

Interactive Thin Shells – A Model Interface for the Analysis of Physically-based Animation

James Skorupski
Computer Science Dept.

UC Santa Cruz
Santa Cruz, CA, USA
jskorups@cs.ucsc.edu

Zoë Wood
Computer Science Dept.

Cal Poly, San Luis Obispo
San Luis Obispo, CA, USA

zwood@csc.calpoly.edu

Alex Pang
Computer Science Dept.

UC Santa Cruz
Santa Cruz, CA, USA
pang@cse.ucsc.edu

Figure 1 - Simultaneous Experiments. A pseudo-colored hollow cloth bowl with three pinned vertices is simulated collapsing
under the force of gravity. Each image depicts the same moment in time for the same mesh, with decreasing membrane and

bending energy constants, from left to right.

Abstract

Realism has always been a goal in computer
graphics. However, the algorithms involved in mimicking
the physical world are often complex, abstract, and
sensitive to changes in experimental parameters. We
present an interface to a physically-based algorithm, a thin
shell animation, which focuses on visualization,
experimentation, and control. Through the use of dynamic
surface coloring, abstract visual cues, robust user
interaction, and full control over the algorithm parameters,
our system facilitates experimentation and the process of
discovery. The system is targeted at enhancing the user’s
learning experience by clarifying interactions between
various components of many physically-based animations.

1 INTRODUCTION

One of the driving goals in the field of computer
graphics is to artificially mimic reality. While the ultimate
purpose of the resulting imagery may vary from
entertainment to scientific application, the underlying
algorithms are all mathematically intensive. Graphics
algorithms that are based on real phenomena, such as
fluid dynamics, rigid body dynamics, and the transport of
light, are known as physically-based models [1]. As
technology advances, more complex physically-based
algorithms continue to develop, and computer scientists
wishing to design physically-based algorithms encounter
an increasingly varied amount of scientific theory. In
addition, many modern computer science students
encounter only a limited selection of math courses in their
curriculum [3], [6], [11].

We present a model application designed to help

the user understand the complex workings of a physically-
based algorithm and augment their learning experience

with direct, visual interaction, through the use of dynamic
coloring, abstract visual cues, mouse interaction, and full
control over the algorithm parameters. The system
encourages the exploration, discovery, and understanding
of the mathematically intense concepts that underlie a
physically-based algorithm. Our interface is specifically
designed for interacting with a physically-based
animation algorithm. These types of algorithms facilitate
a natural graphical interface, because they mimic physical
motion which can be observed and readily confirmed in
the real world.

The program we created to demonstrate our

interface is called Interactive Thin Shells (ITS). The
underlying physically-based algorithm simulates the
dynamics of thin shells, which are flexible structures that
have a high ratio of width to thickness and have an initial
three dimensional non-flat shape that affects its energetic
reaction to change from that initial shape [9]. The ITS
environment allows us to directly demonstrate how our
interface can be used to investigate the properties of an
algorithm and interact with it in an intuitive and
educational manner.

2 RELATED WORK

The thin shell algorithm implementation in ITS
is based on a standard physically-based animation model,
described in detail in the work of Baraff and Witkin [1].
Our implementation of the physical system is based on a
simplified constraint model based partially off of previous
work of in the area of thin shells [9] and mass-spring
cloth simulation [4]. Fundamentally, the ITS
implementation is equivalent to a cloth animation model
with some modifications that support non-planar initial
configurations and the stiffer internal forces of thin shell
materials.

The ITS system also employs backward Euler

step implicit integration to progress the simulation, as
described by Baraff and Witkin [2]. The implicit method
provides for numerical stability that is critical in this
particular situation [1]. Thin shell materials typically
exhibit very little deformation within the surface of the
material itself, and require high resistance to these local
changes. Because of this, our simulation will experience
regions of high energy in response to deformation, where
implicit differentiation allows for reasonably sized time
steps [1]. Our particular implementation of the implicit
method is based on the work of Dean Marci of the Intel
Corporation [12], [13], [14].

The user interface of the ITS environment takes

the attributes of the underlying physically-based
animation model and provides a simple, intuitive interface
that is designed for an individual who wishes to
understand the capabilities and theoretical components of
the model. Similarly, Burgoon [5] demonstrated an
interface to a thin shell simulation based on origami
folding and the discrete shells model of Grinspun et al [9].
In general, there is little previous research that addresses
an interface design to physically-based animation,
however, the field of computer-based scientific simulation
provides another source of research.

The general capabilities of the ITS environment

are based on the work of Michael Rooks [15], who
defines a set of requirements for general visual interactive
simulation (VIS) software systems. VIS systems, as
defined by Rooks, simulate real world physical
phenomena as accurately and completely as possible. In
contrast, physically-based animation methods aim to
achieve convincing visual realism without a requirement
for accuracy. However, the goals for VIS systems remain
accurate as it is strongly based on experimentation. Rook
describes a complete VIS system as one that facilities (1)
Intervention, (2) Inspection, (3) Specification, and (4)
Visualization [15]. The ITS environment satisfies each of
these requirements by providing direct control of the
meshes involved and procession of time (Intervention),
access to and customization of all relevant material and
simulation attributes (Inspection and Specification), and
visual feedback of the resulting simulation and its effect
on the dynamics of the thin shell model (Visualization).
The ITS environment is designed such that a curious
student or computer science practitioner is able to
discover all aspects of the thin shell model, including its
efficiency, capabilities, limitations, and resulting level of
visual realism.

3 THE ITS SYSTEM

To allow the user to experiment with physically-
based animation, ITS provides an animation algorithm,

user interaction with that animation system, visualization
of animation parameters, and a playback system to store
and repeat animations. The following section highlights
these major features of the interface. For complete details
about the entire system, see [16].

3.1 Animation algorithm

To facilitate the experimental capabilities of the
ITS interface, a number of animation features are
included. The most important feature of the simulation is
its dynamic material and global parameters. The ITS
interface is able to, at any time in the simulation, allow
modification of any of the thin shell membrane or
bending parameters, as well as the time step size, gravity
force, integration mode, and any environmental collision
objects. This modification does not adversely affect the
progress of the simulation, and ensures that users can
experiment with many simultaneous parameters. Other
features of the animation system include constraints on
vertices, which can disable up to three degrees of freedom
and the ability to switch between explicit and implicit
integration modes without any errors in the simulation.
To allow for a large number of varying thin shell shapes,
the simulation is also able to load arbitrary mesh files. In
addition, to introduce a varied environment for the thin
shell interactions, the system supports collisions between
the thin shell and a sphere or cube objects. Figures 4 and
6 illustrate collision objects and constrained vertices,
respectively.

The forces and constraints that act on the
underlying physical system in ITS are a simplified version
of the internal forces that are present in previous work on
cloth and thin shells [2], [9]. The membrane, or in-plane
forces in our algorithm are based on the length of edges
between vertices and the bending force is a simplified
form of the piecewise geometric bending energy in [2],
[9]. This bending force simplification, which is based on a
simple linear constraint across the shared edge of a pair of
triangles, is similar to the bending forces of traditional
mass-spring particle-based cloth models [4].

The ITS environment supports adaptive time

steps to help ensure stable and real-time interaction at all
times. Upon each iteration of the simulation, rapid
changes in position or velocity invoke an automatic 50%
reduction in the time step size down to a fixed lower limit.
If this divergent behavior continues, the simulation
proceeds without reducing the time step, and notifies the
ITS interface of the problem. However, if a stable
iteration occurs, a lowered time step is subsequently
increased incrementally, up to a user-defined upper
bound.

3.2 User interaction

Live and paused interactions with the simulation
are treated independently. When an animation is live, or
playing, the user is able to select and move any vertex in
any experiment using the mouse. The selected vertex is
moved by a spring force between the projected mouse and
vertex locations along a plane that is perpendicular to the
camera and intersects the original vertex location. This
movement method allows for smooth and natural
interaction that is compatible with any camera rotations or
translations (See Figure 6). To avoid numerical
instability, the vertex of interest is not directly moved by
the mouse. When an animation is paused, the user may
click and select any vertex and choose to “pin” or “unpin”
it. Pinning a vertex enforces a constraint with zero
degrees of freedom on the vertex of interest, and
unpinning a vertex releases any constraints. A pinned
vertex cannot change velocity or position in the virtual
world. As an example, the rear rim vertices of the bowl in
Figure 1 have been pinned using this technique. The user
is not allowed to move the positions of any vertices while
the animation is paused, because this might introduce
numerical instability caused by instantaneous changes in
position.

To allow useful comparative analysis, the ITS
system supports simultaneous live or paused user
interaction of multiple experiments in parallel, since all
experiments share the same mesh structure. When a user
performs a live or paused interaction with any of these
common vertices, the ITS environment attaches
simultaneous constraints and forces on all meshes. A
screenshot of the process of synchronized experiment
interaction is displayed in Figure 4.

3.3 Visualization

The ITS environment provides two visualization
enhancements, dynamic force histogram coloring and a
temporal cache, to complement and enhance real-time
interaction with the physical model.

3.3.1 Dynamic force histogram

In the ITS environment, it is important that the
user be able to visually distinguish between the various
forces acting in the simulation, so that he or she may
readily explore the effects of various types of interactions,
and recognize changes in the resulting simulation. To this
end, the user may choose to view color representations of
the force values for the membrane, bend, or total forces
for each vertex within the system. When any of these
views are chosen, each vertex is colored according to a
histogram with a discrete set of colors that vary in hue
attributes, as pictured in Figures 2 and 3. This mapping
from the large range of possible force values to a series of

discrete colors ensures that resulting coloring model
exhibits sufficient variations to be perceived by the
human eye. This is important for determining areas of
interest and performing comparative analysis. The
difference between a traditional histogram and the one in
the ITS environment is its dynamic range and force-to-
color mapping capabilities, which are accomplished
through compression and equalization algorithms,
respectively.

3.3.2 Histogram compression

The histogram compression algorithm, outlined
in Figure 2, attempts to analyze a histogram and adjust the
upper and lower ranges so that the force values are
distributed evenly. To distribute the values evenly, if the
boundary segments contain more than twice as many
values than the average number of values per segment the
algorithm iteratively expands the range. Expansion occurs
by widening the range boundaries to the average value in
the edge range segments. Alternatively, if non-edge
buckets in the histogram have more than twice the
average number of values in each segment, the range is
slowly compressed. The boundary value compression
occurs in half segment increments.

Figure 2 - The ITS histogram compression algorithm.

Due to the fact that the compression algorithm

analyzes only the resulting histogram table segments and
their distributions during each iteration, our algorithm is
simple and fast, but limited in precision. It does not
necessarily converge on an ideal range size due to the
heuristics used in expanding and contracting the range.
As a result of this imprecision, there is a chance that the
algorithm will oscillate the distribution of range values
about an ideal location. To prevent this, boundary value
adjustments are buffered and limited to 50 iterations.

3.3.3 Histogram equalization

Like the histogram compression algorithm,
histogram equalization attempts to evenly distribute force
values across the entire histogram, to allow for utilization

of the full discretized color spectrum for comparative
force analysis. However, this algorithm performs a
nonlinear transform on force values based on the
cumulative probability distribution of those values. The
resulting color values reveal difference in range values,
but the ranges are no longer of a uniform size, and
comparisons across range segments in the same image
cannot be made easily (See Figure 9).

Figure 3 - Histogram equalization

The histogram equalization algorithm is based on

previous work in image processing, and the theory behind
its continuous and discrete formations can be found
elsewhere [8]. Figure 3 shows the discrete equation that is
used in the ITS implementation of histogram equalization.
In the equation, DA represents an arbitrary force value, DM
is the number of color levels in the histogram, nk is the
number of values at force value k or less, and N is the
total number of force values in the data set.

When requested, both the compression and

equalization algorithms can analyze a single frame of
force values or all frames and therefore all force values
that have been recorded. The analysis of all past and
present frame data results in a histogram that is optimized
for an entire run of a simulation, and has the ability to
show, on average, an adequate distribution of color for
any given frame in the animation. In order to analyze all
frames of force data, the temporal simulation cache is
accessed.

3.3.4 Temporal cache

The ITS application stores a circular, fixed-size
buffer of previous simulation data in a cache so that the
user may navigate to a previous time step and analyze the
state of the animation. A slider bar in the user interface
controls the playback of the cache. The histogram-based
force value pseudo-coloring feature may also be enabled
when viewing the cache, so that previous force values can
be observed and analyzed. The buffer keeps track of the
locations of all vertices in the animation, as well as per-
vertex force values. In addition, the material parameter
settings for each experiment are stored in this cache, as
well the time step and gravity settings. In this way, the
user is able to see the exact progression of the animation
and determine the cause of various behaviors.

Figure 4 - The ITS Graphical User Interface. The spheres

and cube are obstacles with which the material can
collide.

4 RESULTS

In this section, we will highlight some of the
important features of the ITS environment that allow it to
act as a truly free form experimental environment.

4.1 User interface overview

The main ITS user interface is displayed in
Figure 4. In this screenshot, a user is interacting with four
simultaneous experiments with varying strengths of
membrane and bending forces, and has histogram force
coloring enabled. Regions A-G contain buttons for user
interaction’s described in the previous section. For
specific details see [16]. Region G highlights the visual
representation of the force histogram, as discussed in
Section 3. At the bottom, region H outlines the group of
controls that allow the user to play back cached animation
data, and select any frame of interest for further analysis.
Finally, region I marks the visual cues for the current
adaptive time step status. Each of these bars represents the
size of the current time step for each experiment on
screen, in relation to the targeted time step indicated in
the global preferences panel on the right side of the
screen.

4.2 Animation features

As expected, the explicit mode requires an
extremely small adaptive time step, on the order of
0.00001 seconds, 1/100th the size of the implicit mode
time step, in order to keep the animation stable. Figure 5
demonstrates a set of simultaneous experiments with
varying membrane (kb) constants and bending force (km)
constants. From left to right, kb = km = 100000, 12500,
1562, and 195, respectively. Each displayed frame of the

A

B

C

D

E

F

G

H

I

])1)]/(*[,0max()(2 −= NnDroundDf kMA

experiment is shown at the same moment in time, and
demonstrates varying reactions to collisions or pinned
vertex constraints.

Figure 5 - Two mesh experiments: A falling half sphere
impacting an invisible cube and a ring, pinned at a single
point, shown at the same moment in time, with decreasing

membrane and bending force constants.

Figure 6 - Live user interaction. The blue control points
resting on the plane represent vertices constrained in one

dimension.

4.3 User interaction

The screenshots in Figures 1 and 6 demonstrate
the paused and live interaction modes, respectively. The
hollow bowl in Figure 1 has three rim vertices pinned,
while the rest of the mesh is left to succumb to gravity.
Each displayed mesh has a varying level of bending force,
and is shown at the same moment in time. From left to
right, the bending force constants, kb,, are 100000, 12500,
8000, and 2000, respectively. As is expected, the bowl
loses its structural rigidity when its bending force is
reduced. Figure 6 demonstrates live user interaction using
a spring force. Here, the user has selected the vertex
colored by a red control point, and is dragging the cursor
towards the blue control point, which represents the target
constraint location. In addition, force coloring is enabled,
revealing the redder regions of high force. The arrow in
the screenshot shows the direction of force.

4.4 Visualization

In the screenshot in Figure 7, a hollow cylinder
lies flat on the floor, and its surface is colored according

to the histogram coloring scheme. Force vectors are also
visible on its surface, which augment the coloring by
indicating the direction of the force currently being
viewed.

Figure 7 - Visible force vectors and force-based vertex
pseudo-coloring

Figure 8 - The progression of forces in four dropped
cylinders with varying internal force contributions.

Similarly, Figure 8 shows the progression of

force coloring at various frames of an animation. In this
example, four simultaneous experiments with a mesh
cylinder of varying membrane and bend constants are
analyzed, with membrane forces only enabled in the
upper left, upper right, and lower left frame, and total
forces rendered in the lower right frame. The final frame
demonstrates the membrane energies canceling out the
gravitational force on the top of the cylinder, and residual
vibration between the floor boundary and the bottom of
the cylinder introducing a small amount of force on the
lower side of the object.

The histogram compression and equalization
algorithms are displayed in Figure 9. The plane mesh in
this screenshot has its upper left vertex pinned. Initially,
the force histogram distribution is insufficient for
revealing the force variations on the mesh at this stage in
the animation. In the middle frame, the histogram
compression algorithm has altered the range as much as it
could while maintaining fixed size range segments. In this
state, the image has a larger contrast and the variations in
the forces across the upper region of the mesh are more
apparent, but much of the lower region shows very little
visual variation. In the rightmost frame of this figure, the
equalization algorithm properly distributes the force
values across the histogram, at the expense of fixed color
range segment sizes. In this final stage, the force
variations are very visible, but judgments about their
relative force intensities would be inaccurate, due the
nonlinear force value mapping.

Figure 9 - Histogram compression and equalization. The
original histogram range (left), the compressed range

(middle), and the compressed and equalized range (right).

4.5 Thin shell model weaknesses

Due to the visualization and control features of
ITS, we easily and directly observed a weaknesses in our
thin shell model. As mentioned in Section 3, the bending
forces in our physical model are simple linear constraints
across the shared edge of two triangles. Given a rest
condition in which the angle between a pair of triangles is
close to 180 degrees, any bending that occurs will not be
resisted strongly until the bending angle has extended far
from that nearly flat configuration. This occurs because
the linear bending constraints are nearly parallel to the
pair of triangles, and imbue little force along the normal
of each of the triangles until a large amount of
deformation occurs. The weakness in this approximation
is readily observable within ITS as structural weakness in
certain meshes, such as the cylinder mesh in Figure 8.
Even with extremely high bending force constants, the
cylinder deforms easily during collision or user-initiated
interaction, due to the nearly parallel angles between each
adjacent polygons in the mesh.

The ITS interface also reveals another inherent
weakness which stems from the discrete nature of the
animation. This weakness is not unique to our
implementation, but extends to any physically-based
animation model that relies on a discrete geometric

formulation of an object. The weakness is illustrated in
Figure 10, where a v-beam is constrained on an entire side
and left to hang under the force of gravity. Both corners
of the beam should exhibit symmetric force distributions
but they do not due to the discrete triangulation of the
mesh. This structure results in one corner vertex that has
three membrane constraints to neighboring vertices, as
seen on the right frame of Figure 10, while the other
corner vertex in the left frame has connections with two
neighboring membrane constraints and a single, weaker
bending constraint across to the neighboring triangle.
Therefore, the inherent discrete geometry of the model
prevents it from accurately mimicking the symmetric
forces that would have resulted from a similar real world
experiment with a thin shell material in a similar
configuration.

Figure 10 - Unrealistic Forces. Two panels (left, right)

show bending force views of two sides of the same
experiment on a v-beam with pinned vertices. The forces
are asymmetric due to the underlying triangulation of the

mesh. The black lines indicate triangle edges.

4.6 User feedback

The ITS interface was tested by several expert
researchers working in the field of physical simulation
from two different research labs. Users reported that the
open, experimental framework encouraged them to play
with simulation parameters, which they found to be
valuable. In particular, they found the side-by-side
experiments with varying parameters and the temporal
cache play-back features to be useful when exploring a
simulation [10], [17]. A thorough user study is left for
future work.

5 CONCLUSIONS AND FUTURE WORK

The Interactive Thin Shells application provides
an experimentally-focused, open, informative and very
accessible interface to a physically-based animation
algorithm. The careful research of Michael Rooks resulted
in specific system requirements and framework for VIS
applications [15]. These specifications served as a basic
guide for the construction of our system. Ultimately, by
providing features that allow for thorough intervention,
inspection, user-driven specification, and visualization of
the underlying physical model, we satisfied each of the
VIS requirements in multiple ways, so that the user has a

large variety of useful visualization and interaction
mechanisms available at all times.

The ITS visual feedback worked so well, it

allowed us to identify weaknesses in the chosen thin shell
model. While the bending angle constraint simplification
was known to be imperfect, the subtle behavior of weak
bending forces at extremely obtuse angles and their
results on the animation as a whole were only obvious
after carefully exploring simultaneous experiments on
multiple meshes while varying specific parameters. In
addition, the force coloring patterns in specific pinned
mesh configurations were another clear indicator that our
simplistic bending force was not a completely adequate
model in many cases. The additional discovery of
asymmetric forces due to the triangulation of the mesh
was another phenomenon that was found only after use of
the ITS interface. In this case, the histogram compression
algorithm was essential in allowing us to perceive the
force asymmetry in the v-beam mesh in Figure 10. Due to
the fact that many physically-based animations utilize
discrete representations, such as triangles meshes, the
ability to discover and analyze the flaws in these
approximations is an extremely valuable feature of the
ITS interface, and further exhibits the usefulness of the
tool in situations outside of thin shell animation.

Future work includes improving the force

coloring scheme by implementing a form of intelligent
surface shading that does not excessively obscure the
force coloring, yet preserves the surface shading. To
make the ITS program widely available, ideally, its
visualization and analysis components could be
generalized into an API for a large assortment of
mathematically intensive animation models.

6 REFERENCES

[1] Baraff, D. & Witkin, A. (2001), 'Physically
Based Modeling', Siggraph 2001 Course Notes.

[2] Baraff, D. & Witkin, A. (1998),Large steps in
cloth simulation, in 'SIGGRAPH '98: Proceedings of the
25th annual conference on Computer graphics and
interactive techniques', ACM Press, New York, NY,
USA, pp. 43--54.

[3] Beaubouef, T. & Mason, J. (2005),'Why the high
attrition rate for computer science students: some
thoughts and observations', SIGCSE Bull. 37(2), ACM
Press, New York, NY, USA, 103--106.

[4] Breen, D.E.; House, D.H. & Wozny, M.J.
(1994),Predicting the drape of woven cloth using
interacting particles, in 'SIGGRAPH '94: Proceedings of
the 21st annual conference on Computer graphics and
interactive techniques', ACM Press, New York, NY,

USA, pp. 365--372.

[5] Burgoon, R.J. (2005),'Discrete Shells Origami',
Master's thesis, California Polytechnic State University
San Luis Obispo.

[6] D'Antonio, L.; Baldwin, D.; Ford, F.; Henderson,
P. & Wyatt, R. (2002),'Panel: is there too much math in
the computer science curriculum?', J. Comput. Small Coll.
17(3), Consortium for Computing Sciences in Colleges, ,
USA, 97--102.

[7] Feynman, C. (1986),'Modeling the Appearance
of Cloth', Master's thesis, Massachusetts Inst. of
Technology.

[8] Fisher, R.; Perkins, S.; Walker, A. & Wolfart, E.
(2003),'The Hypermedia Image Processing Reference',
http://homepages.inf.ed.ac.uk/rbf/HIPR2/.

[9] Grinspun, E.; Hirani, A.N.; Desbrun, M. &
Schröder, P. (2003),Discrete shells, in 'SCA '03:
Proceedings of the 2003 ACM SIGGRAPH/Eurographics
symposium on Computer animation', Eurographics
Association, Aire-la-Ville, Switzerland, Switzerland, pp.
62--67.

[10] Grinspun, Eitan. Personal Communication
regarding lab’s use of ITS, November 2006.

[11] Konvalina, J.; Wileman, S.A. & Stephens, L.J.
(1983), 'Math proficiency: a key to success for computer
science students', Commun. ACM 26(5), 377--382.

[12] Marci, D. (2006), 'Simulating Cloth for 3D
Games', http://www.intel.com/cd/ids/developer/asmo-
na/eng/20413.htm.

[13] Marci, D. (2000),’Real-Time Cloth’, in 'Game
Developers Conference 2000 Proceedings'.

[14] Pritchard, D. (2006), 'Implementing Baraff &
Witkin's Cloth Simulation'.

[15] Rooks, M. (1991),A unified framework for
visual interactive simulation, in 'WSC '91: Proceedings of
the 23rd conference on Winter simulation', IEEE
Computer Society, Washington, DC, USA, pp. 1146--
1155.

[16] Skorupski, J., Interactive Thin Shells - An
Interface for the Analysis of Physically Based Animation.
Technical Report CPSLO-CSC-06-02, California
Polytechnic State University, 2006.

[17] Smith, Adam & Scher, Steve. Personal
Communication, May 2007.

