
A Specific Aims

The goal of this project is to produce the world’s best programs for automatic prediction of protein
structure from sequence. We will make the tools available to biologists both on the web and as a
distributed software package. We hope to increase the number of biologists using our prediction
service from the current 700 predictions a week by at least an order of magnitude.

Knowing the structure of proteins is key to figuring out their functions and the mechanisms by
which they operate. This information is essential for drug target selection and drug design, as well
as for fundamental understanding of both disease processes and the normal operation of cells.

Unfortunately, experimental methods for determining protein structure cannot keep up with
the rapid growth in protein sequence data, so computational methods are needed to predict the
structure from the sequence data. The computational methods can also aid the experimentalist, as
predictions are becoming good enough to use in molecular replacement determination of phases for
solving structures by X-ray crystallography, and the ab-initio prediction methods can be combined
with limited NMR data to solve structures with much less data than needed with conventional
NMR techniques.

This project combines three different, but complementary, approaches to protein-structure pre-
diction: 1D prediction of local structural properties using neural nets, fold-recognition using hidden
Markov models, and conformation generation and scoring using fragment packing and an empirical
energy function. We are proposing an end-to-end solution that goes from structure to complete 3D
models, in a unified framework that will provide state-of-the-art predictions for homology models,
for fold-recognition models, and for new-fold models.

An important feature of our new-fold modeling methods is that we do not require the backbone
to be contiguous throughout the optimization. For homology modeling, we do not pick a single
alignment and freeze the backbone for those residues, but allow many alignments to be sampled
and parts of different ones combined. This allows us to represent directly the multiple-segment
information that we get from fold-recognition alignments, bringing together the fold-recognition
and new-fold techniques.

Because we already represent and manipulate proteins with multiple backbone pieces, handling
multimeric protein complexes is a straightforward extension to the existing programs, so we will
also apply our method to predicting structure for both homo-multimers and hetero-multimers and
not just single proteins.

We will make our programs available free to academics, government research labs, and non-
profits, and will provide a free web service for protein structure prediction. This site will return not
only 3D structures from a single-sequence input, but also multiple alignments of probable homologs,
secondary structure predictions, and sequence logos graphically depicting where the sequence is well-
conserved and where secondary structure is confidently predicted. We also plan to write extensive
documentation and tutorials to help biologists understand the various outputs we provide and to
be aware of the strengths and limitations of the prediction techniques.
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B Background and Significance

There are currently three main approaches to predicting protein structure from sequence: 1D pre-
dictions, fold-recognition, and new-fold prediction. The literature in the field is voluminous, and so
our citations are only representative, not comprehensive.

B.1 1D predictions

These are predictions of some local structural property at each position in a protein chain. Local
protein structure describes both the environment of an individual residue and its relationship to
neighboring residues in three-dimensional space. A local structure alphabet is a discrete encoding of
one or more properties of local protein structure that clusters residues with similar properties into
the same state.

A 1D prediction can be very valuable, both for giving biologists insight into their target protein
and for guiding more detailed structure-prediction methods.

The prediction of secondary structure is tested in the world-wide CASP experiments every two
years [90, 95, 83] and by an on-going experiment, EVA [29]. Some progress in 3-state secondary-
structure prediction has been made in the past several years, but all the top servers (including ours)
seem to have similar overall performance.

Since the 1D prediction problem fits easily into standard machine-learning frameworks, many
different machine-learning methods have been applied by many different researchers (there are 38
different predictors of secondary structure in the CASP5 experiment [82]). So far, the most success-
ful methods have been ones that use a neural net whose input is derived from a multiple alignment
of probable homologs (for example, PhD [105], PsiPred [59], and our SAM-T99 [70]). Many of
the methods combine the results from several separately trained predictors, but the improvements
resulting from this technique seem to be too small to measure reliably.

Most prediction of local protein structure has centered around a simple three-state classification
of secondary structure that places a residue in one of three categories: helix, sheet, or coil. This
coarse classification provides little information about the coil category that accounts for about 40%
of the residues [30]. Although there are many methods for defining fine-grained alphabets of local
structure [60, 122, 123, 103, 104, 129, 61, 33, 118, 121, 14, 16, 73, 15, 24], there has been very little
work exploring whether these alphabets can be used to improve fold recognition or alignments.

It is time to make the problem harder (and more useful) by making more detailed predictions,
rather than just 3-state predictions. The main open question is which local properties are most
useful to predict.

B.2 Fold recognition

The greatest improvements in protein-structure prediction over the last several years have been in
the area of fold recognition, which consists of finding a similar protein whose structure has already
been determined experimentally (the template) and aligning the target sequence to the template.

The improvements have come from several sources: a larger collection of structures in the
Protein Data Bank [8], making it more likely that there is a suitable template; a larger collection of
sequences in protein sequence data bases, making it easier to find related proteins, thus giving more
information about which aspects of the protein sequence are conserved during evolution; better
methods for recognizing distant relationships between proteins; and better alignment methods for
aligning targets to templates.
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Many of the best fold-recognition methods use hidden Markov models (hmms) as both the
search tool and the alignment tool for fold recognition. The hmm techniques were pioneered at
University of California, Santa Cruz, and our fold-recognition techniques remain among the world’s
best [85, 91, 112, 87].

It became clear in 2000, at the CASP4 meeting, that hmms based only on amino-acid information
were no longer competitive with methods that combined amino-acid information with predicted local
structure. Indeed, the main value we added to our then-current server (SAM-T99) in our hand-
tweaked predictions was the use of experimental two-track hmms that used predicted secondary
structure [70].

Our most recent server (SAM-T02)1 includes predicted local structure in both the selection of
templates and the alignment to templates, and is considerably outperforming the otherwise similar
SAM-T99 server in the current LiveBench2 tests [12, 55].

Open questions include how best to merge local structure information with amino-acid informa-
tion, what local structure predictions are most useful for choosing templates, and what predictions
are most useful for aligning targets to templates.

B.3 New-fold prediction

The most difficult prediction problems are those for which there are no easily-found proteins of
known structure to use as templates. These targets can be either novel folds, different from any
previously seen, or proteins that have diverged far enough during evolution that even the best
fold-recognition methods do not detect a similarity to any known structure.

Closely related to the new-fold problem is loop modeling, determining the conformations of
regions of a protein that are not present in the templates, or that have very low conservation, and
so must be predicted without the benefit of homologous structures.

Both new-fold prediction and loop modeling use similar overall techniques: generation of pos-
sible conformations of the protein and scoring of the conformations with a cost or energy function
(generally an empirically-derived one, though some researchers have tried ones based on biophysical
principles).

The big problems with new-fold techniques are that the conformational space is huge and that
accurate energy functions are very rough, so that almost-right conformations often do not score
better than badly wrong conformations.

The main advances in the past four or five years have been in the area of conformation generation.
D. Baker and K. T. Simons introduced a new conformation-generation procedure (which they have
not given a generic name to but that we refer to as fragment packing) that generates locally-
reasonable backbone conformations, greatly reducing the size of the search space and reducing the
complexity of the energy function [111, 9]. This method showed some promise in 1998 in CASP3
and was the best-performing technique in 2000 in CASP4, both for new-fold models and for loop
modeling.

The essence of the fragment-packing method is to copy short stretches (called fragments) of
backbone conformation from known structures. A small number of possible fragments (say 25) are

1http://www.soe.ucsc.edu/research/compbio/HMM-apps/T02-query.html
2As of 30 Sept 2002, the SAM-T02 server was doing best of 30 servers on the crucial LGScore1 measure that

measures alignment quality (aside from Dali and 3Hit, which are structural aligners given the correct structure, not
predictors). It was also doing best on LGScore2, which measures just fold-recognition without considering alignment
quality.
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selected centered on each residue of the target, and new conformations are generated by randomly
selecting a position and a fragment, and replacing the backbone conformation around that position
with the conformation from the fragment. This conformational change is very large compared to
the sorts of changes used in traditional molecular dynamics and energy minimization programs, but
the conformation is locally good, so large portions of conformation search can be sampled quickly.

Other conformation-modification operators can also be defined, such as changing rotamers of
the sidechains or making small modifications to phi-psi angles—these sorts of operators are usually
applied to make small changes to the conformation to settle into a local minimum of the energy
function.

Once conformation-change operators have been defined, the energy function optimization can be
done by any of the standard stochastic search algorithms, including simulated annealing and genetic
algorithms. One can also do more directed searches that try to improve some component of a score
function (such as optimizing a hydrogen bond or removing a clash) by making calculated moves,
rather than random moves. When there are many operators, the search procedure generally has to
be adaptive, preferentially choosing those operators that are most likely to improve the scoring of
the conformations.

Highly detailed energy functions generally provide very rough energy landscapes, with many
local minima separated by high barriers. For example, standard Lennard-Jones potentials for Van
der Waals contacts give large changes in energy for very small motions of the atoms. These rough
landscapes are difficult to search with stochastic search procedures, so most researchers do ini-
tial searches with smoother, more approximate energy functions, and do only small conformation
changes with more detailed energy functions.

Open problems in this area include choosing good libraries of fragments for a particular target,
choosing good conformation-modification operators, designing a good adaptive stochastic-search
procedure, and designing good cost or energy functions.

C Preliminary Studies

We have been working in protein-structure prediction since 1996, starting first in fold recognition,
then adding secondary structure prediction, and most recently adding new-fold prediction using
fragment packing.

Our fold-recognition methods have done well in the biennial Critical Assessment of Structure
Prediction experiments since we started (CASP2 [85, 71], CASP3 [91, 67], and CASP4 [112, 70]),
and our current server (SAM-T2K) is doing very well in the current round of the ongoing LiveBench
experiment [55]. Our secondary structure techniques have done well at CASP3 [95] and CASP4 [83],
as well as in the EVA experiment [29]. Our new-fold prediction methods were used seriously for the
first time this summer in CASP5, and we are eagerly awaiting the results of that experiment.

The remainder of this section will give descriptions of the techniques we have used—the proposed
work relies heavily on extending and improving these methods, so we have dedicated more of the
proposal to this section than is common. Much of the work described in this section has not yet
been published, though we are submitting papers describing it soon [62, 65].

C.1 Finding and aligning homologs

The heart of both local structure prediction and fold recognition is a multiple alignment of protein
sequences similar to the target protein. Most of our effort from 1996 to 2000 went into improving
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the techniques for generating this multiple alignment [96, 68, 53, 69, 19].
Multiple protein sequence alignment has been widely used in finding conserved regions in protein

families and in predicting protein structures [23, 67, 42, 47, 97, 84].
The quality of the predictions depends critically on the quality of the multiple alignments and

the diversity of the sequences aligned, but few of the current multiple aligners are capable of aligning
hundreds or thousands of homologous sequences.

Many programs have been developed for multiple protein sequence alignment, and they fall into
two classes: progressive and iterative. The classic progressive approach is to build up the alignment
gradually by aligning the closest sequences first and then successively adding in more distant ones.
Examples include ClustalW [120, 46, 58], PILEUP [40], and PIMA [114]. Another choice is to use
an iterative strategy to refine and improve an initial multiple alignment. Programs in the category
include PRRP [34], DIALIGN [89], and SAGA [92].

Our method is an iterative hidden Markov model-based search technique, which aligns sequences
to a hidden Markov model (hmm) and improves the alignment by retraining the hmm on the
sequences. It is close in spirit to the iterative multiple aligners, though rather different in internal
implementation.

We use hidden Markov models extensively, and hmms have been a core component of our research
beginning with [44, 76] (see also related work in [5, 117, 26, 27, 4, 11, 41, 25]). Hmms had been
used previously in a variety of fields to do discrete time series analysis, most notably in speech
recognition [98], but also in DNA analysis [18] and genetic linkage analysis [79]. Following UCSC’s
seminal work, hmms are now used extensively in computational biology, primarily to create multiple
alignments of protein and other types of sequences, to discover families of related sequences, and to
search sequence databases for remote members of these families [96, 68]. They have been used to
predict protein structure [71, 67, 70, 31, 51], and to find genes and other functional sites in DNA
sequences [77, 78, 100, 13, 56, 127]. The two primary hmm systems for biosequence analysis are the
HMMer system, developed by Sean Eddy and others [26], and our SAM system [53].

The structure of the hmms that are most commonly used in protein modeling is similar to that
of a weight matrix or profile [38, 36, 10, 45], except that it has specific states and transitions at each
position to model insertions and deletions, and the probability parameters for these are different in
each position. Such hmms are called profile hmms. An hmm of this type defines a formal statistical
model for sequences in a given protein family, so one can calculate the likelihood of a sequence and
find the most probable locations for the insertions and deletions, i.e., the most probable alignment
of the sequence to the “consensus model” for the family.

The likelihood is calculated by the forward algorithm and the most probable alignment by the
Viterbi algorithm [124]. Each is a dynamic programming method similar to the Smith-Waterman
method used to align two sequences [115]. The forward algorithm can be used to search a database
for homologs of the protein family represented by the hmm, and the Viterbi algorithm can be used
to create a multiple alignment of all family members. The parameters of the hmm can be estimated
from a set of non-aligned family members using an expectation-maximization method known as
the forward-backward algorithm [98], or by Markov Chain Monte Carlo methods such as Gibbs
Sampling, used in [81, 17, 80] (see also [25]), to estimate the parameters of models similar to hmms.
Further details and discussion of the mathematical foundations of hmms can be found in tutorial
articles and text books [98, 25].

Our hmm software had its first general public distribution in 1995 [54, 52]. The Sequence
Alignment and Modeling (SAM) software suite has been distributed to about 200 academic sites
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and a number of private sites, including 20 fee-based licenses, and has been accessed over 75,000
times, 500–1000 times per week, on our related WWW server.3

We pioneered iterative hmm construction from a single sequence and a large non-redundant
database. We call these methods the SAM-Txx methods, as they were originally developed as part
of our target prediction efforts for the CASP workshops [71, 67, 70]. The SAM 3.2 software release
includes SAM-T99, and our web servers also include SAM-T2K (on the T02-query.html page). In
our own studies [7, 63, 96, 64] as well as in external studies [88, 35, 87], SAM and the SAM-Txx
methods perform consistently better than standard methods and other hmm and profile systems.

SAM-T99 starts with a query sequence (or seed alignment) and searches the non-redundant
protein database (NR) using wu-blastp [1] to produce two sets of potential homologs: one of very
similar sequences (E < 0.0005) and one of possibly similar sequences (E < 300). The initial wu-
blastp cull of NR is used for two reasons: we do not expect an hmm built from a single sequence
to do any better at finding close homologs than wu-blastp, and an hmm database search of all of
NR is too slow for building large numbers of alignments. SAM-T2K is similar, but gives a choice of
different prefiltering options, and uses a different prefilter threshold for each iteration (by default,
it uses prefilter thresholds of 0.01, 1, 10, 400).

Both methods then use four iterations of a selection, training, and alignment procedure. For
each iteration they need an initial alignment, a set of sequences to search, a threshold value, and
a transition regularizer. From the alignment and regularizer, an hmm is constructed and used to
score the set of sequences. All sequences that score better than the threshold value are used to
estimate a new hmm. Alignment of the training sequences to that hmm produces the alignment
that is the input for the next iteration.

The SAM-Txx methods use sequence weighting for building models from alignments, both in-
ternally and when the final alignments are used to create the models for scoring a set of sequences.
The relative weights are set with our own weighting scheme which gives more weight to outliers,
and the absolute weight is set to get a specific level of entropy averaged over all columns after a
Dirichlet mixture regularizer [113] is applied to the weighted counts. The desired entropy is specified
as the number of bits saved relative to the entropy of the background distribution. This relative
entropy measure has been used previously to characterize substitution matrices [3], and the popular
BLOSUM50 and BLOSUM62 matrices corresponds to saving about 0.5 and 0.7 bits per column.
The SAM-T99 method uses 0.8 bits per column as the target, but preliminary fold-recognition tests
indicated that this may be too high a value, and SAM-T2K uses 0.5 bits per column.

On the first iteration the single sequence passed to the method is used as the initial (trivial)
alignment and the close homologs found by wu-blastp are used as the search set. The threshold is
set strictly (E-value < 0.00001 for SAM-T99 and < 0.0001 for SAM-T2K), so only strong matches
to the sequence are considered. Requiring both wu-blastp and the initial hmm to score a sequence
well ensures that only very similar sequences are included at this stage of the process.

On subsequent iterations the input alignment is the output from the previous iteration and the
search set is the larger set of possible homologs found by wu-blastp. The thresholds are gradually
loosened (E-value < 0.0001, 0.001, 0.01 for SAM-T99, and 0.0002, 0.001, 0.005 for SAM-T2K).

The above selection, training, and alignment procedures consists of several calls to SAM pro-
grams. Models are created with SAM’s modelfromalign program which uses the alignment, se-
quence weighting, transition regularizer, and Dirichlet mixture to build an hmm. Scoring the

3http://www.soe.ucsc.edu/research/compbio/HMM-apps
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sequence set with an hmm uses SAM’s multiple domain scoring procedure, now part of hmmscore,
which selects only the portion of a sequence matching the hmm (local scoring [116] as applied to
SAM models [119]). From the sequences selected using this procedure, a new model is estimated
using SAM’s buildmodel hmm training program. The alignment of the training sequences back
to the resulting hmm is accomplished with SAM’s hmmscore program. To ensure that the initial
sequence to the whole process is not lost, it is added to the training set at this point, and any
duplicate sequences in the training set are eliminated.

The SAM-T2K method also differs from the SAM-T99 method in that an extra alignment step
is done at the end, aligning the putative homologs with a posterior-decoding alignment rather than
a Viterbi alignment. The posterior-decoding alignment is more expensive to run, but alignment
tests on difficult examples indicated that it provided slightly better alignments.

We have considered using other multiple alignment algorithms in conjunction with our iter-
ative search, but multiple alignment tests showed that there would be no advantage to using
ClustalW [120, 46, 69] and T-coffee [93] was too expensive for the frequently large number of
sequences in the multiple alignment.

C.2 Local structure prediction

We have worked on several methods for local-structure prediction, including neural nets, averaged
perceptrons, and hmm-based methods. The SAM-T99 web site reports the average of a neural-net
method and two quite different hmm-based methods, while the SAM-T02 web site reports neural-
net predictions for several different neural nets (and one averaged prediction). All our methods
produce a probability vector for each position in the target protein sequence over the alphabet of
possible local structure codes.

While other groups have relied on a helix-strand-coil description of secondary structure, we have
explored a variety of secondary structure descriptions. We are particularly interested in whether
there is a preferred way to encode one-dimensional structure strings with a local structure alphabet.

For our purposes, the best local structure alphabets are
• conserved within fold families,
• predictable from amino-acid sequence,
• able to improve template selection, and
• able to improve target-template alignments.
We have developed a protocol for evaluating local protein structure alphabets and have applied

the protocol to (so far) nine alphabets of protein backbone geometry. Incorporating predicted local
structure information substantially increases the fold-recognition accuracy and alignment quality of
our hmm-based methods. Among the local structure alphabets tested, we find that a novel alphabet
based on detailed secondary structure states, including classifications of beta strand orientation, is
most useful for improving alignments. Fold-recognition improvement is relatively insensitive to
choice of a particular local structure alphabet, but we are currently getting the best results with a
three-state classification of secondary structure.

C.2.1 Alphabets

For our evaluation experiments, we selected a sample of nine alphabets describing protein backbone
geometry. These included the two most widely used secondary structure alphabets (dssp and
stride), three-state reduced versions (stride-ehl and dssp-ehl), a backbone fragment alphabet
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Figure 1: Three torsion angles used for defining backbone-geometry alphabets.

called Protein Blocks (pb) [24], and an alphabet of φ-ψ classes (ang) developed by Bystroff [15]
(φ and ψ are dihedral angles along the protein backbone [99], shown in Figure 1(a)). We also looked
at several novel alphabets. The first is an enhanced version of dssp, in which we have partitioned
the strand class into six classes according to properties of a residue’s relationship to its strand
partners [62]. Other novel alphabets are based on the backbone angle alpha, defined for a residue
i as the virtual dihedral angle between Cα atoms of residues i− 1, i, i+ 1 and i+ 2 (Figure 1(b))
and tco, defined for a residue i as the cosine of the dihedral angle between its carbonyl group and
that of residue i− 1 (Figure 1(c)).

dssp We use a seven-letter version of the secondary structure alphabet developed by Kabsch and
Sander [60]: E (beta strand), H (alpha helix and pi-helix), T (turn), S (bend), G (3-10 helix),
B (short beta bridge) and C (random coil). Assignments are based on patterns of hydrogen
bonding.

stride A six-letter (EBGHTC) secondary structure alphabet developed by Frishman and Ar-
gos [33]. Assignments are based on φ-ψ angles and H-bond energies.

dssp-ehl, stride-ehl Three-letter (EHL) secondary structure alphabets that reduces dssp and
stride assignments to helix, strand, or coil. In this mapping, G is included in the helix class,
B in the strand class, and S and T in the coil or loop class.

Protein Blocks An automatically designed alphabet, developed by Alexandre de Brevern and
colleagues [24]. This alphabet looks at overlapping residue fragments of length five (chosen
empirically), extracted from a non-redundant set of structures, and encodes them as sequence
“windows” of φ-ψ pairs called dihedral vectors. An unsupervised Kohonen self-organizing
map network [74, 75] was trained on the dihedral vectors with an RMSDA (root mean square
deviations on angular values) distance metric, to produce a set of 16 clusters, each with a
representative Protein Block (pb).

ang Based on the φ-ψ alphabet used in hmmstr [15]. Bystroff et al. partitioned the φ-ψ plane [99]
into ten regions, using the k-means algorithm [86] on all trans φ-ψ pairs in PDB. Cluster
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UCSC Byst φ ψ
H H -61.91 -45.20
G G -109.78 20.88
P B -70.58 147.22
E E -132.89 142.43
D d -135.03 77.26
N b -85.03 72.26
Y e -165.00 175.00
L L 55.88 38.62
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not used c cis peptide

(a) Centers of the ten classes in the ang
alphabet with the letters given by us and
those originally assigned by Bystroff.

A

M
O

O

O

O

O

O

P

E

Z

Q

(b) Six letters in the str alphabet, which expand on the dssp
“E” or strand state. Dots indicate the strand of the residue be-
ing assigned. In a beta sheet, this strand is either surrounded
by two parallel partners “P”, two anti-parallel partners “A” or
one anti-parallel and one parallel partner “M”. Edge strands
(that have only one beta strand partner) have either a parallel
partner “Q” or an anti-parallel partner “Z”. Finally, we re-
tain the “E” label for strand residues to which dssp assigns
no partners (generally beta bulges).

Figure 2: Definitions for ang and str alphabets.

boundaries were calculated with a Voronoi method. All cis residues were assigned to an
eleventh cluster by Bystroff, but this class was not used in ang, and the cis residues were
distributed among the other 10 classes according to their φ-ψ values. Figure 2(a) shows the
centers of the 10 classes.

str An enhanced version of dssp that subdivides dssp letter E (beta strand) into six letters
(Figure 2(b)), according to properties of a residue’s relationship to its strand partners.

alpha We created an eleven-letter alphabet by observing a smoothed histogram of the dihedral
angle alpha values for all residues in 448 non-redundant high-resolution X-ray structures
selected from PDB. We manually assigned breakpoints between alpha classes according to
location of peaks in this histogram (shown in Figure 3(a)) and separate alpha histograms
for each of the 20 amino acids.

tco The tco alphabet was designed by manually dividing the distribution of tco cosine values
in the fssp-x dataset (all x-ray structures that were representatives in fssp [49]) into four
classes (Figure 3(b)). The best centroids for the four classes were selected with the k-means
algorithm.

C.2.2 Information content

For each alphabet, we built a structure string, representing each protein chain in our benchmark
data set, and added these to our existing library of amino-acid sequences.

We used the library of structure strings to estimate the compositional entropy for each alphabet
and the mutual information between all pairs of alphabets (including amino-acid sequence). The
letter frequencies in each alphabet are counted and a confusion matrix is constructed for each pair
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Figure 3: Alphabet definitions for alpha and tco alphabets.

of alphabets. Each confusion matrix element represents the number of times a letter in alphabet A
(lA) and a letter in alphabet B (lB) appear in equivalent positions. Alphabet compositional entropy
gives an upper limit on our estimate of alphabet conservation, which is based on mutual covariation
of letter pairs observed in equivalent positions of a structural alignment. (A simple proof of this
bound is given in Durbin et al. [25].) Very low mutual information between an alphabet and the
amino acids indicates potential difficulty predicting the alphabet from amino-acid sequences. On
the other hand, very high mutual information between two alphabets means that the alphabets
carry the same information, so using both would be redundant.

C.2.3 Predictability

In the next step, we ran a test to measure how well structure strings in each alphabet were predicted
by feed-forward neural networks. The nets were trained with standard back-propagation and have a
four-layer architecture. The same inputs, architecture, and training protocol were used for all neural
nets. Only the number of output units in the final layer varied according to the size of the alphabet.
We did three-fold cross-validation: the data set was randomly divided into three partitions and, for
each alphabet, we trained a net on each two-thirds of the data and tested on the remaining third.
The performance of the three nets was averaged and three measures of prediction quality reported:
percent of residues correctly predicted to be in one of N states (QN ), the fractional overlap of
secondary structure segments (SOV ) in a pairwise alignment of predicted and observed structure
strings [106], and the amount of information gained (bits saved) per position in the test set:

I = 1/n
∑

1≤i≤n

log2

P̂i(ai)

P∅(ai)
, (1)
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conservation predictability
alphabet fssp-x bits saved

Name size entropy MI w/aa mutual info per position QN SOV
str 13 2.842 0.103 1.107 1.009 0.561 0.527
pb 16 3.233 0.162 0.980 1.259 0.579 0.542
stride 6 2.182 0.088 0.904 0.863 0.663 0.659
dssp 7 2.397 0.092 0.893 0.913 0.633 0.610
stride-ehl 3 1.546 0.075 0.861 0.736 0.769 0.733
dssp-ehl 3 1.545 0.079 0.831 0.717 0.763 0.732
alpha 11 2.965 0.087 0.688 0.711 0.469 0.375
ang 10 2.443 0.228 0.678 0.736 0.588 0.501
tco 4 1.810 0.095 0.623 0.577 0.649 0.547

Table 1: Summary of the information content, mutual information with amino acid, conservation and
predictability of each tested alphabet (see Section C.2.3 for definitions of bits saved, QN and SOV). Con-
servation (see Section C.2.4) was estimated by calculating the mutual information of letter pairs observed
in equivalent positions of fssp structural alignments. Prediction statistics were computed by three-fold
cross-validated testing with four-layer feed-forward neural networks.

where ai is the correct local structure code for the ith position, P̂i(x) is the predicted probability
of code x in the ith position, and P∅(x) is the background probability of code x. Note that this
measure is independent of the size of the alphabet, unlike more common measures (such as QN and
SOV ) and can be used for comparing results between different alphabets.

C.2.4 Conservation

We evaluate alphabet conservation between fold family members by computing the average mutual
information of letter pairs observed in equivalent positions of fssp structural alignments. These
alignments each have a “master” belonging to fssp’s “representative set” (none of which share
greater than 25% sequence identity) and a collection of “slaves” that are structurally aligned to the
master by dali [48, 49].

For this analysis, we built structure strings for 1609 protein chains taken from the fssp repre-
sentative set and also for their slaves that aligned to the master with DALI Z-scores ≥ 7.0. Because
many sets of slaves are large and redundant, and because we are interested in conservation of prop-
erties between sequences with very low amino-acid similarity, we thinned the alignment so that no
two sequences had identity > 20%.

Finally, we extracted the ranges of all structurally conserved regions in the fssp alignments and
constructed tables of aligned residue positions. For all possible pairs of letters (X, Y ) in a local
structure alphabet, we counted the number of times X in the master structure was paired with Y
in a slave structure in an aligned position, and computed their mutual information:

M(X;Y ) =
∑

X,Y

P (X, Y ) log2

P (X, Y )

P (X)P (Y )
(2)

where probabilities were estimated by normalized counts of letters in the dataset. Since estimates
of mutual information based on small samples have been shown to be artificially inflated [126, 125],
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we perform a small sample correction on M(X;Y ). The small sample effect is evidenced by the
fact that when aligned letter pairs are scrambled, a non-zero mutual information is still measured
between randomized pairs. By repeatedly scrambling the aligned letter pairs, we can compute a
distribution of “random mutual information” and correct for the over-estimate by subtracting the
mean of this distribution from M(X;Y ) [21].

Table 1 presents our analysis of the compositional entropy, mutual information with amino acid,
conservation, and predictability for the alphabets studied. The alphabets are ranked according to
their conservation in fssp fold families. According to this data, the str alphabet best encodes
conserved properties of local backbone structure, followed by pb, stride, and dssp. Because str
is an expansion of the dssp alphabet, its being more conserved shows us that the properties of
strand pairing described in str have been preserved in remote homologs.

The bits saved (information gain) measure of predictability does not depend on alphabet size
and is strongly correlated with alphabet conservation (r=0.84). We have found this to be the most
useful measure of predictability when comparing different alphabets.

C.3 Fold recognition

Structural information about available templates has been shown to improve performance of both
profile and threading fold-recognition methods [107, 32, 101, 22, 72]. In this section, we evaluate
the results of enriching hmms, built with the SAM software [52, 53], with frequency profiles derived
from predicted one-dimensional structure strings. The models are designed to search a template
database for structurally similar remote homologs and to align target-template pairs.

There have been previous attempts to improve fold recognition and target-template alignments
by incorporating predicted secondary structure information into profile hmms [32, 43], but our
approach differs in several important ways. Other groups score the sequence and/or predicted
secondary structure of a target protein against a template library of hmms. Their hmms were
trained on selected sequences, sharing a common scop family (clear evolutionary relationship) or
fold (major structural similarity) [50], and the known secondary structure of these sequences was
incorporated into model training. One group used only secondary structure sequences to build their
library [32], while the other trained on both amino-acid and secondary structure sequences [43].

We have recently extended our SAM software to handle two-track profile hmms, in which each
match node contains emission probabilities of predicted local structure information, in addition to
amino-acid emission probabilities [70, 66]. As shown in Figure 4, the primary track of amino-acid
emission tables is built with the SAM-T2K iterated seed alignment algorithm, and the secondary
track of local structure emission tables is estimated by a neural network.

Figure 5 shows a graphical depiction of a small two-track hmm.
For our fold-recognition experiments, we used the scop database as a standard for identifying

related proteins. We created a benchmark of non-homologous, protein whole chains. Our study
focuses on proteins that are difficult to detect by sequence similarity, so we excluded proteins sharing
greater than 20% sequence identity from the benchmark set. We define correct hits as proteins which
share a common scop fold (major structural similarity).

We wanted to see if including local structure information in our hmms would improve fold
recognition, and which of the local structure alphabets gave the best results. We built one psiblast
profile (using four iterations with threshold set at 0.0005) [2, 109], one amino-acid-only hmm, and
eight two-track hmms, for each chain in the benchmark set, trying each candidate local structure
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Figure 4: The 2-track hmm has a primary track of amino-acid emissions and a secondary track of local
structure alphabet emissions. The primary track is constructed with the SAM-T2K iterated seed alignment
algorithm. The secondary track is modeled with predicted local structure probabilities that are estimated
by a neural network. Input to the neural net is the final multiple alignment generated by SAM-T2K.

alphabet as a secondary track. Each benchmark profile and hmm was used to rank all chains in the
set according to E-values of the psiblast or hmm scores [65]. On the basis of a small number of
experiments, we chose weights of 1.0 for amino-acid emissions and 0.3 for local structure emissions,
when computing the two-track hmm scores. Results for each alphabet could probably be improved
by optimizing these parameters.

In this setting, we define results of a query as the list of E-values received by all chains in the
benchmark set, with respect to a single profile or hmm. Performance of a candidate alphabet was
evaluated with respect to all benchmark hmms built with the alphabet as a secondary track (1298
queries). We report fold-recognition performance of each method both in terms of percent of true
positives recognized vs. false positives per query, and in terms of ROC curves and ROC numbers.
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Figure 5: This picture shows how the two-track SAM-T2K target hmm is organized. The “AA” and
“2ry” labels in the boxes refer to emission-probability tables for amino acids and local structure labels,
respectively [70]. The only change from the profile hmms used previously with SAM is the addition of
predicted emission probabilities for a local structure alphabet to the match states—the insertion states
get background probabilities for local structure and the transition probabilities are identical to the amino-
acid-only hmms. A real profile hmm has as many match states as alignment columns in the multiple
alignment.

C.3.1 ROC numbers

The ROC curve is a plot of true positive fraction vs. true negative fraction using a sliding threshold
and provides an accurate, quantitative measure of both the sensitivity and specificity of a database
search.

The total area under the ROC curve gives the probability of a correct classification [37]. Because
of the very large number of true negatives in a typical database search, the area is usually calculated
under a truncated ROC curve, with a fixed ROC number (ROCN), where N is the number of true
negatives used in the calculation.

Our fold-recognition results are shown in Figure 6. There is no clear separation between multi-
track and single-track hmms in the very low false positive range (0.05 false positives per query).
However, if we are willing to accept between 0.1 to 1.0 false positive per query (a reasonable
threshold, given the low homology of the proteins in the test set), the two-track models increasingly
recognize more correct folds with fewer false positives than either psiblast or SAM-T2K amino-
acid hmms. The exception is pb, which in spite of high compositional entropy and predictability,
did very poorly at fold recognition. This anomaly is an artifact of the reverse-sequence null model
SAM uses to compute hmm scores [65].

Table 2 shows the fold-recognition ROC65, ROC130, ROC649, and ROC1298 numbers (see Sec-
tion C.3.1) for two-track hmms, single-track hmms, and psiblast. These were computed by esti-
mating the area under the corresponding ROC curves with a trapezoidal method. The thresholds
correspond to 0.05 FP/Q (false positives per query) at ROC65, 0.1 FP/Q at ROC130, 0.5 FP/Q at
ROC649, and 1.0 FP/Q at ROC1298. The addition of backbone geometry information in the SAM-
T2K hmms clearly improves fold-recognition performance, but choice of alphabet for the secondary
track does not make much of a difference. Although the two-track stride-ehl hmm has the best
ROC numbers, the advantage is very small over other backbone-geometry alphabets.
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Figure 6: Results of three-fold cross-validated fold-recognition tests on our benchmark dataset shown for
two-track hmms with an amino-acid primary track and stride-ehl, stride, dssp, dssp-ehl, tco, ang,
alpha, str, and pb (Protein Blocks) on the secondary track, amino-acid only hmms, and psiblast run
with four iterations. The methods are ranked in the legends according to ROCN score. As shown in
Figure 6(a), aa-stride-ehl hmms have the best accuracy by a small margin. With looser thresholds, in
Figure 6(b), the accuracy of all the local structure hmms is significantly better than that of the aa-only
methods. The poor performance of aa-pb hmms is an artifact of the reverse-sequence null model SAM
uses to compute hmm scores [65].

Method ROC65 ROC130 ROC649 ROC1298

aa-stride-ehl hmm 0.0632 0.0724 0.1010 0.1155
aa-stride hmm 0.0615 0.0716 0.0985 0.1125
aa-dssp hmm 0.0579 0.0673 0.0952 0.1113
aa-tco hmm 0.0571 0.0673 0.0970 0.1126
aa-dssp-ehl hmm 0.0567 0.0654 0.0906 0.1032
aa-ang hmm 0.0547 0.0650 0.0955 0.1119
aa-alpha hmm 0.0537 0.0635 0.0914 0.1078
aa-str hmm 0.0533 0.0625 0.0901 0.1065
aa hmm 0.0552 0.0612 0.0755 0.0823
psiblast 0.0514 0.0572 0.0708 0.0776
aa-pb hmm 0.0024 0.0035 0.0122 0.0196

Table 2: ROC numbers (see Section C.3.1) from three-fold cross-validated fold-recognition tests on a
difficult set of 1298 whole chains. The numbers are an approximation to area under the ROC curve for
thresholds of 65, 130, 649 and 1298 negatives recognized. The thresholds correspond to 0.05 FP/Q (false
positives per query) at ROC65, 0.1 FP/Q at ROC130, 0.5 FP/Q at ROC649, 1.0 FP/Q at ROC1298.

24



Difficult set Moderate set
mean shift score mean shift score

Reference alignment dali ce dali ce

two-track t2k str 0.320 0.307 0.466 0.418
two-track t2k pb 0.309 0.303 0.435 0.395
two-track t2k dssp 0.306 0.295 0.454 0.402
two-track t2k stride 0.357 0.292 0.452 0.400
two-track t2k stride-ehl 0.298 0.290 0.438 0.396
two-track t2k dssp-ehl 0.297 0.287 0.435 0.391
two-track alpha 0.288 0.279 0.429 0.387
two-track ang 0.286 0.276 0.422 0.407
two-track tco 0.284 0.276 0.421 0.374
one-track aa 0.220 0.219 0.365 0.325
one-track aa fssp seed 0.219 0.192 0.415 0.330

Table 3: Evaluation of alignment quality for a difficult set of 200 protein pairs with high structural
similarity but low sequence identity (3-24%) and a moderately difficult set of 340 protein pairs. Mean
shift scores [19, 20] are shown for alignments done with single-track SAM-T2K amino-acid hmms, single-
track amino-acid hmms trained on fssp structural alignments, and two-track SAM-T02 hmms with several
different local structure alphabets.

C.3.2 Alignment

We used two sets of protein pairs to evaluate alignment quality: a difficult set of 200 pairs, with
high structural similarity but low sequence identity (3-24%) and a moderately difficult set of 340
pairs (homology detectable by SAM-T2K hmm or psiblast but not by blast).

In both test sets, two local alignments were produced for each pair, by building a SAM-T2K
hmm for one pair member and aligning the other to the model using the Viterbi algorithm [124]. We
tested SAM-T2K amino-acid-only hmms, hmms built with an fssp structural alignment as the seed,
and eight types of SAM-T2K two-track hmms, in which one of our eight candidate local structure
alphabets was used for the secondary track. Track weights were set at 1.0 for the amino-acid and
0.3 for the secondary track, as in the fold-recognition tests.

The resulting alignments were compared to structural alignments of the same pairs. To avoid
possible bias, two structural alignment methods were used in the analysis: dali [49] and ce [110].
The mean shift score [19, 20] between alignments produced by the hmms and by the structural align-
ers was computed. Shift score measures the disagreement of two alignments, typically a predicted
candidate alignment and a reference structural alignment of the same sequence pair. It quantifies
several kinds of alignment error in a single number: misalignment, aligning too much, and aligning
too little, and it compares well to accepted measures, such as alignment specificity and alignment
sensitivity. It is 97% correlated with percentage of residues aligned correctly, but also incorporates
information about alignment length, shift error, and coverage [19, 20]. The range of shift score is
from -0.2 (worst) to 1.0 (best), achieved only when two alignments are identical.

Table 3 shows results of our alignment quality tests on both test sets.
Previous to this work, our best quality alignments were produced by amino-acid hmms trained
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on an initial fssp structural alignment.4 As shown by the reported mean shift scores, the two-track
hmms produce better quality alignments than SAM-T2K amino-acid-only hmms and the fssp-
seeded amino-acid-only hmms. Results are reasonably consistent, regardless of which structural
aligner is used as reference.

On the moderately difficult set, the two-track str-hmms produce the best quality alignments,
as measured by mean shift score, with respect to both dali and ce structural alignments of the
same pairs. On the difficult set, the str hmms produce the best alignments when compared to
ce, but stride-hmms do better when compared to dali. Overall, the highly informative, 13-letter
str alphabet, which encodes detailed predictions about beta-sheet structure, is the best choice for
hmm alignment. However, when there is very low sequence identity between a pair of proteins, the
6-letter stride alphabet may be a better choice.

We have shown that adding predicted local structure information to profile hmms can improve
detection and alignment of structurally similar proteins, even when there is very little sequence
relationship. A simplified helix-strand-coil representation of secondary structure works well for fold
recognition, but not so well for alignments, where greater benefit is found by using a more detailed
alphabet of local protein structure. The high degree of conservation and predictability in the str
alphabet suggests that there is useful information in the patterns of strand orientation found in
beta sheets. The success of this alphabet at aligning structurally similar proteins with low sequence
identity shows that these patterns are both predictable from amino-acid sequence and conserved in
remote homologs.

We believe that highly informative, detailed alphabets like str and pb have the potential to do
better fold recognition than simple alphabets like stride-ehl and tco, and that best results will
be achieved by combining several alphabets that encode different kinds of information about local
protein structure. We are currently investigating ways to create superior null models for use with
many-track hmms and hmms with non-reversible alphabets such as pb (see Section D.1.4).

C.4 New-fold prediction

Since CASP3 in 1998, when David Baker’s program Rosetta showed some promise for ab-initio
prediction [111], we have been working on a fragment-packing program named undertaker (so
named because it optimizes residue burial). We tried a version of the program on a couple of
targets in CASP4, when the program was far from complete, but, as expected, the results were
poor.

A major effort was made in spring 2002 to speed up undertaker, fix major bugs, add new cost
functions, and add new conformation-change operators. It was barely finished in time to use it
in CASP5, and still requiers extensive testing and tuning. The structures it generated for CASP5
targets contained common super-secondary structure motifs and had a packing density not much
lower than that of experimental structures, so we have made some progress in our conformation
generation and scoring, even if we cannot yet quantify the improvement.

One major addition to the SAM suite of hmm tools was a fragment-finder program, fragfinder,
that looks for short matches between an hmm and template sequences, to provide a library of
medium-length fragments for the conformation generation. In preliminary tests, we found that our

4We have never gotten good fold-recognition sensitivity with fssp-seeded hmms, a result also reported in a recent
study [39], which attributed this to the relatively small size of structural alignments. We believe that the high
diversity of the sequences in a structural alignment also contributes to loss of signal in the hmm.
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2-track hmm using the str alphabet produced better fragments (a higher percentage of low RMSD
fragments) than an amino-acid-only hmm, but have not done sufficient testing to claim that this is
generally true.

This section will sketch out a few of the main ideas of undertaker, which can be viewed as con-
sisting of four main parts: the conformation representation, the conformation-changing operators,
the stochastic-search method, and the cost function.

C.4.1 Conformation representation

Selection of a conformation representation and data structure is critical to efective fragment packing,
as it affects the computation time, the possible conformation-change operators, and the possible
cost functions. We represent protein conformations as the 3-d coordinates for all heavy atoms (not
hydrogens). Using a full 3-d representation for all heavy atoms, rather than a more compact one
such as φ-φ angles or sidechain centroids, slows down conformation generation slightly, but allows
much more flexibility in defining cost functions. One decision we plan to revisit is whether to
include explicit hydrogens—having explicit hydrogens would make hydrogen-bond scoring simpler,
but increases the size of the conformational space, since torsion angles for the NH3 and OH groups
would then need to be set.

We do not require the backbone to be contiguous, but allow breaks between residues. This allows
us to represent directly the multiple-segment information we get from fold-recognition alignments,
bringing fold-recognition and new-fold techniques into a unified framework. For homology modeling,
unlike Rosetta [9], we do not pick a single alignment and freeze the backbone for those residues,
but allow many alignments to be sampled and parts of different ones combined.

Allowing broken backbones introduces a problem that is not present in programs, like Rosetta,
that use a contiguous backbone: what is the relationship between unconnected parts of the back-
bone? what moves when a fragment is inserted?

To solve this problem, we represent the protein as a tree of segments, where each segment is a
contiguous piece of the protein with properly formed peptide bonds. The edges between segments,
called tertiary edges, indicate which pairs of atoms are thought of as holding the segments together.
When a conformation is changed, say by fragment insertion, the tree is broken into subtrees and
the subtrees rigidly transformed. Note that a subtree may consist of widely separated parts of the
protein chain, as would be necessary for holding together a domain while an inserted other domain
changes shape. The tree structure is generated and maintained automatically as the conformation
is read in and manipulated.

C.4.2 Conformation-changing operators

We have implemented several conformation-changing operations, beginning with the fragment in-
sertion operation introduced by Simons and Baker [111]. We have three sources for fragments to
insert: very short ones (1-4 residues) from a generic fragment library, which must match exactly
on all residues, medium-length ones (9-12 residues) found by fragfinder, and variable-length ones
that come from fold-recognition alignments. We also have an operator for inserting two fragments
simultaneously, to allow for hinge-like motions of part of the conformation, though there is currently
no constraint that the conformation change actually be hinge-like.

In addition to fragment insertion, we have alignment insertion, which inserts several segments
at once, keeping them in the same frame of reference. This operator allows us to import complete
fold-recognition results into our fragment-packing optimization.
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We have a number of operators that attempt to improve some part of our cost function—reducing
breaks, forming or improving disulfide bonds, reducing clashes, reducing the cost of user-specified
constraints, and so forth. Many of these operators work by trying a small number of potential
fragment insertions and computing the effect the fragment insertion would have on just part of the
cost function, selecting the fragment insertion that appears to make the most improvement.

We also have operators for repositioning subtrees, either jiggling them a small amount or trying
to find the optimal placement for them, with various ways of splitting the tree into subtrees. On
a smaller scale, we also have operators for changing the rotamers of the residues without changing
the backbone, to improve packing or reduce clashes.

Since we are using a genetic algorithm for our stochastic search, we also have crossover operators
that combine parts of two conformations to get a new one.

C.4.3 Stochastic search

As mentioned above, we are using a genetic algorithm to search conformational space. We start from
a set of conformations (randomly, based on fold-recognition alignments, or from previous runs of
undertaker), and randomly apply operators to generate new conformations. New conformations that
score well are added to the pool for the next generation, and poorly scoring older conformations
are eliminated. To make sure that the pool mixes rapidly, we keep no more than 40% of the
conformations from the previous generation.

We keep track of the success rate for each operator (how often it results in a conformation being
kept in the pool) and adjust the probability of applying the operators based on their success. The
adaptation scheme we are currently using is rather crude and sometimes gets stuck applying only
one or two of the operators, if it has initial success with them.

We use the results of several runs of the genetic algorithm to seed the pool for another run,
often getting noticeable reduction in cost from crossover between the local minima.

C.4.4 Cost function

Substantial effort was put into making the cost function easily modified and extended, as it was
quite clear that a lot of future work would be on different scoring functions.

The cost function can be defined at run time as a linear combination of any subset of a large
number of different basic cost functions, and the basic cost functions themselves can be parame-
terized at run time. We currently have over two dozen basic cost functions and still have several
more that we believe we should implement and test. New basic cost functions are very easily
added to the code, and they add no computational cost unless they are specifically requested in the
linear-combination specified at runtime.

One of our most important cost functions, indeed the one that gives undertaker its name, is the
burial function. This is a parameterized function that counts for each residue the number of atoms
of the conformation within a sphere near the residue and scores the sphere based on the probability
of seeing that number of atoms. The sphere is referred to as a spot, and the number of atoms whose
centers are within the sphere as the burial of the spot. The parameter files for a burial function
include a specification of where the center of the sphere is relative to the residue, the size of the
sphere, and the smoothed probability distribution of burial for each residue type. The undertaker
program includes functionality for optimizing the spot locations (to maximize burial for dry spots,
to minimize burial with a distance constraint for wet spots, or to maximize mutual information with

28



the residue type for generic spots whose location does not depend on the type of residue) and for
collecting and smoothing histograms for defining the probability distribution.

We also have basic cost functions that can accept the predicted probabilities over a local structure
alphabet for a target and score the conformation using them (currently working only for the alpha
torsion-angle alphabet).

One important basic score function accepts user-specified distance constraints on pairs of atoms,
and tries to satisfy these constraints while generating conformations. These constraints can come
either from educated guesses by the user of the program or from experimental data (such as NMR
experiments or cross-linking experiments).

D Research Design and Methods

We propose two major research directions: improving our fold-recognition and alignment techniques
and improving our new-fold techniques. We also propose a documentation and outreach effort, to
increase the use of our tools by bench biologists.

D.1 Fold-recognition and alignment

Our hmm-based fold-recognitions and alignment methods are fairly mature, but we have identified
several areas in which they can be improved:

D.1.1 Local structure prediction

We do not anticipate major improvements in our methods for predicting local structure, but will
clean up the software to make it distributable to other researchers. The main thrust of the research
here is in choosing which properties to predict.

We have just begun our exploration of which local structure alphabets are worthwhile to pre-
dict. So far we have looked at a representative sample of backbone-geometry alphabets—we plan
to examine other backbone-geometry alphabets and other structural properties, such as various
measures of solvent accessibility or burial. We will evaluate alphabets from the literature as well as
new ones based on our own ideas.

D.1.2 Multi-track hmms parameters

Our initial tests rather arbitrarily set the weight for the amino-acid track at 1.0 and for the local-
structure track at 0.3—we need to do systematic explorations of the effects of varying these weights,
to find a heuristic for choosing the weights for new alphabets. We will also investigate using
more than two tracks on our hmms, particularly once we have significantly different local structure
alphabets, such as secondary structure and burial. Balancing the weights for the different alphabets
will require considerable experimentation, with both alignment tests and fold-recognition tests.

D.1.3 Hmm-hmm alignment

Currently, our methods rely on aligning sequences (or pairs of amino-acid and secondary structure
sequences) to hmms, but we generate hmms for both the target and the template proteins, and an
hmm-hmm alignment technique might help us improve our fold-recognition and alignments.

Some fold-recognition techniques (such as FFAS [57]) have been using profile-profile alignment
with good results, and recent research has pointed out potentially better profile-profile alignment
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methods [128, 28]. We plan to extend these profile-profile techniques to hmm-hmm alignment
techniques and to extend them to multi-track hmms.

D.1.4 Better null models for multi-track hmms

We have been using reversed-sequence null models for the past several years for our hmms, and they
worked very well for amino-acid-only hmms but have occasionally failed badly for multi-track hmms.
For example, we traced the poor performance of the protein-blocks alphabet in our fold-recognition
tests to the fact that real sequences over the protein blocks alphabet are drawn from a distinctly
different distribution than reversed sequences. This behavior violates an important assumption
of the reversed-sequence null model, the reversibility property: that scores for randomly selected
sequences and reversed sequences come from the same distribution.

Even when alphabets individually satisfy the reversibility property, a combination of them may
not. For example, though both the stride and alpha alphabets satisfy (approximately) the
reversibility assumption, the cross-product of them does not.

One approach we will examine is using first- or second-order Markov chains to model sequences
in the non-reversible alphabets, and use these Markov chains as null models for the hmms.

Our current calibration of the statistical significance of our hmms uses an ad hoc family of
distributions to fit the fat tails observed in the scoring. The calibration method relies on the
symmetry of the distribution produced by the reverse-sequence null models, which in turn relies on
the reversibility property. When we develop new null models for non-reversible alphabets, we will
also have to develop new calibration techniques for determining the E-values.

D.1.5 Trimming alignments

We have studied improving hmm-generated alignments by trimming away low-reliability regions [19],
but have not yet incorporated this work into either the SAM-T2K multiple-alignment procedure or
the SAM-T02 multi-track hmms for fold recognition.

D.2 New-fold techniques

Much of our effort will be dedicated to improving our techniques for handling proteins, protein
complexes, and parts of proteins not covered by fold-recognition techniques.

D.2.1 Multimeric proteins

The conformation representation used by undertaker already handles non-contiguous backbones,
and so is fairly easily extended to handle multiple protein chains. We plan to try predicting
structures for both homo-multimers and hetero-multimers. We plan to start with homo-multimers,
since we can then make the assumption that all the copies of the protein have the same conformation,
and the only extra degrees of freedom are the rigid transformations that map one copy to another.
The operators that we have defined for moving subtrees in a single chain should be applicable to
multimeric proteins with only minor modifications.

D.2.2 Incorporating experimental data into predictions

Various experimental techniques (for example, NMR and cross-linking experiments) provide data
about approximate distances between selected atoms. Undertaker accepts distance constraints
expressed as a desired distance and a range around the desired distance that is used for shaping
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the energy well around the minimum at the desired distance. Undertaker can use this information
both in the cost function and in the conformation generation. We are interested in seeing how
much of such data is needed to get reasonable structures, and how much noise can be tolerated.
We have used hand-generated constraints to guide assembly of beta sheets, but have not yet tried
using experimental data.

Recently, Carol Rohl has used Rosetta together with residual diploar couplings to predict pro-
tein backbones accurately with much less data than is usually needed for NMR determination of
structure [102]. We have already included distance constraints and predicted torsion angle cost
functions in undertaker, so modifying it further to handle the information from residual dipolar
couplings should be straightforward. Although Carol Rohl is not a co-PI on this proposal, she has
accepted an offer to be on the engineering faculty at University of California, Santa Cruz and will
be collaborating with us.

D.2.3 Improving the cost function

One of the biggest areas for improvement in undertaker is the cost function that is used to determine
whether or not a conformation looks like a real protein.

While trying to use undertaker for CASP5 predictions, the most glaring omission was the lack of a
hydrogen-bond cost function. Undertaker tended to pull beta sheets apart, unless the conformation
was very compact, in order to reduce breaks or clashes. We had to add constraints by hand for
the hydrogen bonds we wanted to form or keep, in order to get reasonable results from undertaker.
One of our highest priorities is to add hydrogen bonds to the cost function, and hydrogen bond
optimization to the set of operators.

There are many different expressions that have been used for H-bond energy functions, which
seem to disagree on what terms are most important. We will probably have to write our own cost
function, based on histograms of measurements from high-resolution X-ray structures. Our rep-
resentation, which uses all heavy-atoms, has an advantage over sidechain-centroid representations,
in that sidechain hydrogen bonds can be detected and evaluated. Our lack of explicit hydrogens
may be a problem, as we have to compute the cost of the hydrogen bond from the positions of just
the donor, the acceptor, and the non-hydrogen atoms they are covalently bound to. For backbone
hydrogen bonds, which are the most important ones to model, the lack of explicit hydrogens does
not present any problems, since the position of the hydrogen on the backbone nitrogen is easily
determined from the available atom positions.

In addition to the H-bond cost function(s), we will add more basic cost functions for predicted
local properties—particularly those that have high predictability in our tests of local structure
alphabets and are quickly measured in undertaker. We have developed a way to convert the discrete
alpha alphabet predictions into a continuous density function for the underlying α torsion angle,
but have not yet done experiments to optimize the parameters of this conversion. We have not yet
developed a method for converting ang alphabet predictions into density functions over (φ, ψ) pairs,
but this is another obvious direction to try improving our application of predicted local structure
to the cost function.

The cost function used in optimizing a structure is a linear combination of any number of different
basic cost functions, but we have not yet determined a good weighting for the different terms. We
generated a number of decoys for CASP5 that could be used set up a regression problem to optimize
the weights, once the correct structures are released. We will also be setting up a benchmark set of
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structures and decoys for testing new basic score functions and optimizing the weights of the score
functions, since the CASP5 set is quite likely not a representative set of proteins.

We have found that existing decoy sets are not particularly useful for evaluating new cost
functions [6], as they are most sensitive to terms that have been omitted from the cost function
used when creating the decoys, and are very insensitive to terms included in that original cost
function. This problem can be only partially addressed by new decoy test sets, so we will also have
to evaluate any new cost function by doing optimizations using that cost function, not just scoring
existing decoy sets.

D.2.4 Fragment libraries and conformation-change operators

In order for the fragment-packing technique to work, the fragment library it works from must
contain fragments that are sufficiently close to the true structure. Although this can be guaranteed
by using a large library of very short fragments, search is then too slow to be useful. Having a
high density of low-RMSD medium-length and long fragments in the library greatly accelerates the
conformational search.

Since undertaker uses alignments and fragments found with our hmm tools, we expect that
improvements in the fold-recognition methods will also result in improved fragment libraries. We
will add tests of fragment libraries to our protocol for testing local structure alphabets and multi-
track hmms, to find ways of generating better libraries.

At the moment, the medium-length and long fragments used by undertaker have had simple
sidechain replacement done on them to tailor them for the particular position in the chain where
they are needed. No attempt has been made to optimize the sidechains. Because of this, many of
the fragments have internal clashes which make them score poorly when they are inserted. We plan
to experiment with doing some sidechain rotamer optimization on the fragment libraries before
beginning the main undertaker optimization of the whole conformation. We need to determine
whether the expense of optimizing the fragments results in better optimization of the main chain,
or whether we would be better off using cheaper fragment libraries, and spending the resources
doing the sidechain optimization in the context of the whole chain, as we currently do.

In addition to having good pieces to work from, the search algorithm must be able make con-
formation changes that improve the structure, without getting trapped in local minima of the cost
function. We have found that fragment-insertion alone gets trapped fairly easily and have been
developing other operators to change the conformation.

One set of operators are crossover operators, which create a new conformation by splitting the
chain into two parts, copying the first part from one conformation and the second part from a
different conformation. We have found it useful to insert a fragment at the join, to prevent the pool
of conformations from filling up with multiple copies of a single conformation. We plan to add more
crossover operations (such as an ABA crossover, that has two breakpoints and copies the middle
part from a different conformation, or a subtree replacement crossover), to allow easier combination
of good features from different conformations.

We have also started creating operators that make directed changes, rather than random changes,
to the conformation. For example, the OptSubtree operator splits off one part of the protein
to reposition, and looks at all distance constraints, disulfide bonds, and peptide bonds that join
the subtree to the rest of the protein. The subtree is then repositioned to try to minimize the
distances between where it is and where the various bonds and constraints imply it should be. This
operator drives down the cost function fairly quickly, but cannot be used alone, as it does only
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rigid transformation of a subtree, and cannot reshape the backbone within the subtree. We plan to
improve this operator to take into account clashes and hydrogen bonds also.

Because OptSubtree and the related JiggleSubtree, which moves the subtree randomly by a
small amount, are so powerful, we are plannnig to add an operator that deliberately breaks the
backbone where it is likely to be flexible (for example, at residues that are predicted to be on the
surface and whose secondary structure predictions are weak), to allow more rapid movement of the
rigid pieces, followed by fragment insertion in the neighborhood of the gap to close the break again.

Another operator we plan to add is one that tries to select fragments that will match strongly-
predicted secondary structure, rather than selecting fragments randomly and checking the local
structure properties only in the cost function. We can also encourage the rapid formation of local
structure by automatically adding distance constraints for helix length or for residues on a strand
that are separated by 2 or 4. Our longer fragments already are strongly biased in favor of the
predicted structure, but the 1–4-residue-long generic fragments are not so selected.

When we have good alignments to templates, it would be useful to be able to concentrate un-
dertaker’s attention on the loops, so it does not waste so much of the time evaluating conformations
that pull apart the core. Rosetta does this in an all-or-nothing way, by freezing the backbone in
the core for most of the optimization. Although we might introduce the option of freezing the core,
we are more interested in exploring other approaches, for example: increasing the probability of
fragment insertion near breaks, particularly if we introduce breaks in flexible regions; applying two
fragments simultaneously to residues that are close in 3-space but not on the chain, to get possible
hinging motions; or doing fragment insertions that move gaps out of strongly-predicted regions.

When we have a compact homology model built, there are often small breaks and clashes that
we have not been able to remove by fragment insertion. It might be good to allow small changes to
φ and ψ angles to close these small breaks. One operation we will look at would adjust the torsion
angles of a pair of backbone bonds that are nearly collinear, resulting in a movement of region
between the bonds, without changing what is outside them. We are interested both in making
small random changes and in trying to make changes that optimize parts of the cost function.

D.2.5 Human interface

It is easy to view the output of an undertaker optimization run with standard structure visualization
tools such as Rasmol [108], but there is currently no interactive way to manipulate the conformation.
There were many times during the CASP5 prediction season when we wanted to push a helix into
the “obvious” place, or move a strand to get better sheet formation, but we had no easy way to do
this. We were reduced to writing distance constraints to express where we wanted things to be and
running perl scripts that moved some part of the conformation to a different location.

We do not want to get into the endless morass of graphical user interfaces, but do plan on adding
some operations to make hand-manipulation of conformations easier. Undertaker can already be
run interactively, and if we add an option that allows RasMol to display the current conforma-
tion without leaving undertaker, we should be able to make hand-tweaking of conformations fairly
straightforward. In addition to direct hand-tweaking, we may want to apply specific undertaker op-
erators or optimization steps, both for debugging the operators and for doing hand-directed changes
to a conformation.
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D.3 Web pages and outreach

We propose putting together a turnkey solution for biologists that would accept a target protein
sequence and provide at least

1. a multiple alignment of probably homologous protein sequences from a protein data base such
as NR [94],

2. local structure predictions (such as secondary structure) for each position in the chain, together
with estimates of the reliability of the predictions, and an explanation of the alphabets being
predicted,

3. sequence logos, showing graphically what positions in the multiple alignment have high con-
servation and where the local structure predictions are most reliable,

4. a short list of the most similar proteins currently in the Protein Data Bank [8], with calibrated
E-values expressing how likely such a similarity is by chance,

5. high-quality alignments of the target sequence to the template proteins found in PDB,

6. simple three-dimensional models based on the alignments to templates,

7. complete three-dimensional models built by combining various alignments and fragments with
undertaker to optimize an energy function.

All of these steps would also be provided as a free web service, though the last may need to be
limited because of computational cost. Our current SAM-T02 web server5 provides up to Step 5,
but we plan to make significant improvements in all the steps.

We intend to increase the usage of our web server for protein-structure prediction by an order
of magnitude in the next three years. We have seen a growth from 14,000 uses a year to 22,000
then 33,000 over the last three years. Continuing this growth rate would take five years to get an
order of magnitude increase in use. To accelerate the usage of our tools, it is not enough to have
the best predictions—we must also have a clear, easy-to-use site with good tutorials on structure
prediction and documentation for interpreting the various outputs we provide, and we must inform
people of the existence and value of our tools.

We plan to redesign our site for easier maintenance and expansion. Part of this redesign effort
will be focussed on making the site easier to use and linking documentation in wherever possible.
We will have to write most of this documentation from scratch, since existing research papers are
generally too detailed and too technical for the intended end users, who are students and researchers
in biology, not bioinformatics.

Outreach is a more difficult problem for us, as our intended users are scattered all over the world
in different branches of biology. There is no small set of conferences, journal pages, web sites, or
newsgroups that would reach more than a very small fraction of the audience.

One way we may be able to get more good predictions into the hands of bench biologists is to
make predictions for the globular domains in the human genome, linking to the predictions from
the human genome browser at genome.ucsc.edu. These predictions would be made in the same
way as target proteins submitted over the web page, and the same outputs would be provided, but
pre-computation would make them much more quickly available, and the links from the browser
would make them easily accessible to a very large group of biologists and biomedical researchers.
The developers of the browser have expressed serious interest in such a collaboration.

5http://www.soe.ucsc.edu/research/compbio/HMM-apps/T02-query.html
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[76] A. Krogh, M. Brown, I. S. Mian, K. Sjölander, and D. Haussler. Hidden Markov models
in computational biology: Applications to protein modeling. Journal of Molecular Biology,
235:1501–1531, February 1994.

[77] A. Krogh, I. S. Mian, and D. Haussler. A Hidden Markov Model that finds genes in E. coli
DNA. Nucleic Acids Research, 22:4768–4778, 1994.

[78] D. Kulp, D. Haussler, M.G. Reese, and F. Eeckman. A generalized hidden Markov model
for the recognition of human genes in DNA. In Proceedings, 4rd International Conference on
Intelligent Systems for Molecular Biology, pages 134–142, St. Louis, June 1996. AAAI Press.
http://www.soe.ucsc.edu/~dkulp/cgi-bin/genie.

[79] E. S. Lander and P. Green. Construction of multilocus genetic linkage maps in humans.
Proceedings of the National Academy of Sciences, USA, 84:2363–2367, 1987.

[80] C. E. Lawrence, S. Altschul, M. Boguski, J. Liu, A. Neuwald, and J. Wootton. Detecting subtle
sequence signals: A Gibbs sampling strategy for multiple alignment. Science, 262:208–214,
1993.

[81] C. E. Lawrence and A. A. Reilly. An expectation maximization (EM) algorithm for the iden-
tification and characterization of common sites in unaligned biopolymer sequences. Proteins:
Structure, Function, and Genetics, 7:41–51, 1990.

[82] Lawrence Livermore National Laboratory. CASP5 experiment web site.
http://predictioncenter.llnl.gov/casp5/Casp5.html, 2002.

[83] Arthur M. Lesk, Loredana Lo Conte, and Tim J. P. Hubbard. Assessment of novel fold targets
in CASP4: Predictions of three-dimensional structures, secondary structures, and interresidue
contacts. Proteins: Structure, Function, and Genetics, 45(S5):98–118, 2001.

[84] J. M. Levin, S. Pascarella, P. Argos, and J. Garnier. Quantification of secondary structure
prediction improvement using multiple alignments. Protein Engineering, 6:849–854, 1993.

[85] Michael Levitt. Competetive assessment of protein fold recognition and alignment accuracy.
Proteins: Structure, Function, and Genetics, Supplement 1(1):92–104, 1997.

40



[86] J. MacQueen. Some methods for classification and analysis of multivariate observations.
In L.M. Le Cam and J. Neyman, editors, Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, volume 1, pages 281–297. University of California
Press, Berkeley, 1967.

[87] Martin Madera and Julian Gough. A comparison of profile hidden Markov model procedures
for remote homology detection. Nucleic Acids Research, 30(19):in press, 2002.

[88] Marcella McClure, Chris Smith, and Pete Elton. Parameterization studies for the SAM
and HMMER methods of hidden Markov model generation. In Proceedings, 4rd International
Conference on Intelligent Systems for Molecular Biology, pages 155–164, St. Louis, June 1996.
AAAI Press.

[89] B. Morgenstern, K. French, A. Dress, and T. Werner. Dialign: finding local similarities by
multiple sequence alignment. Bioinformatics, 14(3):290–4, 1998.

[90] J. Moult, T. Hubbard, K. Fidelis, and J. Pedersen. Critical assessment of methods of pro-
tein structure prediction (CASP): round III. Proteins: Structure, Function, and Genetics,
Supplement 3(1):2–6, 1999.

[91] Alexey G. Murzin. Structure classification-based assessment of CASP3 predictions for the fold
recognition targets. Proteins: Structure, Function, and Genetics, Supplement 3(1):88–103,
1999.

[92] Cedric Notredame and Desmond G. Higgins. SAGA: sequence alignment by genetic algorithm.
Nucleic Acids Research, 24:1515–1524, 1996.

[93] Cedric Notredame, Desmond G. Higgins, and Jaap Heringa. T-Coffee: A novel method for
fast and accurate multiple sequence alignment. Journal of Molecular Biology, 302:205–217,
2000.

[94] NR (All non-redundant GenBank CDS translations+PDB+SwissProt+PIR+PRF
Database) Distributed on the Internet via anonymous FTP from
ftp://ftp.ncbi.nlm.nih.gov/blast/db. Information on NR is available at
http://www.ncbi.nlm.nih.gov/BLAST/blast databases.html.

[95] C.A. Orengo, J.E. Bray, T. Hubbard, L. LoConte, and I. Sillitoe. Analysis and assessment of
ab initio three-dimensional prediction, secondary structure, and contacts prediction. Proteins:
Structure, Function, and Genetics, Supplement 3(1):149–170, 1999.

[96] J. Park, K. Karplus, C. Barrett, R. Hughey, D. Haussler, T. Hubbard, and C. Chothia.
Sequence comparisons using multiple sequences detect three times as many remote homologues
as pairwise methods. Journal of Molecular Biology, 284(4):1201–1210, 1998. Paper available at
http://www.mrc-lmb.cam.ac.uk/genomes/jong/assess paper/assess paperNov.html.

[97] S. Pascarella, R. De Persio, F. Bossa, and P. Argos. Easy method to predict solvent accessibil-
ity from multiple protein sequence alignments. Proteins: Structure, Function, and Genetics,
32:190–199, 1998.

41



[98] Lawrence R. Rabiner. A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257–286, February 1989.

[99] G.N. Ramachandran, C. Ramakrishnan, and V. Sasisekharan. Stereochemistry of polypeptide
chain configurations. Journal of Molecular Biology, 7:95–99, 1963.

[100] M. G. Reese, F. H. Eeckman, D. Kulp, and D. Haussler. Improved splice site detection in
genie. Journal of Computational Biology, 4:311–323, 1997.

[101] D.W. Rice and D. Eisenberg. A 3d-1d substitution matrix for protein fold recognition
that includes predicted secondary structure of the sequence. Journal of Molecular Biology,
267(4):1026–1038, 1997.

[102] Carol Rohl and David Baker. De novo determination of protein backbone structure from resid-
ual dipolar couplings using Rosetta. Journal of the American Chemical Society, 124(11):2723–
2729, 20 March 2002.

[103] M.J. Rooman, J. Rodriguez, and S.J. Wodak. Automatic definition of recurrent local structure
motifs in proteins. Journal of Molecular Biology, 213:327–336, 1990.

[104] M.J. Rooman, J. Rodriguez, and S.J. Wodak. Relations between protein sequence and struc-
ture and their significance. Journal of Molecular Biology, 213:337–350, 1990.

[105] B. Rost. Phd: predicting one-dimensional protein structure by profile-based neural networks.
Methods in Enzymology, 2666:525–39, 1996.

[106] B. Rost, C. Sander, and R. Schneider. Redefining the goals of protein secondary structure
prediction. Journal of Molecular Biology, 235:13–26, 1994.

[107] B. Rost, R. Schneider, and C. Sander. Protein fold recognition by prediction-based threading.
Journal of Molecular Biology, 270:471–480, 1997.

[108] Roger Sayle and E. James Milner-White. RasMol: Biomolecular graphics for all. Trends in
Biochemical Sciences, 20(9):374–376, September 1995.
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