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Figure 1 - Simultaneous Experiments. A pseudo-colored hollow cloth bowl with three pinned vertices is simulated collapsing 
under the force of gravity. Each image depicts the same moment in time for the same mesh, with decreasing membrane and 

bending energy constants, from left to right. 
 

Abstract 

Realism has always been a goal in computer 
graphics. However, the algorithms involved in mimicking 
the physical world are often complex, abstract, and 
sensitive to changes in experimental parameters. We 
present an interface to a physically-based algorithm, a thin 
shell animation, which focuses on visualization, 
experimentation, and control. Through the use of dynamic 
surface coloring, abstract visual cues, robust user 
interaction, and full control over the algorithm parameters, 
our system facilitates experimentation and the process of 
discovery. The system is targeted at enhancing the user’s 
learning experience by clarifying interactions between 
various components of many physically-based animations.   

1             INTRODUCTION 

One of the driving goals in the field of computer 
graphics is to artificially mimic reality. While the ultimate 
purpose of the resulting imagery may vary from 
entertainment to scientific application, the underlying 
algorithms are all mathematically intensive. Graphics 
algorithms that are based on real phenomena, such as 
fluid dynamics, rigid body dynamics, and the transport of 
light, are known as physically-based models [1].  As 
technology advances, more complex physically-based 
algorithms continue to develop, and computer scientists 
wishing to design physically-based algorithms encounter 
an increasingly varied amount of scientific theory. In 
addition, many modern computer science students 
encounter only a limited selection of math courses in their 
curriculum [3], [6], [11].  

 
We present a model application designed to help 

the user understand the complex workings of a physically-
based algorithm and augment their learning experience 

with direct, visual interaction, through the use of dynamic 
coloring, abstract visual cues, mouse interaction, and full 
control over the algorithm parameters. The system 
encourages the exploration, discovery, and understanding 
of the mathematically intense concepts that underlie a 
physically-based algorithm. Our interface is specifically 
designed for interacting with a physically-based 
animation algorithm. These types of algorithms facilitate 
a natural graphical interface, because they mimic physical 
motion which can be observed and readily confirmed in 
the real world.  

 
The program we created to demonstrate our 

interface is called Interactive Thin Shells (ITS).  The 
underlying physically-based algorithm simulates the 
dynamics of thin shells, which are flexible structures that 
have a high ratio of width to thickness and have an initial 
three dimensional non-flat shape that affects its energetic 
reaction to change from that initial shape [9]. The ITS 
environment allows us to directly demonstrate how our 
interface can be used to investigate the properties of an 
algorithm and interact with it in an intuitive and 
educational manner.  

2             RELATED WORK 

The thin shell algorithm implementation in ITS 
is based on a standard physically-based animation model, 
described in detail in the work of Baraff and Witkin [1]. 
Our implementation of the physical system is based on a 
simplified constraint model based partially off of previous 
work of in the area of thin shells [9] and mass-spring 
cloth simulation [4]. Fundamentally, the ITS 
implementation is equivalent to a cloth animation model 
with some modifications that support non-planar initial 
configurations and the stiffer internal forces of thin shell 
materials.  



 

 
The ITS system also employs backward Euler 

step implicit integration to progress the simulation, as 
described by Baraff and Witkin [2]. The implicit method 
provides for numerical stability that is critical in this 
particular situation [1]. Thin shell materials typically 
exhibit very little deformation within the surface of the 
material itself, and require high resistance to these local 
changes. Because of this, our simulation will experience 
regions of high energy in response to deformation, where 
implicit differentiation allows for reasonably sized time 
steps [1]. Our particular implementation of the implicit 
method is based on the work of Dean Marci of the Intel 
Corporation [12], [13], [14]. 

 
The user interface of the ITS environment takes 

the attributes of the underlying physically-based 
animation model and provides a simple, intuitive interface 
that is designed for an individual who wishes to 
understand the capabilities and theoretical components of 
the model.  Similarly, Burgoon [5] demonstrated an 
interface to a thin shell simulation based on origami 
folding and the discrete shells model of Grinspun et al [9].  
In general, there is little previous research that addresses 
an interface design to physically-based animation, 
however, the field of computer-based scientific simulation 
provides another source of research.  

 
The general capabilities of the ITS environment 

are based on the work of Michael Rooks [15], who 
defines a set of requirements for general visual interactive 
simulation (VIS) software systems. VIS systems, as 
defined by Rooks, simulate real world physical 
phenomena as accurately and completely as possible.  In 
contrast, physically-based animation methods aim to 
achieve convincing visual realism without a requirement 
for accuracy.  However, the goals for VIS systems remain 
accurate as it is strongly based on experimentation. Rook 
describes a complete VIS system as one that facilities (1) 
Intervention, (2) Inspection, (3) Specification, and (4) 
Visualization [15]. The ITS environment satisfies each of 
these requirements by providing direct control of the 
meshes involved and procession of time (Intervention), 
access to and customization of all relevant material and 
simulation attributes (Inspection and Specification), and 
visual feedback of the resulting simulation and its effect 
on the dynamics of the thin shell model (Visualization). 
The ITS environment is designed such that a curious 
student or computer science practitioner is able to 
discover all aspects of the thin shell model, including its 
efficiency, capabilities, limitations, and resulting level of 
visual realism.  

3             THE ITS SYSTEM 

To allow the user to experiment with physically-
based animation, ITS provides an animation algorithm, 

user interaction with that animation system, visualization 
of animation parameters, and a playback system to store 
and repeat animations. The following section highlights 
these major features of the interface. For complete details 
about the entire system, see [16]. 

3.1          Animation algorithm 

To facilitate the experimental capabilities of the 
ITS interface, a number of animation features are 
included. The most important feature of the simulation is 
its dynamic material and global parameters. The ITS 
interface is able to, at any time in the simulation, allow 
modification of any of the thin shell membrane or 
bending parameters, as well as the time step size, gravity 
force, integration mode, and any environmental collision 
objects. This modification does not adversely affect the 
progress of the simulation, and ensures that users can 
experiment with many simultaneous parameters. Other 
features of the animation system include constraints on 
vertices, which can disable up to three degrees of freedom 
and the ability to switch between explicit and implicit 
integration modes without any errors in the simulation.  
To allow for a large number of varying thin shell shapes, 
the simulation is also able to load arbitrary mesh files.  In 
addition, to introduce a varied environment for the thin 
shell interactions, the system supports collisions between 
the thin shell and a sphere or cube objects. Figures 4 and 
6 illustrate collision objects and constrained vertices, 
respectively. 
 

The forces and constraints that act on the 
underlying physical system in ITS are a simplified version 
of the internal forces that are present in previous work on 
cloth and thin shells [2], [9]. The membrane, or in-plane 
forces in our algorithm are based on the length of edges 
between vertices and the bending force is a simplified 
form of the piecewise geometric bending energy in [2], 
[9]. This bending force simplification, which is based on a 
simple linear constraint across the shared edge of a pair of 
triangles, is similar to the bending forces of traditional 
mass-spring particle-based cloth models [4].  

 
The ITS environment supports adaptive time 

steps to help ensure stable and real-time interaction at all 
times. Upon each iteration of the simulation, rapid 
changes in position or velocity invoke an automatic 50% 
reduction in the time step size down to a fixed lower limit. 
If this divergent behavior continues, the simulation 
proceeds without reducing the time step, and notifies the 
ITS interface of the problem. However, if a stable 
iteration occurs, a lowered time step is subsequently 
increased incrementally, up to a user-defined upper 
bound. 



 

3.2         User interaction 

Live and paused interactions with the simulation 
are treated independently. When an animation is live, or 
playing, the user is able to select and move any vertex in 
any experiment using the mouse. The selected vertex is 
moved by a spring force between the projected mouse and 
vertex locations along a plane that is perpendicular to the 
camera and intersects the original vertex location. This 
movement method allows for smooth and natural 
interaction that is compatible with any camera rotations or 
translations (See Figure 6). To avoid numerical 
instability, the vertex of interest is not directly moved by 
the mouse. When an animation is paused, the user may 
click and select any vertex and choose to “pin” or “unpin” 
it. Pinning a vertex enforces a constraint with zero 
degrees of freedom on the vertex of interest, and 
unpinning a vertex releases any constraints. A pinned 
vertex cannot change velocity or position in the virtual 
world. As an example, the rear rim vertices of the bowl in 
Figure 1 have been pinned using this technique. The user 
is not allowed to move the positions of any vertices while 
the animation is paused, because this might introduce 
numerical instability caused by instantaneous changes in 
position. 
 

To allow useful comparative analysis, the ITS 
system supports simultaneous live or paused user 
interaction of multiple experiments in parallel, since all 
experiments share the same mesh structure. When a user 
performs a live or paused interaction with any of these 
common vertices, the ITS environment attaches 
simultaneous constraints and forces on all meshes. A 
screenshot of the process of synchronized experiment 
interaction is displayed in Figure 4.  

3.3         Visualization 

The ITS environment provides two visualization 
enhancements, dynamic force histogram coloring and a 
temporal cache, to complement and enhance real-time 
interaction with the physical model.  

 
3.3.1      Dynamic force histogram  
 

In the ITS environment, it is important that the 
user be able to visually distinguish between the various 
forces acting in the simulation, so that he or she may 
readily explore the effects of various types of interactions, 
and recognize changes in the resulting simulation. To this 
end, the user may choose to view color representations of 
the force values for the membrane, bend, or total forces 
for each vertex within the system. When any of these 
views are chosen, each vertex is colored according to a 
histogram with a discrete set of colors that vary in hue 
attributes, as pictured in Figures 2 and 3. This mapping 
from the large range of possible force values to a series of 

discrete colors ensures that resulting coloring model 
exhibits sufficient variations to be perceived by the 
human eye.  This is important for determining areas of 
interest and performing comparative analysis. The 
difference between a traditional histogram and the one in 
the ITS environment is its dynamic range and force-to-
color mapping capabilities, which are accomplished 
through compression and equalization algorithms, 
respectively. 

 
3.3.2       Histogram compression  
 

The histogram compression algorithm, outlined 
in Figure 2, attempts to analyze a histogram and adjust the 
upper and lower ranges so that the force values are 
distributed evenly. To distribute the values evenly, if the 
boundary segments contain more than twice as many 
values than the average number of values per segment the 
algorithm iteratively expands the range. Expansion occurs 
by widening the range boundaries to the average value in 
the edge range segments. Alternatively, if non-edge 
buckets in the histogram have more than twice the 
average number of values in each segment, the range is 
slowly compressed. The boundary value compression 
occurs in half segment increments.  

 

 
Figure 2 - The ITS histogram compression algorithm. 

 
Due to the fact that the compression algorithm 

analyzes only the resulting histogram table segments and 
their distributions during each iteration, our algorithm is 
simple and fast, but limited in precision. It does not 
necessarily converge on an ideal range size due to the 
heuristics used in expanding and contracting the range.  
As a result of this imprecision, there is a chance that the 
algorithm will oscillate the distribution of range values 
about an ideal location. To prevent this, boundary value 
adjustments are buffered and limited to 50 iterations.  
 
3.3.3       Histogram equalization  
 

Like the histogram compression algorithm, 
histogram equalization attempts to evenly distribute force 
values across the entire histogram, to allow for utilization 



 

of the full discretized color spectrum for comparative 
force analysis. However, this algorithm performs a 
nonlinear transform on force values based on the 
cumulative probability distribution of those values. The 
resulting color values reveal difference in range values, 
but the ranges are no longer of a uniform size, and 
comparisons across range segments in the same image 
cannot be made easily (See Figure 9).  

 

 
Figure 3 - Histogram equalization 

 
The histogram equalization algorithm is based on 

previous work in image processing, and the theory behind 
its continuous and discrete formations can be found 
elsewhere [8]. Figure 3 shows the discrete equation that is 
used in the ITS implementation of histogram equalization. 
In the equation, DA represents an arbitrary force value, DM 
is the number of color levels in the histogram, nk is the 
number of values at force value k or less, and N is the 
total number of force values in the data set. 

 
When requested, both the compression and 

equalization algorithms can analyze a single frame of 
force values or all frames and therefore all force values 
that have been recorded. The analysis of all past and 
present frame data results in a histogram that is optimized 
for an entire run of a simulation, and has the ability to 
show, on average, an adequate distribution of color for 
any given frame in the animation. In order to analyze all 
frames of force data, the temporal simulation cache is 
accessed. 

 
3.3.4       Temporal cache  
 

The ITS application stores a circular, fixed-size 
buffer of previous simulation data in a cache so that the 
user may navigate to a previous time step and analyze the 
state of the animation. A slider bar in the user interface 
controls the playback of the cache. The histogram-based 
force value pseudo-coloring feature may also be enabled 
when viewing the cache, so that previous force values can 
be observed and analyzed. The buffer keeps track of the 
locations of all vertices in the animation, as well as per-
vertex force values. In addition, the material parameter 
settings for each experiment are stored in this cache, as 
well the time step and gravity settings. In this way, the 
user is able to see the exact progression of the animation 
and determine the cause of various behaviors.  

 

 
Figure 4 - The ITS Graphical User Interface. The spheres 

and cube are obstacles with which the material can 
collide. 

4            RESULTS 

In this section, we will highlight some of the 
important features of the ITS environment that allow it to 
act as a truly free form experimental environment.  

4.1          User interface overview 

The main ITS user interface is displayed in 
Figure 4. In this screenshot, a user is interacting with four 
simultaneous experiments with varying strengths of 
membrane and bending forces, and has histogram force 
coloring enabled. Regions A-G contain buttons for user 
interaction’s described in the previous section.  For 
specific details see [16].  Region G highlights the visual 
representation of the force histogram, as discussed in 
Section 3. At the bottom, region H outlines the group of 
controls that allow the user to play back cached animation 
data, and select any frame of interest for further analysis. 
Finally, region I marks the visual cues for the current 
adaptive time step status. Each of these bars represents the 
size of the current time step for each experiment on 
screen, in relation to the targeted time step indicated in 
the global preferences panel on the right side of the 
screen.  

4.2         Animation features 

As expected, the explicit mode requires an 
extremely small adaptive time step, on the order of 
0.00001 seconds, 1/100th the size of the implicit mode 
time step, in order to keep the animation stable.  Figure 5 
demonstrates a set of simultaneous experiments with 
varying membrane (kb) constants and bending force (km) 
constants. From left to right, kb = km = 100000, 12500, 
1562, and 195, respectively. Each displayed frame of the 
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experiment is shown at the same moment in time, and 
demonstrates varying reactions to collisions or pinned 
vertex constraints.  

 

 
 

Figure 5 - Two mesh experiments: A falling half sphere 
impacting an invisible cube and a ring, pinned at a single 
point, shown at the same moment in time, with decreasing 

membrane and bending force constants. 
 

 
Figure 6 - Live user interaction. The blue control points 
resting on the plane represent vertices constrained in one 

dimension. 

4.3          User interaction 

The screenshots in Figures 1 and 6 demonstrate 
the paused and live interaction modes, respectively. The 
hollow bowl in Figure 1 has three rim vertices pinned, 
while the rest of the mesh is left to succumb to gravity. 
Each displayed mesh has a varying level of bending force, 
and is shown at the same moment in time. From left to 
right, the bending force constants, kb,, are 100000, 12500, 
8000, and 2000, respectively. As is expected, the bowl 
loses its structural rigidity when its bending force is 
reduced. Figure 6 demonstrates live user interaction using 
a spring force. Here, the user has selected the vertex 
colored by a red control point, and is dragging the cursor 
towards the blue control point, which represents the target 
constraint location. In addition, force coloring is enabled, 
revealing the redder regions of high force. The arrow in 
the screenshot shows the direction of force. 

4.4         Visualization 

In the screenshot in Figure 7, a hollow cylinder 
lies flat on the floor, and its surface is colored according 

to the histogram coloring scheme. Force vectors are also 
visible on its surface, which augment the coloring by 
indicating the direction of the force currently being 
viewed.   

 

 
 

Figure 7 - Visible force vectors and force-based vertex 
pseudo-coloring 

 

 
 

Figure 8 - The progression of forces in four dropped 
cylinders with varying internal force contributions. 

 
Similarly, Figure 8 shows the progression of 

force coloring at various frames of an animation. In this 
example, four simultaneous experiments with a mesh 
cylinder of varying membrane and bend constants are 
analyzed, with membrane forces only enabled in the 
upper left, upper right, and lower left frame, and total 
forces rendered in the lower right frame. The final frame 
demonstrates the membrane energies canceling out the 
gravitational force on the top of the cylinder, and residual 
vibration between the floor boundary and the bottom of 
the cylinder introducing a small amount of force on the 
lower side of the object.  

 



 

The histogram compression and equalization 
algorithms are displayed in Figure 9. The plane mesh in 
this screenshot has its upper left vertex pinned. Initially, 
the force histogram distribution is insufficient for 
revealing the force variations on the mesh at this stage in 
the animation. In the middle frame, the histogram 
compression algorithm has altered the range as much as it 
could while maintaining fixed size range segments. In this 
state, the image has a larger contrast and the variations in 
the forces across the upper region of the mesh are more 
apparent, but much of the lower region shows very little 
visual variation. In the rightmost frame of this figure, the 
equalization algorithm properly distributes the force 
values across the histogram, at the expense of fixed color 
range segment sizes. In this final stage, the force 
variations are very visible, but judgments about their 
relative force intensities would be inaccurate, due the 
nonlinear force value mapping.  

 

 
 

Figure 9 - Histogram compression and equalization. The 
original histogram range (left), the compressed range 

(middle), and the compressed and equalized range (right). 

4.5         Thin shell model weaknesses 

Due to the visualization and control features of 
ITS, we easily and directly observed a weaknesses in our 
thin shell model. As mentioned in Section 3, the bending 
forces in our physical model are simple linear constraints 
across the shared edge of two triangles. Given a rest 
condition in which the angle between a pair of triangles is 
close to 180 degrees, any bending that occurs will not be 
resisted strongly until the bending angle has extended far 
from that nearly flat configuration. This occurs because 
the linear bending constraints are nearly parallel to the 
pair of triangles, and imbue little force along the normal 
of each of the triangles until a large amount of 
deformation occurs. The weakness in this approximation 
is readily observable within ITS as structural weakness in 
certain meshes, such as the cylinder mesh in Figure 8. 
Even with extremely high bending force constants, the 
cylinder deforms easily during collision or user-initiated 
interaction, due to the nearly parallel angles between each 
adjacent polygons in the mesh. 

The ITS interface also reveals another inherent 
weakness which stems from the discrete nature of the 
animation. This weakness is not unique to our 
implementation, but extends to any physically-based 
animation model that relies on a discrete geometric 

formulation of an object.  The weakness is illustrated in 
Figure 10, where a v-beam is constrained on an entire side 
and left to hang under the force of gravity. Both corners 
of the beam should exhibit symmetric force distributions 
but they do not due to the discrete triangulation of the 
mesh.  This structure results in one corner vertex that has 
three membrane constraints to neighboring vertices, as 
seen on the right frame of Figure 10, while the other 
corner vertex in the left frame has connections with two 
neighboring membrane constraints and a single, weaker 
bending constraint across to the neighboring triangle. 
Therefore, the inherent discrete geometry of the model 
prevents it from accurately mimicking the symmetric 
forces that would have resulted from a similar real world 
experiment with a thin shell material in a similar 
configuration.  

 
Figure 10 - Unrealistic Forces. Two panels (left, right) 

show bending force views of two sides of the same 
experiment on a v-beam with pinned vertices. The forces 
are asymmetric due to the underlying triangulation of the 

mesh. The black lines indicate triangle edges. 

4.6          User feedback 

The ITS interface was tested by several expert 
researchers working in the field of physical simulation 
from two different research labs.  Users reported that the 
open, experimental framework encouraged them to play 
with simulation parameters, which they found to be 
valuable. In particular, they found the side-by-side 
experiments with varying parameters and the temporal 
cache play-back features to be useful when exploring a 
simulation [10], [17].  A thorough user study is left for 
future work. 

5             CONCLUSIONS AND FUTURE WORK 

The Interactive Thin Shells application provides 
an experimentally-focused, open, informative and very 
accessible interface to a physically-based animation 
algorithm. The careful research of Michael Rooks resulted 
in specific system requirements and framework for VIS 
applications [15].  These specifications served as a basic 
guide for the construction of our system. Ultimately, by 
providing features that allow for thorough intervention, 
inspection, user-driven specification, and visualization of 
the underlying physical model, we satisfied each of the 
VIS requirements in multiple ways, so that the user has a 



 

large variety of useful visualization and interaction 
mechanisms available at all times.  

 
The ITS visual feedback worked so well, it 

allowed us to identify weaknesses in the chosen thin shell 
model. While the bending angle constraint simplification 
was known to be imperfect, the subtle behavior of weak 
bending forces at extremely obtuse angles and their 
results on the animation as a whole were only obvious 
after carefully exploring simultaneous experiments on 
multiple meshes while varying specific parameters. In 
addition, the force coloring patterns in specific pinned 
mesh configurations were another clear indicator that our 
simplistic bending force was not a completely adequate 
model in many cases. The additional discovery of 
asymmetric forces due to the triangulation of the mesh 
was another phenomenon that was found only after use of 
the ITS interface. In this case, the histogram compression 
algorithm was essential in allowing us to perceive the 
force asymmetry in the v-beam mesh in Figure 10. Due to 
the fact that many physically-based animations utilize 
discrete representations, such as triangles meshes, the 
ability to discover and analyze the flaws in these 
approximations is an extremely valuable feature of the 
ITS interface, and further exhibits the usefulness of the 
tool in situations outside of thin shell animation. 

 
Future work includes improving the force 

coloring scheme by implementing a form of intelligent 
surface shading that does not excessively obscure the 
force coloring, yet preserves the surface shading.  To 
make the ITS program widely available, ideally, its 
visualization and analysis components could be 
generalized into an API for a large assortment of 
mathematically intensive animation models.  
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