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Integrated Pathway Analysis for Cancer 

•  Integrated dataset for downstream analysis 
•  Inferred activities reflect neighborhood of influence around a gene. 
•  Can boost signal for survival analysis and mutation impact 

Multimodal Data 

CNV 

mRNA 

meth 

Pathway Model 
of Cancer 

Cohort Inferred Activities 

… 
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Outline 

•  Integrated Pathway Approach 

•  Application to find Pathway Biomarkers of Cancer 

•  Application to predict impact of mutations 

•  Pan-Cancer initial look 
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Main Approach: Detailed models of gene 
expression and interaction 
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Main Approach: Detailed models of gene 
expression and interaction 

MDM2 

TP53 
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Main Approach: Detailed models of 
expression and interaction 

MDM2 

TP53 

Two Parts: 

1.  Gene Level Model 
 (central dogma) 

2. Interaction Model 
 (regulation) 
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Pathway Recognition Algorithm Using Data 
Integration on Genomic Models (PARADIGM) 

Vaske et al. 2010. Bioinformatics 

Gene 
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PARADIGM 
Gene Model to Integrate Data 

3-state discrete variables 

relative to non-cancer,  
is this sample: 

up,  
same,  
down? 

Vaske et al. 2010. Bioinformatics 
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PARDIGM Gene Model to Integrate Data 

Vaske et al. 2010. Bioinformatics 
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Interactions Matter 

  Given information 
about the 
expression of TP53 
alone 

  Reasoning predicts 
apoptosis is in tact 
in these cells. 

Apoptosis 

Apoptosis 

Vaske et al. 2010. Bioinformatics 
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Interactions Matter 

  Given the interaction 
and data about MDM2. 

  apoptosis inference 
reversed 

Vaske et al. 2010. Bioinformatics 
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PARADIGM Interaction Components 

Transcriptional 
Regulation 

Transcription 
Factor 

Target Gene 

Post-translational 
Modification 

Kinase 

Phosphorylated 
gene 

Vaske et al. 2010. Bioinformatics 
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PARADIGM Interaction Components 

Protein 
Complex 

Subunit A Subunit B Subunit C 

Gene family, proteins with 
interchangeable function 

Gene A Gene B Gene C 

Vaske et al. 2010. Bioinformatics 
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PARADIGM Interaction Components 

Protein 
Complex 

Gene family, proteins with 
interchangeable function 

Noisy AND 
function 

Noisy OR 
function 

Subunit A Subunit B Subunit C Gene A Gene B Gene C 

Vaske et al. 2010. Bioinformatics 
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Outline 

•  Integrated Pathway Approach 

•  Application to find Pathway Biomarkers of Cancer 

•  Application to predict impact of mutations 

•  Pan-Cancer initial look 
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Angiopoietin receptor Tie2-mediated signaling 
FoxM1 network 

p53 pathway 

Per-sample integrated 
pathway 
levels 

~100 
Pathways 

316 TCGA Ovarian 
Samples 

PARADIGM Pathway Analysis 

Pathway Interpretation of Omics Data 

Tumor Samples 

C
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TCGA Network. 2011. Nature 
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TCGA Ovarian Cancer 
Inferred Pathway Activities 

Patient Samples (247) 
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(8
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) 

TCGA Network. 2011. Nature 
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Ovarian: FOXM1 pathway altered 
in majority of serous ovarian tumors 

FOXM1 Transcription Network 

Patient Samples (247) 
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TCGA Network. 2011. Nature 
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FOXM1 central to cross-talk between 
DNA repair and cell proliferation 
in Ovarian Cancer 

TCGA Network. Nature 2011 
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Ovarian: IPLs statify by survival time 
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Pathway Signatures: Differential Subnetworks 
from a “SuperPathway” 

Pathway Activities 

Pathway Activities 
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Pathway Signatures: Differential Subnetworks 
from a “SuperPathway” 

Pathway Activities 

Pathway Activities 
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Pathway Signatures: Differential Subnetworks 
from a “SuperPathway” 

SuperPathway Activities 

SuperPathway Activities 

Pathway 
Signature 



28 

One large highly-connected 
component (size and connectivity 

significant according to permutation 
analysis) 

Higher activity in ER- 

Lower activity in ER- 

Triple Negative Breast Pathway Markers 
Identified from 50 Cell Lines 

980 pathway concepts 
1048 interactions 

HIF1A/ARNT 

Characterized by 
several “hubs’ IL23/JAK2/TYK2 

Myc/Max 

P53 
tetramer 

ER 

FOXA1 

Sam Ng, Ted Goldstein 
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Networks can predict response to treatment: 
FOXM1/PLK/DNA Damage Network 

Up 
Down 

•  DNA damage network is 
upregulated in basal 
breast cancers 

•  Basal breast cancers are 
sensitive to PLK inhibitors 

B
asal 

C
laudin-low 

Lum
inal 

GSK-PLKi 

Heiser et al. 2011 PNAS 
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•  HDAC Network is down-
regulated in basal breast 
cancer cell lines 

•  Basal/CL breast cancers are 
resistant to HDAC inhibitors 

VORINOSTAT HDAC inhibitor 

Networks can predict response to treatment: 
HDAC Network 

Heiser et al. 2011 PNAS 



31 

Outline 

•  Integrated Pathway Approach 

•  Application to find Pathway Biomarkers of Cancer 

•  Application to predict impact of mutations 

•  Pan-Cancer initial look 
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Predicting the Impact of Mutations 
On Genetic Pathways 

M

Inference using all 
neighbors 

M

Inference using 
downstream 
neighbors 

M

Inference using 
upstream neighbors 

Sam Ng 
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RB1 Loss-of-Function (GBM) 

Discrepancy Score 
PARADIGM downstream 
PARADIGM upstream 
Expression 
Mutation 

RB1 

Sam Ng 
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RB1 Network (GBM) 

Sam Ng 
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RB1 Discrepancy Scores distinguish 
mutated vs non-mutated samples 

Signal Score (t-statistic) = -5.78 
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RB1 discrepancy distinction is significant 

•  Given the same network topology, how likely would we 
call a gain/loss of function 
–  Background model: permute gene labels in our dataset 
–  Compare observed signal score to signal scores (SS) obtained from 

background model 

Observed SS Background SS 
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TP53 Network 
PARADIGM upstream 
Expression 
NFE2L2 Mutation 
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Gain-of-Function (LUSC) 

NFE2L2 

Discrepancy Score 
PARADIGM downstream 
PARADIGM upstream 
Expression 
Mutation 

Sam Ng 
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NRF2 Network (LUSC) 

Sam Ng 
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Discrepancy scores are sensitive 

Signal Score (t-statistic) = -5.78 Signal Score (t-statistic) = 4.985  

RB1 NFE2L2 
Signal Score (t-statistic) = -10.94 

TP53 

Obser
ved 
SS 

Backgro
und SS 
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Passenger Mutations should not have 
distinctive discrepancies 

•  Is the discrepancy specific? 
•  Negative control: calculate scores for 

“passenger” mutations 
•  Passengers: 

– insignificant by MutSig (p > 0.10)  
– well-represented in our pathways 

•  Discrepancy of these “neutral” mutations 
should be close to what’s expected by 
chance (from permuted) 
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Discrepancies of Passenger Mutations 
are NOT distinctive  
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What about when we don’t have 
pathway information for a gene? 

Ted Goldstein 
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What about when we don’t have 
pathway information for a gene? 

Ted Goldstein 
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Mutation Association to Pathways 

•  What pathway activities is a mutation’s presence associated? 
•  Can we classify mutations based on these associations? 

Mutations 
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Ted Goldstein 
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Mutation Association to Pathways 

•  What pathway activities is a mutation’s presence associated? 
•  Can we classify mutations based on these associations? 

Mutations 

PA
R

A
D

IG
M

 S
ig

na
tu

re
s 

Ted Goldstein 



47 

Mutation Association to Pathways 

•  What pathway activities is a mutation’s presence associated? 
•  Can we classify mutations based on these associations? 

(Note: CRC figure below; soon for BRCA) 

Mutations 
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Ted Goldstein 
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Mutation Association to Pathways 

•  What pathway activities is a mutation’s presence associated? 
•  Can we classify mutations based on these associations? 

(Note: CRC figure below; soon for BRCA) 

Mutations 
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PIK3CA, RTK pathway, KRAS 

Ted Goldstein 
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Mutation Association to Pathways 

•  What pathway activities is a mutation’s presence associated? 
•  Can we classify mutations based on these associations? 

(Note: CRC figure below; soon for BRCA) 

Mutations 
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TGFB Pathway mutations 

Ted Goldstein 
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Mutation Association to Pathways 

•  What pathway activities is a mutation’s presence associated? 
•  Can we classify mutations based on these associations? 

(Note: CRC figure below; soon for BRCA) 
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Outline 

•  Integrated Pathway Approach 

•  Application to find Pathway Biomarkers of Cancer 

•  Application to predict impact of mutations 

•  Pan-Cancer initial look 
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Sub-type connections across cancers 
can be explored with pathway activities. 

•  Do samples of one subtype share pathway activities with 
another subtype? 

•  May provide therapeutic option 
–  E.g. “rare toe carcinoma” has HER2-amplified 

signature; try herceptin on “rare toe carcinoma” (E. 
Collisson) 

•  Unsupervised analysis: compare direct signatures 
•  Supervised analysis 

–  Train computer to recognize subtype X. Does it 
recognize subtype Y? 

–  Perform reciprocal prediction: Also train on Y to 
predict X. 
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Is there a 
basal disease? 

TCGA Breast 

Different Breast Platform 

Cell line models 

TCGA Ovarian 
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Is there a basal disease? – BRCA vs OVCA 

•  TCGA ovarian more like basal than luminal breast 

Basal vs Ovarian 

Luminal B vs Ovarian 

Luminal A vs Ovarian 

CL basal vs TCGA basal 

S
am

pl
e 

P
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r F
re

qu
en

cy
 

Pearson Correlation 
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Supervised: OVCA score as basal on 
On basal vs. luminal predictors 

Serous Ovarian 
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Basal predictors separate OVCA 
subtypes. 
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Lung to breast comparison 

•  Training LUSC vs. LUAD -> basal BRCA 
–  70% accuracy (173/250) 

•  Training basal vs. luminal -> LUSC 
–  94% accuracy (130/138) 
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TP53 

HIF1A 

MYB 

Hubs predictive of basal 
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Global Pan-Cancer Map 

1382 tumor samples: 
 377 OV 
 69 KIRC 
 251 GBM 
 339 BRCA 
 117 LUSC 
 21 LUAD 
 67 READ 
 141 COAD 

unpublished 
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Navigating the landscape with pathways 
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