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ABSTRACT
Motivation: Protein sequence alignments have a myriad
of applications in bioinformatics, including secondary and
tertiary structure prediction, homology modeling, and
phylogeny. Unfortunately, all alignment methods make
mistakes, and mistakes in alignments often yield mistakes
in their application. Thus, a method to identify and remove
suspect alignment positions could benefit many areas in
protein sequence analysis.
Results: We tested four predictors of alignment position
reliability, including near-optimal alignment information,
column score, and secondary structural information.
We validated each predictor against a large library of
alignments, removing positions predicted as unreliable.
Near-optimal alignment information was the best predictor,
removing 70% of the substantially-misaligned positions
and 58% of the over-aligned positions, while retaining
86% of those aligned accurately.
Availability: The shift score alignment comparison al-
gorithm is available online at http://www.soe.ucsc.edu/
research/compbio/HMM-apps/compare-align.html and
from the authors on request.
Contact: cline@soe.ucsc.edu

INTRODUCTION
In the words of Jones (1997), ‘as the familiar joke goes,
there are really only three things that govern the overall
accuracy of comparative modeling: alignment quality,
alignment quality, and . . . alignment quality.’ Comparative
modeling is one application of sequence alignment; others
include tertiary and secondary structure prediction, predic-
tion of functional residues, phylogenic analysis, and gene
prediction. Sadly, all alignment methods make mistakes;
sequence alignment is not a solved problem. As suggested
by Dr Jones, mistakes in an alignment can compromise
its application. Thus, before one uses an alignment, one
would like to know which portions can be trusted. To this
aim, we addressed the task of studying fold recognition
alignments, and predicting which positions are reliable.

One approach to predicting alignment reliability in-

volves near-optimal alignment analysis (Vingron, 1996):
assessing alignment positions according to other align-
ments of the same sequences. Positions consistent among
many alignments are considered more reliable while those
that vary between different alignments are considered
more suspect. Many have used such information for
building alignments, and report greater accuracy (Holmes
and Durbin, 1998; Miyazawa, 1994; Zhang and Marr,
1995). Vingron and Argos (1990) demonstrated a method
for estimating the reliability of an alignment position
by comparing the score of the alignment to that of the
best-scoring alignment that omits the position. Mevissen
and Vingron (1996) later validated it on a large library of
moderate to difficult alignments.

Yu and Smith (1999) approached near-optimal align-
ment information from a Hidden Markov Model (HMM)
framework. Given a pairwise alignment and an HMM
trained on one sequence, they estimate the importance
of each alignment position according to the HMM’s
forward–backward probabilities, also called posterior
decoding probabilities. For any node in a model and
residue in a sequence, these probabilities reflect the
likelihood of aligning the residue to the node, given all
possible alignments of the sequence to the model.

Another approach is to measure the score of segments
of the alignment and omit low-scoring regions. Many
local alignment methods use this approach, including
BLAST (Altschul et al., 1990) and FASTA (Pearson and
Lipman, 1988). Zhang et al. (1999) proposed a system
to improve alignments by identifying and removing low-
scoring regions.

By conventional wisdom, there are variable regions
within protein families, such as loop regions, and align-
ment to such regions is more suspect. Dopazo (1997)
suggested a method to quantify variability within an
alignment according to the PAM distances between
the aligned sequences, and suggested that when a new
sequence is aligned to the family, its alignment should be
trusted less in the variable positions.

We explored four predictors of alignment position
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reliability: (1) the posterior decoding cost of each position,
derived from the HMM forward–backward information;
(2) the distance in the template sequence to the nearest
secondary structural element; (3) a log-likelihood ratio
reflecting the score of each alignment position; and (4) a
neural network combining these predictors with others.

To test these predictors, we developed an alignment
quality measure called the shift score. This measure
compares predicted and structural alignments; reflects
many types of alignment error including misalignment,
aligning too much, and aligning too little; and reports them
in a single number. The number compares well to accepted
measures. Where they disagree, arguments can be made
for the shift score.

We tested the predictors on alignments of remote
homologs by removing columns predicted as unreliable
and measuring the change in shift score. The predictors
removed as many as 73.5% of the unreliable positions,
while preserving 81.8% of the accurate ones, yielding an
improvement in overall alignment quality of about 15%.

ALIGNMENT TRIMMING METHODS
Our goal was to identify and remove suspect positions
from fold recognition alignments, where some target se-
quence is aligned to some template sequence family. Fig-
ure 1 describes our experimental design. First, we selected
a number of pairs of remote homologs of known structure.
Following a fold recognition framework, we labeled one
sequence as the template sequence and one as the target
sequence, where all knowledge of the target sequence’s
structure is set aside until the end of the experiment. We
selected a number of alignments of the template and tar-
get sequences, where the alignments could be built us-
ing information on the template sequence structure. We
then trimmed the alignments by identifying and removing
suspect positions, experimenting with various predictors
of alignment quality. Finally, we evaluated the trimming
methods by scoring the trimmed alignments against struc-
tural alignments of the template and target sequences.

Selection of the sequence pairs
For this work, we chose 200 pairs of remotely-related
sequences. The ‘twilight zone,’ now described as below
about 20% sequence identity (Rost, 1999), is where
sequence analysis becomes most challenging: where
contemporary methods become less reliable and where
the next generation of improvements must be made.
We selected 200 pairs of structures with high structural
similarity and low sequence similarity. We ensured low
sequence similarity by discarding any pair of sequences
that a simple pairwise method such as FASTA (Pearson
and Lipman, 1988) could align well. We ensured high
structural similarity by selecting sequences that were
superimposed well by each of three structural aligners:

alignment

Seq2 (Struct2)
Seq1 (Struct1)

Seq1
Seq2 (Struct2)

Seq1
Seq2 (Struct2) alignments

compare

removal of
suspect
positions

Score

Seq2Seq1

Struct1 Struct2

superposition
structural

Fig. 1. This figure illustrates the experimental process performed
for a single pair of sequences, Seq1 and 2. The process follows a
fold recognition framework in which Seq2 is the template sequence;
its structure is known and can be used to build or refine the
alignment of the two sequences. Seq1 is the target sequence; its
structure would not be known in a fold recognition scenario, and
its structural information is not used until the final scoring phase.
First, an alignment for Seq1 and 2 is obtained. Next, the alignment
is trimmed by removal of suspect positions. Then, this trimmed
alignment is compared to a structural alignment of Seq1 and 2,
generating an alignment score. This score is compared to the score
of the untrimmed alignment, measuring the effectiveness of the
trimming process.

DALI (Holm and Sander, 1997), VAST (Gilbrat et al.,
1996) and the Yale aligner (Gerstein and Levitt, 1998).
We used standards of structural superposition proposed by
each author or accepted within the scientific community:
a VAST p-value � 0.0001, a Yale RMSD � 4.0, and
a DALI score � 7.0. The 200 sequence pairs ranged
from 3 to 24% sequence identity, with an average identity
of 12%. This approximates the difficulty of a CASP3 fold
recognition target (Murzin, 1999).

We divided this set of 200 remote homology pairs into
an optimization set of 130 pairs and a validation set of
70 pairs. The optimization pairs were used to develop the
predictors, with 65 assigned for neural network training
and 65 for threshold selection. All validation pairs were
reserved for final performance testing. Note that each
sequence pair corresponds to two assignments of template
and target sequences. Thus, we had 130 template-target
assignments for neural network training, 130 for threshold
selection, and 140 for final validation.

Description of the alignments
The alignments used in this investigation were built by
the SAM (Hughey and Krogh, 1996) HMM software
suite. We used two pools of alignments, built with two
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slightly different methods. Both methods involve training
an HMM on a training alignment, and alignment of the
template sequence and its homologs, and aligning the
target sequence to the model. The methods differ in the
choices of training alignment and alignment algorithm.

We used two sets of training alignments, referred to
as FSSP and SAM-T99. For the FSSP alignments, the
DALI aligner (Holm and Sander, 1997) selected template
sequence homologs and aligned the template sequence
according to structural similarity. The target sequence was
excluded. The SAM-T99 training alignments were built
with the SAM-T99 method (Karplus et al., 1998). This
method is based on the SAM HMM suite (Hughey and
Krogh, 1996), and is available on the world wide web
at http://www.soe.ucsc.edu/research/compbio/ under HMM
applications. Sequences were selected and aligned
according to sequence similarity to the template sequence,
and include close and moderate homologs of the template.
Because the target and template sequences have low
sequence similarity, the target sequences did not need to
be removed from these alignments.

An HMM is a statistical model with probabilities for
transitions between alignment columns and for the match-
ing of residues to a specific column (Krogh et al., 1994).
An alignment of a sequence to the HMM reflects a choice
of transitions and residue matches evaluated with a dy-
namic programming algorithm. In the Viterbi algorithm, at
each decision point, the single most-likely option is cho-
sen. This yields the single most-likely path. This algorithm
does not use the full power of the HMM (and dynamic
programming) to sum over all possible alignments of the
sequence to the model. The forward–backward algorithm
calculates for each residue and for each alignment column,
the probability that that residue is in that alignment col-
umn, given all possible alignments. Forward–backward re-
quires substantially more computation than the Viterbi al-
gorithm. In the posterior decoding algorithm (Holmes and
Durbin, 1998), the Viterbi algorithm is applied to these
posterior probabilities to find a most probable alignment to
the HMM. Note that this is not necessarily the single most
likely alignment. For example, any single (non-optimal)
alignment may pick between a number of equally-likely
paths in an area of high variation. The posterior decoded
alignment will effectively sum this choice over the ex-
ponential number of possible alignments and determine
which choice is the most favorable overall. While posterior
decoding has a higher cost (Wheeler and Hughey, 2000),
it often generates more accurate alignments than Viterbi
(Holmes and Durbin, 1998). Posterior decoding is a form
of near-optimal alignment (Vingron, 1996).

The following methods were used to align the target
sequences to the template families.

FSSP-Posdecoding. This method involves models trained

on FSSP alignments and posterior-decoded align-
ment of the target sequences to the models.

SAM-T99-Viterbi. This method involves models trained
on SAM-T99 alignments and Viterbi alignment of
the target sequences to the models.

In both cases, we used global alignment rather than
local alignment. In our experience, the choice between
global and local alignment is often a trade-off between
over-alignment and misalignment, with local alignment
more prone to misalignment and global alignment more
prone to over-alignment. We chose to investigate global
alignment because the alignments generally contain a
greater number of accurate positions, suggesting that the
trimmed alignments might be of better quality.

Predictors of column reliability
We explored four predictors of column reliability,
described below.

Non-loop distance is the distance in template sequence
residues from the column in question to the nearest
secondary structural element. When a template sequence
residue is in a strand or helix region, the non-loop distance
is zero. When a template residue is in a loop, the non-loop
distance is the number of template residues to the nearest
end of the loop.

Column log odds is the log-likelihood ratio log( P(aat |colk)
P(aat )

)
, where P(aat |colk) is the probability of see-

ing amino acid type aat in alignment column colk , given
the other residues already aligned. P(aat ) represents the
background probability of amino acid type aat . The log
likelihood ratio describes how much more likely aat is
in column colk than anywhere in any alignment. Both
probabilities were computed using Dirichlet mixtures
(Sjölander et al., 1996).

Posterior-decoding cost (Yu and Smith, 1999) is a near-
optimal alignment measure (Vingron, 1996) reflecting
the likelihood that each target residue aligns to each
template family column, given all possible alignments
of target sequence and template family. Positions kept
consistent across many different alignments have lower
costs, while those that vary between different alignments
have higher costs. The cost is the minus log probability of
the alignment position, where the probability is computed
from the HMM forward–backward information.

The fourth predictor was a neural network combining
the predictors above with other factors influencing column
reliability. These factors include location of gaps near the
column, alignment column entropy, a log likelihood ratio
reflecting the agreement between the template secondary
structure and the predicted secondary structure of the
target sequence, and the distance in template residues
from where the target residue is aligned to where its
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posdecoding cost is minimized. The neural network was
given this information not merely for the column in
question, but for a window centered on the column. This
yielded a large set of inputs, which was later pruned down
to those found most relevant.

Reducing neural network complexity
Neural networks perform best when presented with a
small number of relevant inputs. Thus, when working with
neural networks, one should always try to simplify the
input set. We used sensitivity analysis (Koda, 1997) to
identify extraneous inputs. This technique measures the
change in training error relative to the change in each
input, indicating which inputs might be removed without
much impact on network performance.

We performed numerous iterations of sensitivity anal-
ysis. In each iteration, we trained a neural network and
estimated the sensitivity of the training error to each in-
put. We then selected a feature with low estimated sensi-
tivity, removed that feature for all columns in the window,
and retrained the neural network. If performance suffered,
the feature was reinstated. Otherwise, we continued with
another feature. This process continued until no feature
could be removed without compromising network perfor-
mance.

We then optimized the window size empirically, reduc-
ing the width of the window until network performance
suffered. Finally, we optimized the network architecture
empirically, reducing the number of hidden units.

Note that there are two schools of thought in opti-
mization. They are top–down, progressively removing
complexity from a complex system; and bottom–up,
progressively adding complexity to a simple system. We
followed a top–down approach in hopes of capturing any
indirect relation between the features.

Experimental design
We developed our system on 400 pairs of distantly-related
template and target sequences. For each sequence pair, the
target sequence was aligned to the template family with
each of the alignment methods described previously.

First, for each alignment method, we trained neural net-
works to predict alignment position reliability using the
130 training alignments. These 130 alignments contained
approximately 20 000 target residue alignment positions,
or 20 000 data points. These 20 000 data points were di-
vided at random into training and cross-training sets, with
the cross-training set used to adjust algorithmic parame-
ters during training. All neural network optimization in-
volved these same 20 000 data points.

Next, we used the 130 threshold selection alignments
to empirically derive reliability thresholds for each of
the four predictors. We applied each predictor to each
alignment, and experimented with a range of reliability

thresholds, removing positions that fell beyond the
threshold value. We then scored these trimmed alignments
against structural alignments, and selected one threshold
value according to the shift score. Table 1 shows these
thresholds, and compares the shift scores of the trimmed
global alignments to shift scores of untrimmed global
alignments and local alignments built with the same
alignment method.

Finally, we applied each predictor and threshold value
to the 140 validation alignments. We measured trimming
performance by removing alignment positions predicted
as unreliable, and scoring the trimmed alignments against
structural alignments.

ALIGNMENT SCORING
Before one can evaluate an alignment trimming method,
one needs a scoring system to indicate if trimming
improved an alignment. This work required an alignment
quality measure with certain characteristics. First, it
should be meaningful, with a strong score implying a
strong alignment. Second, it should incorporate penal-
ties for the many types of errors seen in alignments:
aligning too much (over-aligning), aligning too little
(under-aligning), and misaligning. Third, it should be
optimizable, such that removing any positions that detract
from the score improves the alignment. Most alignment
quality measures do not meet these criteria.

Many alignment quality measures must be paired with
a second measure to be meaningful. For example, RMS
Deviation (RMSD) or Mean Shift Error (MSE) are useful
only with a measure of alignment length, as both reflect
alignment accuracy but not extent. An alignment that
aligns only one residue, but aligns it accurately, would
have an excellent RMSD and MSE, but would probably
not be useful.

Another example is alignment specificity and alignment
sensitivity, the fraction of residues aligned correctly as a
proportion of the lengths of the predicted and structural
alignments, respectively. Specificity does not reflect under-
alignment, and would give a great score to an alignment
that aligns only one residue but aligns it correctly.
Sensitivity does not reflect over-alignment, and would
give a great score to an alignment that correctly aligns
one domain of two multi-domain proteins but incorrectly
aligns additional domains. In practice (Marchler-Bauer
et al., 1997; Briffeuil et al., 1998; Sauder et al., 2000),
specificity and sensitivity are reported together, and overall
assessment involves a subjective weighting of the two.
This becomes awkward for large-scale experiments.

Furthermore, most measures do not lend themselves
to alignment optimization, identifying the portion of the
alignment which yields the best score. Most measures
are optimized by removing any position not aligned
correctly. Consider an alignment that correctly aligns a
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XFTNVSCTTSKECWSVCQRLHNTSRGKCMNKKCRCYS
-INHSACAA--HCLLRG-----NRGGYCNKGVCVCRN

XFTNVSCTTSKECWSVCQRLHNTSRGKCMNKKCRCYS
-------INHSACAAHCLLRG-NRGGYCNKGVCVCRN

Predicted alignment

Structural alignment
XFTNVSCTT
-------IN

-INHSACAA
XFTNVSCTT

Fig. 2. Illustration of alignment shift. Here, the Isoleucine is shifted
by six positions. The shift of the Phenylalanine is undefined.

short motif and misaligns everything else by one position.
If optimized according to most measures, all of the
alignment would be discarded except for the short motif,
losing a lot of arguably useful information.

Alignment shift scores
Definition. Because no accepted alignment quality mea-
sure met our criteria, we invented our own. This measure,
referred to as the shift score, is based on alignment shift
information. Shift is a measure of misalignment or dis-
agreement between two alignments: if some residue ai is
aligned to residue b j in alignment X and residue bk in
alignment Y , shift(ai ) is the number of residues from b j
to bk . If residue ai is not aligned to another residue in ei-
ther case, shift(ai ) is undefined (Figure 2).

For some pair of sequences A and B aligned in predicted
alignment X and in structural alignment Y , the shift score
SSY (X) is

SSY (X) =
∑|X |

i=1 csY (Xi )

|X | + |Y | , where

|X | = Number of aligned residue pairs in X

csY (Xi ) = Score for column Xi in alignment X

=
{

s(a j ) + s(bk) if Xi aligns some
residues a j and bk

0 otherwise
sY (ri ) = Score for residue ri with respect to

structural alignment Y

=
{

1 + ε

1 + |shift(ri )| − ε if shift(ri ) is defined

0 otherwise
ε = scoring parameter, normally set to 0.2

sY (ri ) ranges from −ε to 1.0. For accurate positions, they
are 1.0. For small shifts, they are positive, dropping to zero
with shifts of five (1/ε). For large shifts, they approach
−ε. The csY (Xi ) terms are 2.0 for columns aligned
correctly, between 2.0 and −2ε for columns containing
misaligned residues, and 0 for over-aligned columns:
those that were not aligned in the structural alignment.
The shift score ranges between −ε and 1.0. If the two
alignments are identical, their shift score is 1.0.

If the predicted alignment X is largely misaligned,
its shift score will be low because the sY (ri ) terms in
the numerator will be small. If X aligns too much, the
shift score will be small because of the large |X | in
the denominator with few nonzero sY (ri ) terms in the
numerator. If X aligns too little, then the |Y | term in the
denominator will be large, with few nonzero terms in the
numerator. Thus, the shift score incorporates penalties for
misalignment, aligning too much, and aligning too little.

Validation
We validated the shift score by comparing it with the stan-
dard measures of alignment quality, alignment specificity
and alignment sensitivity. In a study of 325 pairs of pre-
dicted and structural alignments, the shift score compared
very well to alignment specificity and alignment sensitiv-
ity (Figure 3). In cases where the scores disagreed, argu-
ments could be made for the shift score. In Figure 3, the
upper circled outlier has a high shift score of 0.447 but low
sensitivity and specificity of 11.3 and 19.1 respectively.
It aligned a small number of residues correctly, yielding
its low specificity and sensitivity. However, it misaligned
many residues by only one position, accounting for its
high shift score. The other circled outlier has a high align-
ment sensitivity of 72.6, an alignment specificity of 30.6
and a low shift score of 0.144. It aligned many residues
correctly but included too much: a global alignment where
a domain hit was correct. In addition, it included a number
of substantially-misaligned positions. The misalignment,
plus the over-aligned positions, account for the low shift
score. Other outliers with lower shift scores than expected
from alignment sensitivity are also a result of overalign-
ing.

Optimization
The shift score can be optimized by the following simple
greedy algorithm:

(1) Compute the shift score of predicted alignment X .

(2) Remove from X column Xm , the column with the
worst column score csY (Xm).

(3) Compute the shift score for revised alignment X .

(4) If the score has not worsened, return to step 2.

(5) Reinstate Xm , the last column removed.

This algorithm produces a version of predicted alignment
X with the most inaccurate regions removed. It will retain
all accurate positions and positions with small shifts, and
will remove all over-aligned columns. With an ε of 0.2,
it will remove all positions shifted by 5 or more residues.
Other positions might be removed or retained according to
the overall alignment accuracy. In an accurate alignment,
positions shifted by 3 or 4 residues will usually be
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Fig. 3. Comparison of the shift score to alignment specificity (top)
and alignment sensitivity (bottom). Circles indicate the two outliers
discussed in the text.

removed. In a mostly inaccurate alignment, such positions
will be retained. These optimized alignments are referred
to as optimal subalignments. An alignment’s optimal
subalignment score indicates how much the alignment
could be improved by removing only the worst positions,
assuming prior knowledge of exactly which positions to
remove.

Finally, we scored the predicted alignments against a
panel of three structural alignments: DALI (Holm and
Sander, 1997), VAST (Gilbrat et al., 1996), and the Yale
aligner (Gerstein and Levitt, 1998). While comparisons
to one set of structural alignments might favor a method
somehow related to the one structural aligner, comparisons
to three structural aligners reduce this risk.

RESULTS
The underlying goal of this work was to identify factors
that suggest accuracy in sequence alignments. Toward this
end, we experimented with a set of methods to predict the
unreliable regions in alignments built with two different
HMM methods: FSSP-posdecoding and Target99-Viterbi.
We conducted two sets of experiments in parallel, one for
each of the two alignment methods, and in this section we
compare and contrast the results.

Neural network optimization
As described in the Section Methods, we optimized the
neural networks in a top–down fashion, beginning with a
complex architecture and gradually removing complexity.
We optimized the input feature set first, the window size
second, and the network architecture last.

For FSSP-posdecoding, the only features that proved
worthwhile were posterior decoding cost, column entropy,
locations of gaps within the window, and predicted
secondary structure similarity. For Target99-Viterbi, the
features that proved worthwhile were the same features
plus the distance from where each target residue was
aligned to where its posterior decoding cost was mini-
mized. Features that did not prove worthwhile in either
case include the column log odds, the non-loop distance,
and the probability that the target sequence was in a loop
region. This does not necessarily mean these features are
of no value. More likely, it indicates that other features
conveyed similar information, but were slightly more
informative.

Selecting prediction thresholds
For each predictor, we selected a trimming threshold
empirically by experimenting with a range of possible
threshold values, removing positions that fell outside each
threshold, and scoring these trimmed alignments against
structural alignments of the same sequences.

Table 1 shows that all predictors improved on the FSSP-
posdecoding alignments. Improvements were realized by
removing positions with a column log odds of less
than −2.7, a posterior decoding column cost of greater
than 1.9, or a neural network reliability prediction of
less than 20%. All of these represent removing only
those positions of very low confidence. For the non-loop
distance, we found our best results by removing alignment
positions where the number of template residues to the
nearest secondary structural element was more than five:
removing the middle of very long loops.

For Target99-Viterbi alignments, trimming by column
log odds was not effective. Compared to the FSSP-
posdecoding alignments, these are noisier, and contain so
many low-probability positions that any threshold value
removed large portions of the alignment. While the re-
maining positions might be accurate, the alignments were
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Table 1. For each predictor, this table describes the threshold values that
yielded best results for the threshold selection alignments. Local alignment
scores are shown for comparison. On FSSP-posdecoded alignments (top), we
realized minor improvements with non-loop distance and column log odds,
and greater improvements with the posterior decoding (posdecoding) cost or
the neural network prediction. On Target99-Viterbi alignments (bottom), we
realized improvement by trimming according to the non-loop distance, the
posdecoding cost, or the neural network prediction. For column log odds, we
did not find a threshold value that improved the Target99-Viterbi alignments

Predictor Shift score Threshold

Positions removed: FSSP-posdecoding
None 0.402 –
Local alignment 0.366 –
Non-loop distance 0.402 >5
Column log odds 0.405 <−2.7
Posdecoding cost 0.417 >1.9
Neural network 0.418 <0.20
Optimal 0.533 –

Positions removed: Target99-Viterbi
None 0.259 –
Local alignment 0.251 –
Non-loop distance 0.262 >3
Column log odds – None
Posdecoding cost 0.287 >0.7
Neural network 0.294 <0.15
Optimal 0.408 –

too short to yield good shift scores. For the other three
predictors, we see in Table 1 that the best thresholds found
were lower than those for FSSP-posdecoding alignments.
For non-loop distance and posterior decoding cost, this
represented removing a greater number of positions. For
the neural network, approximately the same proportion of
positions were removed, and the lower threshold merely
indicates a greater bias by the neural network to predict
everything as unreliable.

Validation results
Using the thresholds derived in the previous section,
we applied the predictors to a library of 130 validation
alignments. As described in the Section Experimental
design, these alignments were not used during neural
network training or threshold selection.

For Target99-Viterbi alignments, we found no effective
threshold for column log odds, and therefore did not apply
it to the validation alignments. The remaining predictors
were applied to each alignment in the validation set, and
positions with predictions beyond the threshold values
were removed. We then scored each trimmed alignment
against structural alignments from the three aligners:
DALI, VAST, and Yale. Table 2 shows the average shift
scores.

Table 2 shows that all methods improved on the
FSSP-posdecoding alignments. The best performance was

Table 2. Results on trimming the 140 validation alignments according to the
various predictors of alignment reliability. The best results in each category
are shown in boldface, and local alignment results are shown for comparison

Shift score
Trimming method DALI VAST Yale

FSSP-posdecoding
None 0.369 0.365 0.334
Local alignment 0.311 0.309 0.289
Non-loop threshold 0.373 0.368 0.337
Column log odds 0.371 0.367 0.336
Posdecoding cost 0.377 0.371 0.340
Neural network 0.382 0.372 0.344
Optimal 0.512 0.464 0.437

Target99-Viterbi
None 0.193 0.207 0.206
Local alignment 0.178 0.188 0.189
Non-loop threshold 0.193 0.206 0.206
Posdecoding cost 0.222 0.225 0.230
Neural network 0.233 0.235 0.236
Optimal 0.352 0.330 0.330

Table 3. Analysis of what positions are retained after the validation align-
ments are trimmed. Alignment positions were divided into the following cat-
egories according to DALI’s structural alignments: accurate; over-aligned,
aligning portions of the sequences that exhibit no structural similarity; and
badly misaligned, shifted by five or more residues

Category None Posdecoding cost Neural network

Retained by trimming method: FSSP-posdecoding
Total 24 802 19 514 16 161
Accurate 8 987 8 270 7 700
Over-aligned 8 972 4 277 3 064
Badly misaligned 5 661 3 745 2 725

Retained by trimming method: Target99-Viterbi
Total 27 101 13 317 13 955
Accurate 6 121 5 264 5 460
Over-aligned 8 522 3 566 3 418
Badly misaligned 9 701 2 941 3 400

achieved by the neural network, with posterior decoding
cost performing nearly as well. These methods yield
an improvement of 1.9–3.5%. While this might sound
modest, FSSP-posdecoding is our best alignment method,
so any improvement is noteworthy. For Target99-Viterbi
alignments, the non-loop threshold was not effective: the
improvement found during threshold selection did not
hold through validation. However, the other two methods
yielded improvement, with the neural network improving
the alignments by 13.5–20.1%. In both cases, the neural
network achieved the best performance, with posterior
decoding cost performing nearly as well. We selected
these two predictors for further analysis.
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To explore which positions were removed, we analyzed
the validation alignments relative to DALI’s structural
alignments. We focused on three categories of alignment
positions: aligned accurately; over-aligned, aligning
regions of the template and target sequences with no
structural similarity; and misaligned by five or more
residues. We counted the number of positions in each
category before and after trimming (Table 3).

Two points are evident from Table 3. First, both methods
are doing something right. They remove as much as 70%
of the badly misaligned positions and 50–65% of the
over-aligned positions while retaining more than 85% of
the accurate positions. Second, the neural network does
not yield much performance gain over posterior decoding
cost, which had been its strongest feature. In other words,
the neural network gets most of its information from
posdecoding cost, and the additional complexity buys little
added performance in practice. Where the two methods
appear to yield different results, much of the distinction
might come from the differences in their threshold values.
Because posterior decoding column cost is far simpler, it
is the superior predictor.

DISCUSSION
Alignment methods make mistakes. However, some of the
mistakes can be identified. We explored four methods for
identifying suspect alignment positions, applying them to
hard remote homologs. When we removed the suspect
positions, we saw substantial improvement in overall
alignment quality.

The stronger predictors both focus on posterior de-
coding information. Posterior decoding is a form of
near-optimal alignment algorithm (Vingron, 1996), al-
gorithms that estimate alignment information according
to various alignments of the sequences, emphasizing the
positions that are consistent across different alignments.

One predictor was the posterior decoding (posdecoding)
cost, the negative log probability of each target residue
aligning to each template family column, with this proba-
bility estimated according to all possible alignments of the
target sequence and template family. A simple threshold
on this cost yielded a 3% improvement over one of our best
alignment methods and a 15% improvement over a more-
general method. The second predictor was a neural net-
work trained to predict alignment position reliability given
this cost plus other information. It performed slightly bet-
ter than the posdecoding cost. In analysis of the positions
retained after trimming, we saw that these two predictors
removed 65–70% of the columns misaligned by more than
a few residues and 60% of the over-aligned positions while
preserving 85 and 89% of the accurate positions.

When comparing these last two predictors, the extra
complexity in the neural network yielded modest perfor-
mance gain. Posdecoding cost performed nearly as well,

and is far simpler. Therefore, we consider posdecoding
cost to be the best of the four predictors. When developing
the neural network, we followed an optimization scheme,
reducing the number of inputs and simplifying the archi-
tecture so long as these modifications yielded at least a
slight performance gain. Ironically, a slight performance
gain was exactly what we got! The lesson here is to justify
complexity according to not merely what yields more
information, but also according to when that information
merits the additional software, late nights, and caffeine
that its creation and use might require.
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