicative processes. In a multiplicative process, the initial value

of a property is X0. In each step, the value grows and shrinks by a percentage of

the value in the previous step:

Xj = FjXj−1

where Fj is a random variable. The logarithm of Xj can be expressed in terms of

X0:

lnXj = lnX0 +

j∑
k=1

lnFk

As long as the random variable lnFk meets appropriate conditions, its sum

will converge to a normal distribution according to the Central Limit Theorem

(Casella and Berger, 2002), making lnXj follow a normal distribution too. Conse-

quently, Xj will follow a log-normal distribution after a large number of steps in

a multiplicative process. However, Mitzenmacher (2004a) shows that if the values

cannot go arbitrarily close to zero, and instead there is a lower-bound, a multi-

plicative process would produce a power law distribution instead of a log-normal

one. Furthermore, if the number of steps in a multiplicative process is a random

variable, following a geometric or exponential distribution, then the result is a dis-

tribution with log-normal body and power law tails, which is called a double Pareto

distribution.

Mitzenmacher (2004a) also showed that an imaginary monkey typing ran-

domly could also produce power law and log-normal word frequency distributions,
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with minor modifications in the model. Mitzenmacher (2004b) proposed a Recur-

sive Forest File model to explain the double Pareto distribution of file size in com-

puter file systems.

Although some models can produce either a log-normal or a power law dis-

tribution with minor modifications, one should not have an impression that all gen-

erative mechanisms of power law distributions have this property. Newman (2005)

focused on power law distributions and reviewed six generative mechanisms, most

of which cannot produce log-normal distributions to the best of our knowledge:

1. Combination of exponentials,

2. Inverse of quantities,

3. Random walks,

4. Yule process, another name for preferential attachment,

5. Phase transition and critical phenomena, and,

6. Self-organized criticality (SOC).

Chapter 4 suggested that the commit size distribution could either be a

power law or log-normal distribution, so we examined all of the generative mecha-

nisms above, and found preferential attachment and SOC to be the most promising

explanations of the emergent phenomena in software evolution. In fact, some ex-

isting work shows that preferential attachment is suitable for modeling some prop-

erties in software systems (Concas et al., 2006), while the coexistence of power law

distribution and long-range correlation indicates the existence of SOC in software

evolution (Wu et al., 2007). The rest of this section provides a brief description of
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these two generative mechanisms.

5.1.1 Preferential Attachment

Preferential attachment has been used to explain power law distributions

in many different areas. The first person to provide this kind of explanation was

Yule (1925), who described the size distribution of biological taxa, making it also

known as the Yule process.

It was found that the number of species in biological taxa, such as a genus,

follows a power law distribution closely. To explain the distribution, Yule’s simple

model makes the following assumption: species can only be added to genera and

never become extinct. A Yule process starts with one genus. At each time-step,

a new species is created by splitting an existing species. Then the new species is

added to the same genus as the splitting species. Such speciation process occurs at

the same rate for every existing species. As a result, the more species a genus has,

the more speciation events would occur in it, and as a result, the more likely it is to

gain more species. The rate of species gain is proportional to the number of species

a genus has. The final rule in the Yule process involves new genus creation. Once

in every m steps, the newly split species is sufficiently different from the other

species in the genus that it becomes first species of a new genus.

When the number of genera is sufficiently large, Newman (2005) shows
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that the fraction of genera with k species is given by:

p(k) = (1 +
1

m
)B(k, 2 +

1

m
),

where B(a, b) is the beta function. It is also known that when a is large, the beta

function can be approximated by a−b, leading to a power law tail. Consequently,

the function p(k) has a power law tail too, thus demonstrating that preferential

attachment can lead to distributions with power law tails.

The primary limitation of the Yule process lies in its assumption that

species do not become extinct, when in fact they do. This is also the limitation

of most preferential attachment models proposed to date: they are unable to model

the “destructive” process by which entities (e.g., genera) reduce the value of the

property (e.g., number of species) in question. To address this shortcoming, Ya-

masaki et al. (2005) proposed a generalized preferential attachment model that

included a process of “preferential detachment”. However, the destructive process

itself exhibits complex patterns that requires more sophisticated models, like the

one in the next section.

5.1.2 Self-organized Criticality

Disasters are costly, whether they are naturally occurring, such as the

mass extinction of dinosaurs and large earthquakes, or occur in human society,

such as the Great Depression in the early 1930s. Although these disasters sound

very different, there is one shared pattern: they are all part of the same type of
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distribution—the power law distribution, which were found in the size of extinc-

tion events (Raup, 1986), earthquakes (Gutenberg and Richter, 1955), econom-

ical fluctuations (Mandelbrot, 1963), and so on. Bak (1996) argued that these

events are caused by self-organized criticality (SOC). During an SOC process, many

small changes create cumulative effects, leading the system into its critical point,

where avalanches occur. The evolution of such complex systems consists of equi-

libria, where small changes accumulate, and punctuations, where large changes,

or avalanches, disturb the system. The size of avalanches follows power law distri-

butions (Bak et al., 1988). There is no need to have different models for equilibria

and avalanches; they are both outcomes of self-organized criticality.

A classic illustration of SOC is a growing sandpile (Bak et al., 1988). Imag-

ine that sand trickles down at a constant rate onto a flat floor thus forming a pile.

Most of the time, individual grains do not move after they land, and new grains only

cause nearby gains to move slightly, if at all (equilibrium). As sand grains accu-

mulate, the pile becomes steeper and steeper, eventually leading to a critical point

where dropping more grains onto the pile could trigger a sand slide (avalanche),

in which many grains are displaced, some of them far away from the newly added

grains. If we do not start with a flat floor, but instead start with a sandpile steeper

than its slope threshold, then there would be a large sand slide at the beginning,

ending up with a sandpile on or right below the threshold. Therefore, no matter

where we start, flat floor or a sandpile with any slope, as grains fall onto it, the

sandpile seems to be “attracted” to its critical point, where the sandpile barely
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maintains its stability. Over the process, different sizes of sand slides occur, follow-

ing a power law distribution (Bak, 1996).

To better understand SOC, we have to introduce the concept of phase tran-

sition. Many systems have more than one states. In some circumstances, a system

can change from one state into another, for example, from the solid state to the

liquid state. In the vicinity of such transition points, or critical points, people often

observe power law distributions of some measures. The phenomena at the critical

point, including power law distributions, are collectively known as critical phenom-

ena.1 In fact, phase transition is one of the six generative mechanisms for power

law distribution reviewed by Newman (2005), noted earlier in this section.

The “percolation model” by Newman (2005) can help in understanding

phase transitions and critical phenomena. Imaging a large lattice in which squares

are colored independently with probability p. A cluster is defined as a contiguous

region of adjacent colored squares. When p is small, the average cluster size is

small. If we increase p a bit, the average cluster size increases too. If p is constant,

changing the size of the lattice would not affect the average cluster size. However,

when p is large enough, all almost colored squares will be connected together in one

large cluster, the spanning cluster. This state is called percolation. Now the aver-

age cluster size is limited by the lattice size: the larger the lattice is, the larger the

spanning cluster will become. Changing from a non-percolation state to percolation

is a phase transition for the lattice. At the critical point, where p = 0.5927462..., the
1Critical phenomena: https://en.wikipedia.org/wiki/Critical_phenomena
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cluster size follows a power law distribution.

However, to produce power law distributions with phase transitions, one

has to tune the parameters of the system precisely at the critical point, e.g., setting

p to the specific value in the percolation model, making it implausible to explain

the prevalence of power law distributions in the nature and human society, because

it is very unlikely for so many real world systems to coincidently have the exact pa-

rameter values for their critical points. Imagine if we arbitrarily pick a p for the

percolation model, how likely is it to get a number in the vicinity of 0.5927462?

Nevertheless, Bak et al. (1988) found it possible that some dynamic systems were

attracted to their critical points and stay at their critical points indefinitely, regard-

less what their initial state is. The ability of such systems to organize themselves

to their critical points is called self-organized criticality. A system at its critical

state exhibits punctuated equilibrium.

Let us continue with the percolation model. Imagine the lattice is a land-

scape, where a colored square indicates that the space is occupied by a tree. On

this landscape, trees grow instantaneously at a constant rate in random unoccu-

pied squares. Once in a while, lightning strikes a random square. If there is a tree

in that square, a wildfire starts, burning down the tree and the entire cluster it

belongs to (Figure 5.1). After a tree is burnt, the square becomes empty again.

If a process starts with an empty landscape, the forest is sparse, and trees

are mostly isolated at the beginning. Lightning, if it happens to hit on an occupied

square, can only burn down one or two trees. As the forest grows, larger clusters
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Figure 5.1: Wildfire started by lightning that burns an entire cluster (reprinted
from Newman, 2005).

of trees form. Eventually, when the density of the forest exceeds a percolation

threshold p, all trees in the forest are connected in the spanning cluster. At this

point, wildfire starting at any tree will burn down the whole forest, bringing the

forest below the percolation threshold. Then the forest grows towards percolation

again. In the long term, the density of the forest fluctuates around the percolation

threshold. In a large lattice, the fluctuations are small as compared to the size of

the system. So the system is approximately sitting at its critical point indefinitely,

where the size distribution of clusters follows a power law distribution. Computer

simulation reveals that the size of forest fires, as measured by the number of trees

burnt, follows a power law distribution. This is the forest fire model, as proposed

by Drossel and Schwabl (1992).

One of the earliest models of SOC was that of biological evolution and ex-

tinction by Bak and Sneppen (1993). By dividing geological history into stages with

the same length, it has been found that the fraction of species that became extinct

in one stage as compared to the previous stage follows a power law distribution
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(Raup, 1986). Bak and Sneppen (1993) proposed a simple model to explore a pos-

sible causal explanation for this behavior. In the model, species are arranged in a

circle, each with two neighbors and a random fitness number. At each time step,

the species with lowest fitness is eliminated, and replaced by another species with

a random fitness. When the simulation starts, the fitness values are uniformly dis-

tributed between 0 and 1, so the lowest fitness is often close to 0. As the least fit

species is removed and replaced by a new species with random fitness, the fitness

of the least fit species is likely to increase. Such increase is not monotonic, as one

can imagine the new species happens to have a even lower fitness than the one it

replaced. However, if we keep track of the highest fitness of the least fit species we

have seen so far, it would increase over time, as shown in Figure 5.2. Eventually,

the system reaches a point where the least fitness cannot grow any further. At this

point, the fitnesses of all species are on or above a certain self-organized threshold

fc. In the next step, the least fit species, which is right on fc, is chosen to mutate,

together with its two neighbors, starting an “avalanche” of extinction events. The

avalanche stops when all the species are on or above the threshold again. Paczuski

et al. (1996) monitored the size (number of extinction events) of avalanches in a

computer simulation, and found that it follows a power law distribution, similar to

that in biological evolution.

While the power law distributions is the most notable feature of an SOC

process, there is another important feature, long-range correlation, that is less

discussed in the literature. In an SOC process, the size of avalanches naturally
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Figure 5.2: The lowest fitness value over time (reprinted from Paczuski et al.,
1996). The x-axis is the time, and the dots are the fitness of the least fit species at
the time. The step function represents the highest fitness number of the least fit
species ever appear before the time.

forms a time series. A widely used analysis for time series is to measure their long-

range dependency, which is the tendency for a time series to regress to the mean,

or cluster in one direction. The Hurst exponent, H, ranging from 0 to 1, is used to

measure such tendency. It was proposed by Hurst (1951) to study the fluctuation

of water level in the Nile River. The value of H is interpreted as follows:

• H > 0.5: long-term correlated. Large values in the time series are likely to

followed by large values, and vice versa. In the case of the Nile River, Hurst

found that H = 0.91: heavy floods were likely to be followed by heavy floods.

• H < 0.5: long-term anti-correlated. The time series quickly alternates be-

tween values above and below the mean.

• H = 0.5: uncorrelated. Future data points are not affected by the past in the

time series.
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Table 5.1: Hurst exponent of change size in different projects

Commit size Monthly change size

jEdit 0.596 0.334
Eclipse JDT Core 0.608 0.647

Apache Maven 0.591 0.702
Google Guice 0.592 0.363

There are several methods to calculate the Hurst exponent for a time se-

ries (Taqqu et al., 1995). Rescaled range analysis is a popular method, which starts

by calculating the expectation of rescaled range: E[R(n)/S(n)], where R(n) is the

range of the first n values, and S(n) is the standard deviation. Such expectation

can be seen as a function of n. By fitting it with a power law function, we get:

E[
R(n)

S(n)
] = CnH

where C is a constant, and the exponent H is the estimation of the Hurst exponent.

The avalanches in an SOC process are long-term correlated. Wu et al.

(2007) found that the logical and structural change sizes of nine C/C++ software

systems were also long-term correlated time series. To verify their finding in

change size, we perform a follow-up empirical study based on the same data as

in Chapter 3. Table 5.1 shows that commit sizes are long-term correlated in all

projects, while the values of H change from project to project for monthly change

sizes.

The long-range correlation in commit size indicates the possible existence

of an SOC process in software evolution. However, grouping changes by months

smooths the time series and diminishes the trend.
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5.2 Generative Models for Complex Networks

Some complex networks have power law degree distributions, so the gen-

erative models for power laws can be used to produce such complex networks too.

Preferential attachment is often used to produce scale-free networks. However,

preferential attachment favors of older nodes in the network, because older nodes

have more time to accumulate connections in the past, and thus are more likely

to receive more connections in the future. This is not always true in real world

networks. As noted by Bianconi and Barabási (2001), some research papers in a

citation network can get many citations in a short time, and some young people

in social networks are better at making new friends. As a result, Bianconi and

Barabási assigned a fitness to each node to indicate their different ability to com-

pete for new links. The probability to acquire new links is then proportional to

both the number of existing connections and the fitness of the nodes. Vázquez

et al. (2002) further studied this model and found it produced a degree-dependent

clustering coefficient.

Realizing that random graphs have a short characteristic path length, but

their clustering coefficient is much smaller than many complex networks, Watts

et al. (1998) proposed a rewiring lattice model that could produce both short charac-

teristic path length and high clustering coefficient networks, which they call small

worlds. Instead of a random graph, they start with a lattice, which can be seen as

the opposite of a random graph. In a d dimensional lattice, each vertex, except the
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border ones, is connected with 2d vertices. If one takes such a lattice and connects

each vertex with z nearest vertices with z � 2d, then most immediate neighbors

of a vertex are also neighbors of each other, ending up with a highly clustered net-

work. However, the characteristic path length of the lattice is very high if d is

small. Watts et al. suggests that if one goes through all the links in the lattice, and

rewires, say 1/4 of them to random vertices, then the resulting lattice is a small

world.

A model that has strong potential in producing the small-world property

in the class graph is the random bipartite graph model proposed by Newman et al.

(2002). A bipartite graph has two types of vertices. Edges can only connect two

different types of vertices. One example of a bipartite graph is a company director

affiliation network, in which the vertices are boards and directors. When a director

sits on a board, an edge is established between the two vertices. A bipartite graph

can be projected to a simple graph by keeping only one type of vertices and connect-

ing two vertices only if they connect to the same vertex in the bipartite graph. For

example, two directors in the unipartite projection are connected if they sit on the

same board. Newman et al. shows that bipartite networks with correct degree dis-

tributions but random edges have very similar clustering coefficient as compared

to affiliation networks in the real world.

A software system can be modeled as a bipartite network with classes

being one type of vertices, and methods being the other. The result in Newman

et al. (2002) implies that, as long as our simulation model has a correct degree
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distribution in the class-method bipartite graph, the class projection will have high

degree of clustering, like actual class graphs.

Observing that many complex networks have scale-free topology and a

high degree of clustering with degree dependent clustering coefficients, Ravasz and

Barabási (2003) proposed a hierarchical network model that is able to produce

these properties at the same time.
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Chapter 6

Simulating SOC and Preferential

Attachment in Software Evolution

From the previous chapter, we can see that preferential attachment is

good at explaining the constructive process by which complex systems grow, while

SOC provides a plausible explanation for the destructive process by which existing

components of complex systems are removed or replaced. The evolution of soft-

ware systems involves both constructive and destructive processes, both of which

account for significant portion of the changes. In this chapter, we construct a soft-

ware evolution model that uses preferential attachment to simulate the construc-

tive process and SOC to simulate the destructive process. Although preferential at-

tachment and SOC have been used separately to simulate software evolution (e.g.,

Gorshenev and Pis’mak, 2004; Turnu et al., 2011), having preferential attachment

and SOC in one model was never attempted before, to the best of our knowledge.
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The novelty poses a research question: can such a model reproduce the punctu-

ated equilibrium in change size observed during software evolution, resulting in a

software system exhibiting complex network properties?

The model will be verified by computer simulations. Each simulation run

starts with a simple piece of Java source code with one class and one method,

which is parsed into an AST. Then a series of simulated changes are made to the

AST. The changes include adding classes, adding methods, calling methods from

other methods, deleting methods, and adding statements to methods. At the end

of the simulation, the resulting ASTs are printed to source code files, thus creating

a synthetic software system with random behavior. Hence the intent here is not to

synthesize a piece of software that meets some requirement document—instead the

goal is to model the low-level processes of software evolution so as to understand

where power law distributions and complex networks come from.

This chapter first introduces how the simulation model realizes preferen-

tial attachment and SOC when making these code changes. Then the model is

presented, followed by the setup of our experiment.

6.1 Preferential Attachment

Preferential attachment is used to simulate the growth of software, in-

cluding adding dependencies among its components. Although there are several

types of component dependencies in software, only method calls and class coupling
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are simulated in this model. Based on preferential attachment, the following rules

are used during the simulation:

• The likelihood that a method is called is proportional to the number of

times it is being called. The assumption is: if a method is used in many

places, it indicates the method is more “useful”. In addition, it is more

likely to be encountered and known by developers. When developers

need a specific functionality, that method is more likely to be used.

• The likelihood of a method or a class to grow is proportional to its size.

The assumption is: developers tend to place related code together. When

a method or a class is large, it is more likely that some of its code is

related to a new piece code in a developer’s mind, and thus the new code

is more likely to be added to the method or class.

• The likelihood of a class to be inherited from is proportional to the num-

ber of its subclasses, with a similar rationale to method calls.

It has been demonstrated that these simple rules, if running alone, are

able to produce power law distributions in class size, number of method calls, and

subclasses (Turnu et al., 2011). However, preferential attachment does not model

the deletion of entities (in this case, AST nodes) very well, and it does not have a

sense of commits or time to measure change size either. To reproduce punctuated

equilibrium in software evolution, we need to add additional rules.
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6.2 Self-organized Criticality

An SOC process is characterized by its avalanches, such as the sand slides

in the sandpile model (Section 5.1.2). Avalanches are analogous to source code

changes of different sizes during software evolution, as shown in Chapter 4. To

measure change size, we need to group changes in some way, such as by calendar

month, or commit, as in Chapter 4. During the simulations, we group changes by

artificial commits.

In order to create commits, we borrow a concept from Bak and Sneppen’s

model for biological evolution: fitness. For a given method in a software class,

fitness is a metric of how well it endures throughout a software evolution, with

values ranging from near 0 (poor fitness, thus requiring frequent modifications to

address issues, and hence very susceptible to change) to 1 (very stable). Initial

fitness values are randomly assigned to methods in simulation runs. In each step,

the method with the lowest fitness is selected for either a update operation, or

for deletion. When a method is changed, it gets a new random fitness value. In

addition, when a method interface is changed or deleted, all its callers have to

change as well, and thus are assigned new fitness values.

During a simulation run, a threshold, f0, is established, and every commit

will have no methods with fitness below threshold. Then a commit in our simulated

software evolution will include syntactic code changes between a step Si in our

simulation model when all fitness values are above f0, and the closest subsequent
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step Sj when the minimal fitness value of all methods, fmin(Sj) is back above f0

again. Steps between Si and Sj constitute an avalanche, with its size being the

number of changes made in between.

During an SOC process, the fmin will never exceed the self-organized

threshold fc. As a result, setting f0 above fc would lead to no commit after the

initial fluctuations. When f0 is set just below fc, the avalanche (commit) sizes fol-

low a power law distribution (Bak and Sneppen, 1993). fc can be identified in the

simulation result if SOC is produced.

6.3 Simulation Model

The rules for preferential attachment and SOC are implemented as four

interweaving processes in the simulation model, corresponding to creating, calling,

updating and deleting methods, denoted as Pc, Pr, Pu and Pd, respectively. Each

process is associated with a probability pi, with
∑4

i=1 pi = 1. For each step in the

simulation, one of the four processes is chosen to run according to their probabili-

ties.

Pc works as follows:

1. Create an empty method M , and assign it with a random fitness value

between 0 and 1;

2. Add M to a class:

• With probability q1, add M to a new class, which is created as fol-
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lows:

(a) Create a empty class C;

(b) With probability q2, make C a subclass of an existing class

in the system, chosen with a probability proportional to the

number of its current subclasses;

• With probability 1 − q1, add M to an existing class in the system,

chosen with a probability proportional to the number of its current

methods;

Pr performs the following operations:

1. Choose a method S as the caller with a probability proportional to the

size of its body, measured by the number of statements;

2. Choose a method T as the callee with a probability proportional to the

number of its current callers;

3. Call T from S, and assign S with a new random fitness number.

Pu inserts a statement into the method with the least fitness value and

assigns a new random fitness value to the method. To delete a method with Pd, the

following operations are performed:

1. Find the method M with the lowest fitness value;

2. Remove all references to M :

• If the caller Mc becomes an empty method after removing refer-

ences to M , add Mc to V ;
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• Otherwise update Mc with a new fitness value;

3. Remove M from its class C;

4. If C is now empty, delete C and update all its subclasses to inherit

directly from Object;

5. Repeat operations 2-4 for all methods in V .

Note that Pu and Pd can lead to ripple effects, causing many methods to

be changed or deleted.

6.4 Experiment Setup

In theory, an SOC model does not need fine-tuning the parameters, as the

system should be able to organize itself to the critical point. However, in our sim-

ulations, we need some control over the parameters, because of two reasons. First,

not needing fine-tuning does not mean that we can set the parameters arbitrar-

ily. Take the forest fire model in Section 5.1.2 for instance, if the wildfires were

so frequent that it stops any big cluster from being formed, the lattice would not

percolate at all, and not SOC would be happening. In our model, if Pd is too fre-

quent, the software system would not grow at all, and it would be hard to observe

any power law distributions. This is not the case in the real world either, which is

the second reason. Ideally, we would set the parameter values based on empirical

data, which can be an extension to this work. For now, p1−4 were heuristically set

to 0.1, 0.4, 0.45, and 0.05 respectively, while q1 and q2 were set to 0.1 and 0.8 re-
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Listing 6.1: Initial Java source code
public class App
{

public static void run()
{

System.out.println( "Hello World!" );
}

}

spectively. The simulations start with the source code in Listing 6.1. During each

simulation run, 200,000 steps are executed, each executing either Pc, Pr, Pu or Pd.

Twenty simulation runs were performed, with results reported in the next section.

For each simulation run, we recorded the change size for each step, as well as the

resulting source code at the end of the simulation.

For reproducibility, the source code of the simulation is made available on

Github.1

6.5 Simulation Results

This section presents the power law distributions and complex networks

that resulted from the simulations. The 20 simulation runs produced slightly dif-

ferent outcomes. In this section, we try to cover as much variety as possible. For

scalar measures, the values from all the simulation runs are presented; for distri-

butions, the distribution from a typical simulation run is presented. If there is any

simulation run that diverges from the typical one, the most extreme one is also

presented.
1https://github.com/linzhp/Codevo3/tree/v1.x
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Figure 6.1: Minimal fitness value at different steps. The x-axis represents different
steps, y-axis is the minimal fitness value of all methods at the end of each step.

6.5.1 Commit Size

The simulated software evolution exhibited SOC behavior. The scatter

plot of fmin(S) at different steps during a typical simulation (Run #1) is shown in

Figure 6.1. At the beginning of the simulation, fmin could be any value between 0

and 1. This is because when there is only one method when a simulation run starts,

and fmin is the fitness of the method. Over simulated time, the range of fmin values

reduces as the system grows. The trend is different from that in Figure 5.2 because

Bak and Sneppen’s model has a fixed number of species throughout the simulation,

but the number of methods in our systems grows over time. Nevertheless, the

system became stationary after around 40,000 steps in our simulations, and fmin

never went beyond a self-organized threshold around 0.5.

With f0 set to 0.49, we obtained 2489 commits of different sizes. It can be
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Figure 6.2: The CCDFs of commit size distributions during the simulations

Table 6.1: Fitting power law to commit size distributions in Run #1 and #3

Run # xmin α
pl vs. log-normal pl vs. exponential pl vs. Poisson

R p R p R p

1 2 1.53 -1.64 0.1 2.45 0.0145 2.03 0.0428
3 2 1.51 -2.23 0.0255 3.54 0.000551 3.02 0.00255

seen from Figure 6.2a that the CCDF of commit size distribution follows a straight

line, indicating a possible power law distribution.

Following the procedure from Chapter 4, we tested the goodness-of-fit of

power law to the commit size distributions. Table 6.1 and 6.2 shows that it is risky

to rule out a power law distribution, which fits the commit size distribution better

than exponential and Poisson distributions. Like in the empirical study, log-normal

distributions fits the data slight better, with non-significant difference.

Most simulation runs had very similar commit size distributions, except

some rare cases such as Run #3, where the power law hypothesis was rejected (Ta-
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Table 6.2: p, H values and graph measures of different simulation runs. The p-
values are from the goodness-of-fit tests of power law to commit size distributions
(p1), method fan-in distributions (p2), class size distributions (p3), and class collab-
orators distributions (p4). p values less than 0.05 are shown in bold. The H values
are the Hurst exponents of the commit sizes. The graph measures are: characteris-
tic path length (d) of the largest connected component, clustering coefficient of the
entire graph (C) and the random graph of the same size (Crandom)

Run # p1 p2 p3 p4 H d C Crandom

1 0.21 0.81 0.90 0.13 0.584 2.93 0.131 0.0112
2 0.70 <0.01 0.23 0.86 0.635 2.92 0.135 0.0117
3 <0.01 <0.01 0.64 0.66 0.591 2.89 0.139 0.0119
4 0.46 0.06 0.14 <0.01 0.633 2.96 0.154 0.0108
5 0.25 0.18 0.55 0.56 0.539 2.97 0.147 0.0114
6 <0.01 0.79 0.83 <0.01 0.665 2.90 0.121 0.0108
7 0.08 0.10 0.61 0.29 0.636 2.87 0.116 0.0109
8 0.30 0.50 0.80 0.78 0.569 2.87 0.114 0.0111
9 0.55 0.16 0.04 0.05 0.580 2.92 0.144 0.0120

10 0.30 0.61 0.96 <0.01 0.638 2.91 0.124 0.0110
11 0.03 0.77 0.03 0.39 0.620 2.95 0.138 0.0114
12 0.05 0.33 0.77 0.61 0.544 2.89 0.126 0.0121
13 0.30 0.18 0.55 0.24 0.588 2.91 0.133 0.0106
14 0.17 0.90 0.89 0.37 0.555 2.89 0.112 0.0113
15 0.25 0.01 0.07 0.08 0.601 2.89 0.144 0.0123
16 0.55 0.63 0.84 0.44 0.594 2.92 0.140 0.0123
17 0.02 0.03 0.73 0.43 0.632 2.93 0.152 0.0124
18 0.1 0.81 0.72 0.58 0.590 2.88 0.130 0.0115
19 0.21 <0.01 0.24 0.46 0.606 2.93 0.135 0.0119
20 0.41 0.43 0.02 0.36 0.694 2.85 0.120 0.0111

ble 6.2). As we can see in Figure 6.2, the tail of CCDF is more noisy in the commit

size distribution of Run #3, and a log-normal distribution fits it better (Table 6.1).

In addition, the time series of commit sizes in all simulations are long-

term correlated, as indicated by the H values in Table 6.2. The power law distribu-

tion and long-term correlation in commit sizes suggest that our simulation model

is self-organized critical.
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6.5.2 Distributions of Static Code Measures

As the simulation produced Java source code with valid syntax, static

analyses can be performed. Consider simulation Run #1. Its final source code

contains 1,518 classes, 9,466 methods and 54,119 lines of code. From the source

code, a method call graph and a class graph were built. The method call graph

is a directed graph, where each method is a vertex, and a method call forms a di-

rected edge from the caller to the callee. The in-degree of a vertex is the fan-in of

a method. The class graph is an undirected graph, in which each vertex is a class,

and two vertices have a edge when the two classes collaborate by inheritance or

method calls.

It can be seen from Figure 6.3 and 6.4a that the distributions of method

fan-in, class size measured by SLOC, and class collaborators all have tails closely

following power law, consistent with the empirical studies by Louridas et al. (2008),

Herraiz et al. (2011) and Turnu et al. (2011). The results of the hypothesis tests

are shown in Table 6.2, 6.3, 6.4 and 6.5. In most simulation runs, power law has a

good fit for these distributions. And again, there are small number of cases when

the power law hypothesis is rejected and log-normal distributions have a definite

advantage.

6.5.3 Other Graph Measures

The class graph of simulation Run #1 has 1,518 vertices and 11,940 edges,

with a clustering coefficient of 0.131. The clustering coefficient is comparable to
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Figure 6.4: Properties of class graph in simulation Run #1

Table 6.3: Fitting power law to in-degree distributions of method call graphs in
Run #1 and #3

Run # xmin α
pl vs. log-normal pl vs. exponential pl vs. Poisson

R p R p R p

1 13 5.07 -0.208 0.835 0.764 0.445 1.83 0.0667
3 7 3.69 -2.57 0.0102 -0.763 0.445 4.26 �0.0001
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Table 6.4: Fitting power law to class size distributions in Run #1 and #20

Run # xmin α
pl vs. log-normal pl vs. exponential pl vs. Poisson

R p R p R p

1 69 2.59 -0.464 0.643 0.99 0.0201 3.04 0.00234
20 35 2.24 -1.3 0.193 2.66 0.00772 3.09 0.00202

Table 6.5: Fitting power law to degree distributions of class graphs in Run #1 and
#10

Run # xmin α
pl vs. log-normal pl vs. exponential pl vs. Poisson

R p R p R p

1 37 2.8 -1.02 0.309 1.54 0.124 4.06 �0.0001
10 15 2.26 -2.81 0.00489 1.85 0.0646 5.33 �0.0001

that in the real projects studied by Valverde and Solé (2003), which is between

0.069 ad 0.336. A random graph with the same size would have a clustering co-

efficient of 0.0112, according to Equation 2.1, which is much less. Figure 6.4b

shows that the clustering coefficient is degree dependent, resembling the findings

of Myers (2003), shown in Figure 2.1. In the class graph, the largest connected

component, in which every vertex is directly or indirectly connected to every other

vertex, has 1,459 vertices, and its characteristic path length is 2.93, which is very

short. As shown in Table 6.2, other simulation runs have similar values for these

measures.

6.6 Summary and Discussion

From the simulation results, it can be seen that the code change mech-

anisms in Section 6.3, in spite of their simplicity as compared to the real world
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software development, are capable of producing the power law distributions and

properties of complex networks observed in software systems. As a simulation

model that uses random generators, it is possible that some simulation runs go

astray. However, the majority of simulation runs gives an affirmative answer to

our research questions at the beginning of this chapter.

The change size distribution in Section 6.5.1 exhibits a punctuated equi-

librium behavior: a large number of small changes mixed with a small number of

large ones. Most changes are localized, and the rest of the system remains stable.

New methods often have lower fitness, thus evolve faster and are also more likely

to be deleted. However, they tend to be relatively isolated from the other parts

of the system, so their changes are more localized. As the system evolves, more

method calls are added. Occasionally, when a highly depended-upon method is

changed, all its callers are changed too, with new fitness values assigned to them,

triggering a ripple effect. Some stable methods are assigned low fitness values and

become actively evolving. It takes many steps before all low fit methods evolve to a

better fitness or are deleted, and the system is back to equilibrium again. The fact

that the commit size distribution can be produced by SOC is an evidence that the

distribution is a power law rather than a log-normal one.

The use of preferential attachment in growing the software system dur-

ing the simulations is generally successful, as it both helps to organize the system

into its critical point to allow punctuations, and also produce a component network

similar to real software systems. Despite the fact that the model was not explic-
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itly configured to produce small world and degree-dependent clustering coefficient,

they emerged from the evolution of the class-method bipartite graph.

Although the simulations successfully produced SOC process, the change

size distributions it produced is not a perfect match to the empirical data. The

commit size distributions in the simulated evolutions followed power law through-

out the full range (Figure 6.2), while in reality only the tails follow the power law

(Figure 4.1), starting at xmin, which is greater than 100 in all four projects stud-

ied. Towards the left of xmin, commit size follows different distributions, possibly

log-normal distributions, like Herraiz et al. (2011) found in file size distributions.

It is interesting to know the possible underlying forces of the lower-end deviation.

What is more, this model simulates the collective behavior of all devel-

opers when making the code changes. As we are interested in see how low-level

changes accumulate to high-level patterns, it is more satisfying to simulate the

individual developers directly. Let us bring developers into the simulation model.
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Chapter 7

Agent-based Model for Software

Evolution

To address the issues in the previous model, this chapter introduces an

agent-based model1 that simulates the interaction between a manager and several

developers. Instead of using fitness to define commits, this model uses tasks to

group changes into commits. We also give developers some time to understand a

piece of software before changing it. The key research questions are:

RQ1. How can preferential attachment be produced in software develop-

ment? Can power law distributions of method calls and class collaborators

emerge without knowing the total number of references to methods and

classes?

RQ2. What causes the lower end of commit size distribution deviates from
1More about agent-based models can be found on Wikipedia: https://en.wikipedia.org/

wiki/Agent-based_model
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power law?

This chapter first describes the model, and then the simulation results are

presented.

7.1 Simulation Model

In the model, there is a manager and several developers, which are all

autonomous agents. The manager and developers work following different rules,

and communicate through a shared codebase and a task list. Each task in the list

specifies a new feature to implement in the codebase. The duration of agent actions

is based on a shared internal clock, which has its own time unit independent of

wall-clock time.

The manager has two jobs:

• If the task list has less than 10 tasks, she adds a task to the task list

every 20 time units;

• Otherwise, she recruits and trains a new developer, which takes 20 time

units. After that, the developer starts working on the tasks immediately.

Developers repeatedly take a task from the list and implement the feature

specified in the task. Each developer has a memory that keeps track of all methods

he has worked on so far. The memory is a list of methods, where duplication is

allowed. Every time a developer changes a method, it is added to the front of the

list. Therefore, there are multiple occurrences of the same method in a developer’s
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memory if he has changed the method multiple times.

Before a developer works on a method, he needs some time to understand

the method. The more recent the method is in his memory, the less time is needed

to understand it. According to Ebbinghaus (1885), memory retention R after a

period of time t is:

R = e−t/S

where S is the relative strength of the memory. The time needed to understand a

method is also proportional to its size m, measured by the number of statements

it has. As a result, if the most recent occurrence of a method in the memory is at

index2 i, the understanding time of the method is:

T = (1− e−i/S)m+ 1

In our simulations, S is heuristically set to 40. If the developer did not

work on the method before, the understanding time is m+ 1.

To develop a feature, the developer has to decide the task size, i.e., the

number of steps needed to complete the task, which is assumed to follow a log-

normal distribution in this model. In each step, the developer does the follow-

ing:

1. Randomly choose a method from the callees of the method changed in

the previous step. If this is the first step of a task or the method in

the previous step does not call any other method, randomly choose a
2the index in the memory is zero-based
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method from the codebase with a probability proportional to its size.

2. Change the method via one of these options:

• Add a statement to the method, or,

• Call another method from the method.

To make a method call, the developer has two options:

• Call an existing method. If the developer “remembers” any methods

(i.e., his memory is not empty), a method is randomly chosen from his

memory; otherwise, it is randomly chosen from the codebase with a

probability proportional to its size.

• Create a new method and call it. The new method will be added to

either:

– An existing class, chosen with a probability proportional to the class

size, or,

– A new class. The new class may inherit directly from Object or

it may inherit from a class randomly chosen from the developer’s

memory.

Since developers “walk” from method to method through method calls, the

more times a method is called, the more likely it is to be changed by developers,

which is consistent with empirical findings by Vasa et al. (2007). What is more,

frequently called methods are likely to have more occurrences in developers’ mem-

ories. When a developer needs to call a method, a recurrent method in his memory
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is more likely to be chosen. Preferential attachment of method calls is thus implic-

itly simulated.

When there are no more tasks from the manager, developers refactor the

codebase by doing one of the following:

• Rename a method;

• Merge two methods, denoted as A and B below:

1. Add a parameter to method A

2. Delete method B

3. Modify the callers of B to call A instead;

• Move a method to the class where most of its callers are.

After finishing a new feature task or a refactoring, developers commit

changes to a virtual repository, and the number of changes committed is counted

as the commit size.

7.2 Experiment Setup

The simulation model is implemented with the SimPy library3 in Python.

The simulation program is available on Github.4 Each simulation starts with the

same source code as shown in Listing 6.1. We ran the simulation 20 times, each

with 100,000 time units. For each simulation run, the change size for each commit

is recorded, as well as the codebase in the end.
3https://simpy.readthedocs.org
4https://github.com/linzhp/Codevo3
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7.3 Simulation Results

This section presents the results in the similar fashion as Section 6.5. We

choose simulation Run #20 as a typical one to present. For each measure, the result

of an exceptional run is also presented.

7.3.1 Commit Size

Figure 7.1a shows the CCDF of the commit size distribution during a

typical simulation run (Run #20). It has a straight tail, suggesting a power law

distribution. Comparing to the commit size distribution produced in Chapter 6

(Figure 6.2), it also has a curved head, making it more similar to the commit size

distribution in real projects (Figure 4.1). The curved head in CCDF is caused by

the log-normal task size. Small commits only contain changes with no or little

ripple effects. So their size is shaped by the task size, which follows a log-normal

distribution. For large commits, ripple effects dominates in the changes, giving it

a power law shape.

Statistical tests failed to reject the power law as a possible distribution

in the tail (Table 7.1). Compared to other distributions, power law fits the tail

better than exponential and Poisson distributions (Table 7.2). While log-normal

fits slightly better, the difference is insignificant.

Run #18 produced commit size distributions with non-power law tails, as

indicated by p values less than 0.05 in goodness-of-fit tests (Table 7.1). We further
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Table 7.1: p, H values and graph measures of different simulation runs. The p-
values are from the goodness-of-fit tests of power law to commit size distributions
(p1), method fan-in distributions (p2), class size distributions (p3), and class collab-
orators distributions (p4). p values less than 0.05 are shown in bold. The graph
measures are: characteristic path length (d) of the largest connected component,
clustering coefficient of the entire graph (C) and the random graph of the same size
(Crandom)

Run # p1 p2 p3 p4 developers d C Crandom

1 0.86 0.74 0.73 0.01 55 2.27 0.112 0.0144
2 0.23 0.8 0.6 0.37 59 2.17 0.0917 0.0116
3 0.26 0.77 0.35 0.67 62 2.13 0.0617 0.0104
4 0.88 <0.01 0.71 0.37 62 2.15 0.0638 0.0101
5 0.4 0.74 0.97 0.74 61 2.14 0.0756 0.0115
6 0.33 0.01 0.03 0.54 67 2.16 0.0632 0.00942
7 0.3 <0.01 0.02 <0.01 64 2.18 0.0827 0.0117
8 0.77 0.27 0.2 0.67 61 2.22 0.0774 0.0110
9 0.73 0.49 0.88 0.92 59 2.09 0.0493 0.00882

10 0.97 0.46 0.07 0.46 62 2.22 0.0721 0.0117
11 0.13 0.13 0.67 0.48 56 2.20 0.0737 0.0109
12 0.69 <0.01 0.3 0.86 55 2.19 0.0882 0.0126
13 0.3 0.26 0.05 0.15 64 2.19 0.102 0.0125
14 0.76 0.01 0.58 0.11 53 2.16 0.0529 0.00956
15 0.62 0.11 0.47 0.17 61 2.23 0.0979 0.0129
16 0.7 0.07 0.14 0.05 52 2.15 0.0686 0.0103
17 0.59 <0.01 0.43 0.8 67 2.19 0.0875 0.0108
18 0.03 0.18 0.39 0.14 57 2.22 0.0997 0.0117
19 0.1 0.63 0.19 0.11 60 2.15 0.0769 0.0109
20 0.44 0.74 0.73 0.58 65 2.14 0.0748 0.0114

Table 7.2: Fitting power law to commit size distributions in Run #20 and #18

Run # xmin α
pl vs. log-normal pl vs. exponential pl vs. Poisson

R p R p R p

20 24 2.69 -0.425 0.669 3.91 �0.0001 3.96 0.000222
18 22 2.53 0.841 0.4 4.54 �0.0001 3.36 0.000774
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Figure 7.1: The CCDFs of commit size distributions during the simulations

examined Run #18, and found its commit size distribution had a high resemblance

to that of Run #20: with similar CCDF (Figure 7.1), xmin and α (Table 7.2). Even

though the statistical test rejected power law, it is still the best fit among all alter-

natives.

7.3.2 Developers

At the end of each simulation run, the number of developers does not vary

very much, as can be seen in Table 7.1. It ranges evenly from 52 to 67, with both

median and mean at around 61. As the system grows, the number of developers

needed to evolve the system increases as well (Figure 7.2), although the new fea-

tures are produced in a constant rate. This is because the larger methods become,

the more time it is needed to understand them before making changes. Larger

system also allow ripple effects to propagate further, incurring more changes.

76



0

20

40

60

0 25000 50000 75000 100000
time

de
ve
lo
pe
rs

Figure 7.2: The number of developers over time in Run #20

7.3.3 Distributions of Static Code Measures

Again, power law behavior is found in method fan-in, class size and class

collaborator distributions (Figure 7.3 and 7.4a). The p-values are not significant

enough to reject the possibility of power law in most simulation runs (Table 7.1).

In a typical simulation such as Run #20, no any other distributions are able to

fit the data better than power law distribution (Table 7.3, 7.4 and 7.5). In some

simulations, such as Run #7, power law distributions are rejected as the possible

distributions of the data, they are still very good approximation, as shown in Fig-

ure 7.5.

77



1e-04

1e-02

1e+00

1 20 400
Number of method calls

C
C

D
F

0.001

0.010

0.100

1.000

4 400 40000
Class size (SLOC)

C
C

D
F

Figure 7.3: The CCDFs of method fan-in and class size distributions after simula-
tions Run #20
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Figure 7.4: Properties of class graph in simulation Run #20

Table 7.3: Fitting power law to in-degree distributions of method call graphs in
Run #20 and #7

Run # xmin α
pl vs. log-normal pl vs. exponential pl vs. Poisson

R p R p R p

20 6 2.48 -0.495 0.621 7.11 �0.0001 6.48 �0.0001
7 2 2.61 -4.09 �0.0001 14.7 �0.0001 10.6 �0.0001
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Table 7.4: Fitting power law to class size distributions in Run #20 and #7

Run # xmin α
pl vs. log-normal pl vs. exponential pl vs. Poisson

R p R p R p

20 7 1.83 -0.549 0.583 1.52 0.129 1.4 0.161
7 4 1.75 -1.64 0.102 1.55 0.121 1.37 0.169

Table 7.5: Fitting power law to degree distributions of class graphs in Run #20 and
#7

Run # xmin α
pl vs. log-normal pl vs. exponential pl vs. Poisson

R p R p R p

20 7 2.48 -0.495 0.621 7.11 �0.0001 6.48 �0.0001
7 3 1.99 -2 0.0454 4.26 �0.0001 3.27 0.00107
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Figure 7.5: The CCDFs of method fan-in, class size and collaborators distributions
after simulations Run #7
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7.3.4 Other Graph Measures

The simulation Run #20 produced 888 classes, in which 10 classes do not

collaborate with any other classes. The other 878 classes form one connected com-

ponent, which has 4,395 edges. In all class graphs produced by the 20 simulation

runs, the characteristic path length is around 2.2 (Table 7.1). The clustering co-

efficient is close to real projects studied by Valverde and Solé (2003), and is much

greater than random graphs. The average clustering coefficient is still negatively

correlated to degree (Figure 7.4b). Compared with 6.4b, the negative correlation

between clustering coefficient and degree in this simulation model is stronger, es-

pecially in low degree vertices. In addition, C(k) in the simulation result of this

model and that in the previous chapter seem to follow different functions. How-

ever, there is a lack of empirical study to show what C(k) is in real projects.

7.4 Summary and Discussion

This chapter introduced an agent-based model to simulate the interaction

between a manager and several developers during software evolution. During the

simulation, a commit of changes is made when a task is completed. While work-

ing on a task, developers navigate from method to method along the direction of

method calls, and remember what methods they have changed. Method calls are

made based on individual developers’ memory, instead of being preferentially at-

tached to popular methods. As we can see in the simulation results, the power law
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distributions of method calls and class collaborators emerge from low-level changes

without knowing all their callers or collaborators in the system, giving a positive

answer to RQ1.

To address RQ2, we proposed that it might be caused by the task size with

a log-normal distribution. In software development, there may be many atomic

changes with only one AST node modified, or “one-line changes.” However, it is

inefficient to make a commit for each of such changes. Instead, developer may

commit them with other changes together. As a result, the commits with only

one source code change are not the most frequent ones, contrary to what power

law distributions predict. Instead, commits with small number of changes are the

most frequent ones, similar to log-normal behavior. We use log-normal task size

to model the tendency to group several “one-line changes” in one commit. When a

commit consists of changes with little or no ripple effects, the commit size is largely

determined by the size of the task that the commit is trying to fulfill. When rip-

ple effects happen, as the method calls graph is scale-free, the number of affected

methods follows a power law distribution, shaping the size of the containing com-

mit. Such mechanism is similar to the forest fire model described in Section 5.1.2,

as the direct reason for power law fire size in the forest fire model is the power law

cluster size at the neighborhood of the critical point.
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Chapter 8

Related Models for Software

Evolution

On observing power law degree distributions and degree-dependent clus-

tering coefficient in class collaboration graphs and call graphs, Myers (2003) pro-

posed a model to simulate refactoring to produce such graphs. Using binary strings

to represent the subroutines and classes, the model simulates three process: break-

ing excessively long strings into smaller strings, avoiding duplicates by reusing

strings with the same content, and avoiding excessive indirection by removing

some intermediate strings. Myers found that the properties of software graphs

might emergent from refactoring processes like the ones in his model.

Valverde and Solé (2003) modeled class-method association in software

systems as a bipartite association graph, and showed that small-world behavior

can emerge in its one-mode projections (defined below) when the bipartite associ-
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ation is random. In the bipartite association graph B = (V,U,E), V = {vi} is the

set of classes, U = {mi} is the set of methods, and E = {(vi,mi)} is the set of de-

pendencies between classes and methods. It has an edge (vi,mi) ∈ E when class vi

contains methodmi or methodmi uses class vi. In a bipartite graph, an edge always

connects vertices of different kinds. The one-mode projection of a bipartite graph

has edges between the same kind of vertices. Each bipartite graph has two one-

mode projections: Bv = (V,Ev) (i.e., class projection) and Bu = (V,Eu) (i.e., method

projection). In class projection, (vi, vj) ∈ Ev if and only if ∃m such that (vi,m) ∈ E

and (vj ,m) ∈ E. That is, if two classes are associated with the same method, make

an edge between them. Since a method can only belong to one class, the class pro-

jection captures "uses" relationships among classes. Method projection is similarly

defined. That is, if two methods are associated with the same class, make an edge,

thus capturing the union of "uses" and "contains" relationships.

If bipartite associationB is random, then the average path length between

two classes in Bv is given by

D(Bv) ≈
lnN

lnµν

where N = |V |, µ and ν are average method degree and class degree respectively.

D(Bv) is normally very small. At the same time, the clustering coefficient is very

high, making the class graphs small-world networks.

Gorshenev and Pis’mak (2004) were the first to explain punctuated equi-

librium in software evolution with SOC. They adapted the biological evolution

model of Bak and Sneppen (1993) to have a random walk to increase or decrease
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the system size. There were a one-dimensional and a random neighbor versions of

their model. Numerical analyses showed that both versions were able to produce

avalanches with power law distributions in their size. They also proved analyti-

cally that the random neighbor version was self-organized critical. Another vari-

ant of the Bak and Sneppen model was devised by Cook et al. (2005), in which they

arranged software components in a ring and assigned a reproductivity to each com-

ponent to produce new components. Unfortunately, they were not able to produce

any power law behavior during their simulation.

Concas et al. (2006, 2007) and Turnu et al. (2011) proposed a modified

Yule process to simulate software evolution. They estimated the parameters of

the model from empirical data and were able to produce power law distributions

in names of instance variables and methods, number of calls to methods, number

of subclasses. Zheng et al. (2008) proposed a generalized preferential attachment

model, taking into account the aging of nodes and basing the attachment probabil-

ity on a nonlinear term of node degree. Their simulation showed a degree distribu-

tion closely resembled that of the dependency network of Gentoo packages.

Smith et al. (2006) proposed an agent-based model to simulate open source

evolution. The model was implemented in NetLogo, in which patches represents

software modules that could attract new developers and create new requirements

on neighboring patches, and agents are developers working on requirements and

existing modules. Their simulation produced similar patterns to the empirical

study in terms of complexity, amount of refactoring work and change distribu-
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tion. However, they were unable to produce the punctuated equilibrium of system

growth.

Stopford and Counsell (2008) developed a framework to simulate the struc-

tural evolution of software (i.e., the evolution at the function level). The model sep-

arated requirements from software evolution, and modeled each requirement with

a change operator, which “describes how the requirement will operate on the code

base.” By using the default implementation (including default evolution policy, re-

quirement policy and complexity injection policy), they simulated the evolution of

software structure, and plotted the changes in several software metrics over time.

Hatton (2009) provided a statistical mechanical model, and mathemati-

cally proved that power law distribution of component size is the most likely dis-

tribution, given that the system size and the total number of defects is constant,

and the number of defects is di ∼ ni log ni in a component i with size ni. Using

similar approach, but substituting the constraints on the number of defects with a

conservation of information, Hatton (2014) modeled software systems as discrete

systems and proved that the number of unique tokens in each component would

asymptote to power law distribution.
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Chapter 9

Future Work

9.1 Extension of the Models

The inclusion of developers in the model introduces new affordances for

simulating software evolution. The agent-based model in this research does not

consider developers leaving the project, while they do in reality. One could extend

the model to simulate such process and observe how that affects software evolution.

Real projects are often constrained by resources, and the development

team cannot grow freely as in the model. Setting a cap on the team size may

affect the simulation in different ways. The most direct impact is on the productiv-

ity. As the system grows, each task takes more time to finish due to the increase of

understanding time. If the development team does not grow, the task completion

rate will drop. If the manager does not adjust the task creation rate, the tasks will

pile up. What is more, if developers are all busy with new feature implementation,
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there is no time to perform refactoring. The software system will evolve differently

without refactoring.

9.2 Empirical Verification of the Generative Mechanisms

This research proposed models to explain phenomena of software evolu-

tion, so one natural extension is to verify whether the generative mechanisms in

the models actually exist in the real world.

For preferential attachment, one could examine the revision history, and

measure how the value of a property (e.g., the number of callers) at different times

in the history affects the later increase of the value. As noted in Section 5.2, pref-

erential attachment gives advantages to old entities to increase their values. For

example, an old method may have more time to obtain more callers, which in turn

makes it more likely to be called in the future. It is unclear whether such advan-

tages exist in software systems, calling for more empirical studies. If not, some

modifications to the preferential attachment in the model similar to Bianconi and

Barabási (2001) may be necessary.

The models also assume that large commits are not necessarily caused

by any significant external change, such as new feature requirement. We pro-

pose that the ripple effect of changes, most likely due to refactorings, can lead to

large commits. Hindle et al. (2008) did find that 20.7% of large commits are due

to non-functional source code changes, including refactoring. However, their em-
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pirical study included non-source code changes as well, and were based on textual

comparison, which found that a significant portion of large commits were due to

non-source code changes. It is necessary to examine the commits with large num-

ber of AST differences, and observe how much the ripple effect in code changes

contributes to large commits.

An assumption in the agent-based model in Chapter 7 is that developers

navigate from one method to anther following method calls when they are mak-

ing changes, so popular methods (those with more callers) are more likely to be

changed. The model also assumes that developers often call methods they have

changed before, and developers’ productivity of changing a method depends on the

recentness of the method in their memory and the size of the method. Empirical

studies are needed to verify whether, or to what degree, these assumptions are

valid in real projects.

There are many parameters in each models of this dissertation, such as

the rate of update, delete operations. They are configured heuristically in our ex-

periments. It is more desirable to configure them according to empirical studies,

and explore how their values vary in different projects, and how the variation af-

fects the outcome of the models.
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Chapter 10

Discussion and Conclusion

This thesis work starts with a literature review and an empirical study,

which reveals several emergent phenomena in software evolution, including the

power law distributions and complex networks in software systems. This research

is then focused on exploring the generative forces underlying these emergent phe-

nomena.

Using the number of AST differences to measure change size, the empir-

ical study in this thesis research found that the change size in software evolution

has a heavy-tailed distribution, either a power law or a log-normal one. Heavy-

tailed change size distributions imply that traditional estimation approaches based

on mean and standard deviation is incapable of predicting change size. If it is a

power law distribution, then the variance is often infinite. This means that the

Central Limit Theorem does not apply to such distributions, and hence the sam-

ple mean and variance is a poor estimate of the population mean and variance.
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Combined with the scale-free nature of power law distributions, there is no “typi-

cal monthly change size” or “typical number of changes in a commit”, that we can

use for prediction. Even in the best case when it is a log-normal distribution or a

power law distribution with finite variance, the variance is still very high, making

estimations of change size inaccurate.

The unpredictability of change size has profound implications when we

relate change size to development effort or cost. The change effort is likely to be a

non-decreasing function of change size. If one considers a commit is a fine-grained

unit of accomplishment from development activities, then the cost associated with

a unit of accomplishment may be a heavy-tailed distribution too, which makes the

effort estimation risky even for fine-grained software development tasks. Looking

at a higher level, if the commit size follows a power law distribution, the changes

needed for a project may follow a power law too, due to the scale-free property of

the distribution. As an important input to the COCOMO II cost estimation model

(Boehm et al., 2000), one has to estimate the amount of new, reused and modified

code. A power law distribution would make such estimation very inaccurate, if at

all possible.

In the empirical study, we also found that large commits tend to follow

large commits, while small commits follow small ones. Both power law distribu-

tions and long-range correlations are signatures of a SOC process. We then pro-

posed a model to simulate preferential attachment and SOC at the same time, and

showed that it could produce the power law distributions and complex networks
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found in previous empirical studies. The novelty lies in the use of preferential at-

tachment and SOC in one single model and produce several related phenomena at

the same time.

Self-organized criticality in software evolution implies that large, system-

wide changes, though infrequent, are inevitable. A significant external (hardware,

requirement, market etc.) change is not required to trigger large software changes.

As the size and complexity of the system grows, a highly-depended component will

have to evolve at some point, which could trigger large number of changes. One

may choose to avoid change such component, but such avoidance could compromise

the integrity of the architecture, making the software harder to evolve, and accel-

erating its decay. To prevent the decay, one has to perform refactoring eventually,

which often involves large number of changes too (Hindle et al., 2008). It appears

that, as long as a software system evolves, no matter what the developers do and no

matter how well-managed is the project, large changes cannot be avoided. In this

sense, large changes are Black Swan events (Taleb, 2010). They are rare, but have

great managerial and technical impacts on software evolution: they may delay the

project schedule, alter software architecture, introduce a new design, etc. Yet, they

are unpredictable. In fact, if people know that the software will evolve in a certain

way, they would have designed it to make the evolution effortless. In other words,

large changes happen precisely because they are not supposed to happen.

To further explore the origin of preferential attachment, and to connect

the individual developer contributions to the system-wide phenomena, we propose
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an agent-based model that simulate the kinds of changes software developers make

on a daily basis as they work on a large project. By having developers navigating

along method calls and calling methods they worked before, the model simulates

a preferential attachment process and produces a power law structure similar to

that in real software system.

We also show that a commit size distribution with a log-normal body and

a power law tail can be produced by a combination of log-normal task size and a

power law structure: when commits are small, they are shaped by the task size; as

the size of commits increase, they are often caused by ripple effects in the changes,

and the power law structure shapes the change size. The implication is that power

law change size is a result of power law structure, similar to the forest fire model

(Section 5.1.2) at its critical point.

This dissertation research not only provides explanations for the emergent

phenomena, it also introduces a new approach to study software evolution. Both

simulation models in this dissertation research mimic the source code changes in

the real world, growing a simple piece of source code into a sizable software system,

with syntactically correct and compilable source code. Besides the metrics used in

this research, the resulting source code can also be studied with many other met-

rics, such as the object-oriented metrics suite proposed by Chidamber and Kemerer

(1994). One can modify the software evolution models or even develop new models

to study how different software development practices may affect the code metrics,

which is made possible by the simulation approach in this dissertation.
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