A protocol for evaluating local structure and burial alphabets

Rachel Karchin, Richard Hughey, Kevin Karplus

karplus@soe.ucsc.edu

Center for Biomolecular Science and Engineering

University of California, Santa Cruz

Outline of Talk

- & What is a local structure alphabet?
- 💪 Example alphabets.
- & What makes an alphabet good?
- Evaluation protocol.
- A Results for several alphabets.

What is a local structure alphabet?

- Captures some aspect of the structure of a protein.
- A Discrete classification for each residue of a protein.
- Easily computed, unambiguous assignment for known structure.
- Gften based on backbone geometry or burial of sidechains.

Backbone alphabets

Our first set of investigations was for a sampling of the many backbone-geometry alphabets:

- 🎄 DSSP
- our extensions to DSSP
- 💪 STRIDE
- A DSSP-EHL and STRIDE-EHL
- **4** HMMSTR ϕ - ψ alphabet
- 4 α angle
- 💪 TCO
- 🎄 de Brevern's protein blocks

Burial alphabets

Our second set of investigations was for a sampling of the many burial alphabets, which are discretizations of various accessibility or burial measures:

- solvent accessible surface area
- relative solvent accessible surface area
- A neighborhood-count burial measures

DSSP

- SSP is a popular program to define secondary structure.
- 4 7-letter alphabet: EBGHSTL
 - $E = \beta$ strand
 - $B = \beta$ bridge
 - $G = 3_{10}$ helix
 - $H = \alpha$ helix
 - I = π helix (very rare, so we lump in with H)
 - S = bend
 - 🗕 T = turn
 - L = everything else (DSSP uses space for L)

STR: Extension to DSSP

- A Yael Mandel-Gutfreund noticed that parallel and anti-parallel strands had different hydrophobicity patterns, implying that parallel/antiparallel can be predicted from sequence.
- We created a new alphabet, splitting DSSP's E into 6 letters:

$$\left\| \begin{array}{c} \uparrow & \uparrow \\ \uparrow & \uparrow \\ \downarrow & \uparrow \\ \downarrow & \downarrow \\ \downarrow & \uparrow \\ \downarrow & \mathbf{M} \end{array} \right\| \left\| \begin{array}{c} \uparrow & \uparrow \\ \uparrow & \downarrow \\ \downarrow & \mathbf{Z} \\ \downarrow & \uparrow \\ \downarrow & \mathbf{E} \end{array} \right\|$$

STRIDE

- A similar alphabet to DSSP, but uses more information in deciding classification for NMR and poor-resolution X-ray structures.
- 6-letter alphabet (eliminating DSSP's S=bend): EBGHTL
 - $E = \beta$ strand
 - $B = \beta$ bridge
 - $G = 3_{10}$ helix
 - $H = \alpha$ helix
 - I = π helix (very rare, so we lump in with H)
 - T = turn
 - L = everything else

DSSP-EHL and STRIDE-EHL

- STRIDE alphabets to 3 values
 A Description
 - E = E, B
 - H = G, H, I
 - L = S, T, L
- A The DSSP-EHL alphabet has been popular for evaluating secondary-structure predictors in the CASP and EVA experiments.

HMMSTR ϕ - ψ alphabet

- Solution For HMMSTER, Bystroff did k-means classification of ϕ - ψ angle pairs into 10 classes (plus one class for cis peptides).
- **4** We used just the 10 classes, ignoring the ω angle.

ALPHA11: α angle

Backbone geometry can be mostly summarized with one angle per residue:

& We discretize into 11 classes:

TCO: cosine of carboxyls

Circular dichroism measurements are mainly sensitive to the cosing of the angle between adjacent backbone carboxyl groups:

& We used k-means to get 4-letter alphabet:

de Brevern's Protein Blocks

Clustered on 5-residue window of ϕ - ψ angles:

Solvent Accessibility

- Absolute SA: area in square Ångstroms accessible to a water molecule, computed by DSSP.
- Relative SA: Absolute SA/ max SA for residue type (using Rost's table for max SA).

Burial

- A Define a sphere for each residue.
- Count the number of atoms or of residues within that sphere.
- **Example:** center= C_{β} , radius=14Å, count= C_{β} , quantize in 7 equi-probable bins.

What makes an alphabet good?

A good alphabet should

- capture a conceptually interesting property.
- 🍝 be assignable by a program.
- be well-conserved during evolution.
- de predictable from amino acid sequence (or profile).
- & be useful in improving fold recognition.
- & be useful in improving alignment of remote homologs.

Test Sets

We have three sets of data for testing

- A set of multiple alignments based on 3D-structure alignment. (Based on FSSP, Z>=7.0)
- A diverse set of good-quality protein structures, with no more than 30% residue identity, split into 3 sets for 3-fold cross-validation. Taken from Dunbrack's culledPDB lists, further selected to contain domains in SCOP version 1.55.
- A set of difficult pairwise alignment problems, with "correct" alignments determined by several structural aligners.

Protocol

- Make multiple alignment of homologs for each protein (using SAM-T2K or psi-blast).
- Make local-alphabet sequence string for each protein.
- Check conservation using FSSP alignments.
- Train neural nets to predict local structure from SAM-T2K alignment. Measure predictability using 3-fold cross-validation.
- Use SAM-T2K alignment and predicted local structure to build multi-track нмм for each protein and use for all-against-all fold-recognition tests.
- Use the multi-track нммs to do pairwise alignments and score with shift score.

Conservation check

- SSP alignments are master-slave alignments.
- We compute mutual information between the local structure label of the master sequence and the local structure labels of the slave sequences in the same alignment column.
- Make a contingency table counting all pairs of labels and compute mutual information of the pairs.
- Mutual information:

$$\mathsf{MI} = \sum_{i,j} P(i,j) \log_2 \frac{P(i,j)}{P(i)P(j)}$$

We also correct for small sample sizes, but this correction is tiny for small alphabets.

Predictability check

- A Neural net output is interpreted as probability vector over local structure alphabet.
- Use neural nets with fixed architecture (4 layers with softmax on each layer, with window sizes of 5,7,9,13 and 15,15,15,|A| units).
- **4** Train on 2/3 of data to maximize $\sum \log P_{NN}$ (observed letter), test on remaining third.
- Compute information gain for test set:

$$\frac{1}{N} \sum \log_2 \frac{P_{NN}(\text{observed letter})}{P_{\emptyset}(\text{observed letter})} ,$$

where P_{NN} is the neural net output, P_{\emptyset} is the background probability, and N is the size of the test set.

Predictability (other measures)

- & We also look at less interesting measures:
 - $Q_{|A|}$, the fraction of positions correctly predicted (that is, the correct letter has highest probability).
 - SOV, a complicated segment-overlap measure often used in testing EHL predictions.
- & $Q_{|A|}$ and SOV are very dependent on the size of the alphabet, making comparison between alphabets difficult.
- Both consider only the letter predicted with highest probability, throwing out all other information in the probability vector.

Conservation and Predictability

				conservation	predictability	
	alphabet		MI		info gain	
Name	size	entropy	with AA	mutual info	per residue	$Q_{ A }$
str	13	2.842	0.103	1.107	1.009	0.561
protein blocks	16	3.233	0.162	0.980	1.259	0.579
stride	6	2.182	0.088	0.904	0.863	0.663
DSSP	7	2.397	0.092	0.893	0.913	0.633
stride-EHL	3	1.546	0.075	0.861	0.736	0.769
DSSP-EHL	3	1.545	0.079	0.831	0.717	0.763
alpha11	11	2.965	0.087	0.688	0.711	0.469
Bystroff(no cis)	10	2.471	0.228	0.678	0.736	0.588
ТСО	4	1.810	0.095	0.623	0.577	0.649
preliminary results with new network						
Bystroff	11	2.484	0.237		0.736	0.578

Conservation and Predictability

					conservation	predictabi	ility
		alphabet		MI		info gain	
	name	size	entropy	with AA	mutual info	per residue	$Q_{ A }$
	CB-16	7	2.783	0.089	0.682	0.502	
	CB-14	7	2.786	0.106	0.667	0.525	
	CA-14	7	2.789	0.078	0.655	0.508	
	CB-12	7	2.769	0.124	0.640	0.519	
	CA-12	7	2.712	0.093	0.586	0.489	
	generic 12	7	2.790	0.154	0.570	0.378	
	generic 10	7	2.790	0.176	0.541	0.407	
	generic 9	7	2.786	0.189	0.536	0.415	
	CB-10	7	2.780	0.128	0.513	0.470	
	generic 8	7	2.775	0.211	0.508	0.410	
	generic 6.5	7	2.758	0.221	0.465	0.395	
	rel SA	10	3.244	0.184	0.407	0.470	
2	rel SA	7	2.806	0.183	0.402	0.461	
A	abs SA	7	2.804	0.250	0.382	0.447	local structure – p.23/33

Multi-track HMMS

Use SAM-T2K alignments to build a two-track target нмм:

- Amino-acid track (created from the multiple alignment).
- Local-structure track (probabilities from neural net).
- Score all sequences with all models.

Fold-recognition (backbone)

Fold-recognition (backbone/burial)

ROC-1298 +=Same fold

False Positives/1298

Alignment Test

- Make two-track нмм for each sequence in alignment pairs.
- Use the нммs to align the pair of sequences (using posterior-decoded alignment).
- Compare alignments from нммs to reference alignments from structure-structure aligners.
- A Note: have two нмм-based alignments per sequence pair—take the mean of the scores.
- Use two or more different structure-structure aligners to create references.

Shift-score

The shift-score of two alignments x and y

shift_score =
$$\frac{\sum_{i=1}^{|x|} cs(x_i)}{|x| + |y|}$$

where ϵ = small algorithmic parameter, 0.2
 $|x|$ = number of aligned residue pairs in alignment x
 x_i = aligned residue pair i in alignment x
 x_i = subscore for residue r_i
 $= \begin{cases} \frac{1+\epsilon}{1+|\sinh ft(r_i)|} - \epsilon & \text{if shift}(r_i) \text{ is defined} \\ 0 & \text{otherwise} \end{cases} \end{cases}$
 $x_i(a)$ = sequence a residue aligned in column x_i
 $cs(x_i)$ = column score for column i in alignment x
 $= \begin{cases} s(x_i(a)) + s(x_i(b)) \\ \text{if column } x_i \text{ aligns } x_i(a) \text{ and } x_i(b) \\ 0 \text{ otherwise} \end{cases}$

Shift Score Example

Basic depiction of alignment shift

Reference

template ABCD--EFG target L-MNOPQR-

Candidate

template -AB-CDEFG target LMNOP--QR

Target Residue	Template residue aligned to in Reference alignment	Template residue aligned to in Candidate alignment	Shift
М	С	А	-2
N	D	В	-2
Q	E	F	+1
R	F	G	+1

Shift Score Results (backbone)

	difficult set		moderate set		
reference alignment	dali	се	dali	се	
dali		0.607		0.616	
str	0.320	0.307	0.466	0.418	
protein blocks	0.309	0.303	0.435	0.395	
dssp	0.306	0.295	0.454	0.402	
stride	0.357	0.292	0.452	0.400	
stride-ehl	0.298	0.290	0.438	0.396	
dssp-ehl	0.297	0.287	0.435	0.391	
alpha11	0.288	0.279	0.429	0.387	
bystroff	0.286	0.276	0.422	0.407	
tco	0.284	0.276	0.421	0.374	
one-track amino-acid-only					

SAM-T2K seed	0.220	0.219	0.365	0.325
FSSP seed	0.219	0.192	0.415	0.330

Shift Score Results (burial)

	difficult set		moderate set	
reference alignment	Dali	CE	Dali	CE
CB-14	0.270	0.265	0.415	0.378
CA-12	0.269	0.266	0.411	0.375
CA-14	0.266	0.261	0.407	0.372
rel. SA (10)	0.265	0.258	0.402	0.358
CB-16	0.263	0.258	0.410	0.375
CB-12	0.263	0.262	0.411	0.375
abs. SA (7)	0.262	0.256	0.401	0.355
generic 10	0.261	0.257	0.409	0.370
generic 9	0.258	0.254	0.406	0.366
generic 8	0.256	0.252	0.404	0.363
str2(2.4)+CB-14(1.8)	0.478			
str2(0.6)+CB-12(1.2)			0.490	

References

References

[KCK04] Rachel Karchin, Melissa Cline, and Kevin Karplus. Evaluation of local structure alphabets based on residue burial. *Proteins: Structure, Function, and Genetics*, 55(3):508–518, 5 March 2004. Online: http://www3.interscience.wiley.com/cgi-bin/abstract/107632554/ABSTRACT.

[KCMGK03] Rachel Karchin, Melissa Cline, Yael Mandel-Gutfreund, and Kevin Karplus. Hidden Markov models that use predicted local structure for fold recognition: alphabets of backbone geometry. *Proteins: Structure, Function, and Genetics*, 51(4):504–514, June 2003.

Web sites

UCSC bioinformatics info:

http://www.soe.ucsc.edu/research/compbio/
SAM tool suite info:

http://www.soe.ucsc.edu/research/compbio/sam.html

HMM **Servers:** http://www.soe.ucsc.edu/research/compbio/hmm-apps/

These slides:

http://www.soe.ucsc.edu/~karplus/papers/ local+burial-slides.pdf

