
54

Part II

Achieving Fair Rates with Ingress

Policing
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Chapter 4

Introduction

We consider a queuing network of d single-server stations carrying g flows. The

stations are equipped with per-flow queues, and the network uses an ingress policing

mechanism in which a flow’s packets are discarded at the network ingress whenever any

of that flow’s queues exceed a threshold. Each flow f has a weight wf , and each station

serves a flow in proportion to its weight using a weighted round robin or similar queueing

discipline like weighted fair queueing or generalized head of line processor sharing. Each

flow’s packets arrive according to an independent renewal process of some mean rate, and

the service times at each station are also independent. Without discarding at the ingress,

the utilization of some stations may exceed 1, and therefore the policing mechanism is

necessary for the stability of the network.

Our main result is to show that there exist large enough policing thresholds

so that each flow’s long term average throughput can be made arbitrarily close to the

weighted max-min fair allocation. Our result requires that there be unique bottlenecks
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for each flow, but this can always be achieved by perturbing the flow weight and/or the

service rates of the stations. The other key contribution of this work is to show how

the analysis of such a network’s flow rates can be reduced to analyzing the rates of a

corresponding fluid model.

4.1 Motivation

Achieving fairness between flows is one of the principal design challenges of any packet

switched communication network. In today’s Internet architecture, the Transmission

Control Protocol (TCP) bears most of the burden in achieving fairness [21, 22, 23]. TCP

is an end-to-end congestion protocol that infers congestion when packets are lost and

responds to that congestion with a mechanism known as additive increase multiplicative

decrease. That mechanism halves the rate of user’s session when congestion is perceived

(multiplicative decrease), and slowly increases the rate when it is not (additive increase).

TCP has been tremendously successful in coping with congestion and in particular in

avoiding a congestion collapse as the Internet has grown in size and speed by orders of

magnitude over the years. However, as powerful as TCP is, TCP cannot achieve fairness

if the underlying network is grossly unfair, or if a large proportion of the traffic does not

use a transport protocol that responds to congestion as TCP does. For example, if the

underlying network constrains two groups of N sessions to very different rates, where

perhaps each group of sessions originate in a different geographic area, then TCP might

succeed in achieving fairness between sessions of a group, but not in achieving fairness

between the groups.
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Figure 4.1: A two input, two output switch with virtual output queues.

Indeed designing a network that is not unfair to particular groups of sessions is

becoming increasingly difficult. The speed of the optical links which make up much of

the Internet has grown tremendously over the past 10 years, faster even then the pace of

progress in the IC technology used to build the switches and routers that glue the links

together [24]. This has pressured designers of switches, routers, and aggregation points

to move to decentralized architectures that switch and process many packets in parallel.

The architects of these new designs have been primarily concerned with maximizing

throughput, but unfortunately throughput can come at the price of fairness.

We consider an example of a two input and two output switch to demonstrate

the tradeoff between throughput and fairness. Suppose all input and output links of the

switch have capacity 1, and label the input and output interfaces In-1, In-2, and Out-

1, Out-2 respectively. Also suppose that groups of N TCP sessions are sending traffic

between each of the following pairs: In-1 to Out-1 (1-1 for short); In-2 to Out-2; and

In-1 to Out-2. This situation is depicted in Figure 4.1. In this situation, a switch that

favors the 1-1 and 2-2 groups can achieve a higher throughput. In the extreme case the
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switch can offer the “unfair” allocation of 1 to groups 1-1 and 2-2, and 0 to the group 1-2

to achieve a throughput of 2. In contrast, a more fair allocation would be to offer 0.5 to

all three groups, yielding a throughput of only 1.5. While the unfair allocation scenario

is extreme, it is possible that a switch with a reasonable design might tend toward this

extreme case.

Consider the common switch architecture in which each input interface splits

its traffic into fixed length cells, and then sorts the traffic into “virtual” output queues

corresponding to the traffic’s final destination [25]. Then in every time slot corresponding

to the transmission time of one cell, a scheduler matches pairs of virtual queues to

corresponding output interfaces. In our scenario, a scheduler optimized for throughput

would favor matching 1-1 and 2-2 in each slot so as to move two cells, and not just one

as would happen for a 1-2 match.

The end-to-end TCP protocol would not correct the problem. The 1-2 sessions

would see congestion because their virtual queue is not being served fast and they would

adapt their rates by slowing down. Consequently, the 1-1 and 2-2 sessions would find

less competition on the interfaces they share with 1-2 traffic, adapt their rates higher

allowing them to get even more of their traffic to their virtual queues, where that traffic

will again be favored by the scheduler over the 1-2 traffic in the 1-2 virtual output queue.

Examples like this show that it is important to design switches, routers and

aggregation points that treat traffic from different input output interface pairs fairly,

even with the presence of rate adaptive transport protocols like TCP.

At the same time, the pressure to design faster and faster switch architectures is
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making it less feasible to design switches with central schedulers that coordinate packet

movements at the sum of all the incoming line rates. As switch designers are pressured

into eliminating the central scheduler entirely, the design of a switch is becoming more

and more like the design of a network, where the “nodes” of the network are the interfaces

and the interconnections between interfaces – the switch fabric – are the “links.”

This trend toward decentralized architectures, combined with the importance

of fairness in switches, are transforming the switch fabric design problem into a problem

of designing a queueing network that achieves fair rates with an extremely simple control

policy. The control policy must be simple so that it can be implemented in silicon at the

extremely fast line rates of today’s networks.

Surprisingly, while switch design is becoming more and more like network de-

sign, there are pressures to make the network look more and more like a switch. In

particular, Mckeown and Zhang-Shen [27] propose using the Clos topology, popular

in switch fabric design, as the basis of a next generation backbone for the proposed

“100 × 100 network” – a network envisioned to interconnect 100 million users with an

access rate of 100 Mbps [26]. The Clos topology consists of some number of input nodes

which are fully interconnected with some number of middle nodes, which in turn are

fully interconnected with some number of output nodes [3]. The Clos topology is pop-

ular in switch design because when combined with a simple load balancing algorithm,

it can achieve full throughput between inputs and outputs for any feasible demand rate

matrix – meaning any demand rates which do not exceed the capacity of any output.

This feature would make it useful in the 100 × 100 network backbone, because it would
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automatically achieve full throughput without a complicated routing algorithm. How-

ever, the same issues that apply for a switch also apply for a backbone designed to look

like a switch – fairness is important, and is not automatic in a throughout maximizing

architecture. Therefore a methodology for designing a queuing network that achieves

fairness with a simple control law would be extremely useful in the context of networks

like the 100 × 100.

The policing scheme that we analyze in this work is extremely simple, achieves

fair rates as we show, and therefore would be useful in a network like 100 × 100 or in a

switch design. Yet the analysis of such a simple scheme could become extremely complex

and involve detailed case by case analysis of sequences of discrete events in order to prove

that the scheme achieves fair rates.

Therefore we feel that the principal contribution of this work is not the scheme

itself, but rather the methodology we use to analyze it. We show that the analysis

of the discrete stochastic system can be reduced to analysis of a fluid model obeying

deterministic differential equations. Though we present the methodology in the context

of our policing scheme, the same techniques could be used to analyze other simple rate

control schemes for queueing networks.

While the primary application area that motivates this work is communication

networks, there are other notable application areas. For example it might be necessary

to control the flows of jobs in a manufacturing system, where perhaps the flows corre-

spond to different products or different customers, and the stations correspond to the

capacity constrained pieces of equipment – a lithography stepper at a semiconductor
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manufacturing plant for example. In such a context, it would be very desirable to have a

control scheme that ensures that the different flows of jobs get fair rates at the bottleneck

stations and at the same time ensure that the queues at each station remain bounded. In

our scheme, the queues would be kept bounded by blocking new jobs from entering the

manufacturing plant when a bottleneck station is congested, but other types of blocking

schemes could be analyzed with the methodology presented in this work.

Another natural application area is for call centers. In a call center, customers

are queued until a server can take the customer’s call. Oftentimes the first server may

not be able to fulfill all of the customer’s needs and therefore the server may need to

transfer the call to a second server, where the customer may have to enter yet another

queue before seeing the second server. In turn, the second server might need to transfer

the call again to a third server and so on. Also, the same call center maybe answering

calls of different types. One example would be a contracted call center that answers calls

for several different corporate clients simultaneously. Here the set of incoming calls for a

particular client would be the “flow,” and a call center would want to treat the different

flows fairly in times of congestion. Furthermore, it might be better for the call center to

block calls at the ingress, rather than having a customer put on hold, transferred, and

put on hold again, only eventually to be dropped. Therefore a flow-control scheme like

the one we study in this work is a logical choice for such an application.
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4.2 Related Work

As we have stated, our objective is to show that our flow control scheme with large

enough thresholds achieves rates close to the max-min fair allocation. A max-min fair

flow allocation is a feasible allocation such that one flow’s rate cannot be increased

without decreasing the rate of another flow that already has a smaller allocation [28].

There have been a number of schemes proposed and analyzed that aim to achieve max-

min fairness, and most such investigations have involved detailed case by case analysis of

the possible state trajectories of the network. For example, Hahne shows that a network

with per-flow queued stations using round-robin service, and with hop by hop window

flow control achieves max-min fairness [29]. Round-robin service is the now familiar

queuing discipline in which the server polls the queues in cyclic order, offering service

to queues that are nonempty [30, 31]. We adopt a qualitatively different approach to

our analysis. We consider a fluid limit of the network obtained by scaling time and

space (including the thresholds) by a factor n that increases – an approach similar to

that found in [32, 33, 34] and others. This allows us to exploit the Strong Law of Large

Numbers to show that the arrival and service process converge to smooth, linear growths

and also that the other processes describing the system converge to a trajectory of a fluid

model described by simple differential equations.

In addition to the difference in methodology from previous investigations, our

network and flow control model is also different than those studied in previous work.

The model that most closely resembles ours is the network analyzed in [29]. However,

that network differs from our network in that the flow control is hop by hop rather than
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done at the ingress, and the arrival and service times assumptions are more restrictive

than the assumption that they are renewal as we assume. In particular [29] assumes

arrivals are either deterministic or Bernoulli, and service times are deterministic.

Another related work is by Hayden, who proposes an iterative mechanism for

finding max-min fair rates. In the mechanism, each station measures the rates of the flows

passing through it, computes a fair rate allocation for these flows, and then explicitly

tells sources what rates to use [35]. Gafni also proposes an improvement to Hayden’s

original algorithm [36]. The analysis of our fluid model resembles Hayden’s proof in that,

as in [35], we step through the stations of the network, at each step finding the most

congested station, assign rates to the flows passing through it, subtract those flows from

the network, and proceed to find the next most congested station in the reduced network.

However, our problem requires extra analysis to show that within each of these steps

the fluid model, described by a set of ODEs, converges. Our proof that the stochastic

network converges to a fluid model is not related to [35].

Our fluid limit proof technique is closely related to known results in the lit-

erature. In particular, we borrow heavily from work by Dai [32]. Dai shows that for

networks without policing, stability of the fluid model implies stability of the stochastic

network – stability meaning the system is positive Harris recurrent. Our work differs in

that we use the fluid model not only to analyze stability, but also to find the flow rates

of the stochastic network. Also, the fact that the policing modifies the arrival processes

also requires specialized treatment to show that our network converges to a fluid limit

trajectory.
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There is also a difference how the fluid limit is taken. Dai’s proof considers a

sequence of initial conditions x, with |x| → ∞, and then obtains a fluid limit by scaling

time and space by |x|. Dai uses this result to construct a Lyapunov function that shows

that expected state of the system contracts, for initial states far enough from the origin.

In contrast our proof requires consideration of two different types of fluid limits. In the

first we consider a sequence indexed by n, and then obtain a fluid limit by scaling the

policing thresholds, as well as space and time by n → ∞. Analysis of this fluid limit leads

us to conclude that the rates of the stochastic system are close to that of the fluid model,

over a finite time interval, if two conditions are met: the stochastic system’s thresholds n

are large enough, and its relative initial condition y = x/n−he is small, where he is the

equilibrium of the fluid model. In the second fluid limit we consider a sequence of pairs

{(n, y)}, scale the policing thresholds by n, while scaling space and time by n|y| → ∞.

As in [32], we can construct a Lyapunov function that shows that the expected state of

the system contracts for n|y| large enough. Consequently the contraction property holds

for smaller and smaller y as n is increased. The combination of both fluid limit results

shows that for large enough n the invariant distribution of the system is concentrated in

a region of the state space where the expected rates are close to those of the fluid model,

and in turn the fluid model rates can be shown to be equal to a max-min allocation.

Another closely related work is by Mandelbaum, Massey, and Reiman [34]. In

[34], the authors study the fluid limit of a queueing network with state dependent routing,

where the function describing the arrivals to each queue can scale with n and or
√

n, in a

manner similar to the scaling of our thresholds. The authors prove a functional strong law
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of large numbers and a functional central limited theorem in the context of their model.

However, the authors assume that the network is driven by poisson processes, rather

than just the renewal assumption that we make. An earlier work by Konstantopoulos,

Papadakis, and Walrand derives a functional strong law of large numbers and a functional

central limit theorem for networks with state dependent service rates [37].

There are also several works that use reflected Brownian motion models to

study queueing networks with blocking [38, 39, 40]. Typically the objective of most such

investigations is to approximate the distribution of the queue occupancy with a diffusion

approximation, whereas in this work our objective is to show almost sure convergence

using a strong law of large numbers scaling.
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Chapter 5

Model

We state precisely our network model in this section, introducing the necessary

notation along the way. Much of our notation is borrowed from [32].

5.1 Flows and Classes

As mentioned, we consider a queueing network of d single server stations carrying g

flows. In addition to the notion of flow, each packet also has a class k ∈ {1, ..., K} that

is indicative of both the packet’s flow and location in the network. Thus the class of

a flow f packet changes as the packet progresses from station to station, but with the

restriction that a flow f packet must always have a class in the set K(f). Conversely,

each class k is associated with one and only one flow, and we denote the class to flow

mapping by f(k) = {f : k ∈ K(f)}. We also adopt the numbering convention that flow f

packets enter the network as class k = f , and thus f ∈ K(f).

Each class k is served by a unique station denoted s(k). When a packet of class
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k finishes service at station s(k), it becomes a packet of class l with probability Pkl or

exists the network with probability 1 −�l Pkl. To preserve a packet’s flow, Pkl = 0, if

f(k) �= f(l).

More precisely, the jth packet of class k to complete service has associated with

it a K dimensional “Bernoulli” random column vector φk(j) which consists of all zeros

with probability 1 −�l Pkl, or has a single 1 at location l with probability Pkl. The

random vectors φk(j) are independent.

In Chapter 8, we will consider networks for which each flow’s packets follow

loop-free paths without “splitting.” The matrix P is binary and nilpotent for such

networks.

Because each class k is served at a unique station s(k), we may define the

Class Constituency Matrix C with Cik = 1 if s(k) = i and Cik = 0 otherwise. At

times it is more convenient to represent the same information in set rather than matrix

notation, and therefore we define the Class-Constituency C[i] = {k : s(k) = i} for each

station i. Finally, because each class belongs to a unique flow f(k), we may define the

Flow-Constituency F[i] = {f : ∃k ∈ C[i] : f = f(k)} for each station i.

5.2 Queues

The state of the network’s queues is the K dimensional column vector Q where Qk is

the number of packets of class k packets queued in the system.

The exogenous arrivals to the network for flow f are described by a renewal

process Ef (t) where the inter-arrival times {ξf (j), j ≥ 1} are i.i.d. and have mean α−1
f
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where αf is the mean arrival rate. We denote the remaining waiting time for the next

flow f customer arrival at time t as Uf (t). Thus the process Ef (t) is described by

Ef (t) � max{j : Uf (0) + ξf (1) + ... + ξf (j − 1) ≤ t}.

The service times of each class {ηk(j), j ≥ 1} are also i.i.d. and have mean mk = µ−1
k ,

where µk is the mean service rate. We also define the K × K diagonal matrix M where

the kth entry on the diagonal is mk. Vk(t) denotes the remaining service time of the

class k customer in service, if there is one at time t, otherwise Vk(t) = 0. We define a

service process Sk(t) as

Sk(t) � max{j : Ṽk(0) + ηk(1) + ... + ηk(j − 1) ≤ t}

where Ṽk(0) = Vk(0) if Vk(0) > 0, otherwise Ṽk(0) = ηk(0) is a fresh service time with

the same distribution as ηk(1) and independent of all other service times.

In principle, our assumption that the service times are independent does not

allow for service times that depend on a packet’s size. Dependence on packet size would

make the service times of stations dependent on each other. To model this explicitly

would require a much more complicated model. However we feel that our results this

work would still hold if this assumption were relaxed.

5.3 Policing Points

Arriving packets of each flow f first pass through a per-flow policing point at the ingress

of the network. Whenever any queue in the Control-Set, C(f), exceeds a high threshold

hu, the policing point drops flow f packets as they arrive. Conversely, when all of the
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queues in C(f) are below a lower threshold hl, flow f packets are permitted to enter the

network. When the queues in C(f) are between the two thresholds, the policing follows

a hysteresis law that we will make precise below. Also note that typically C(f) = K(f),

the set of classes that flow f packets through, but in general, C(f) ⊆ K(f).

To describe the policing hysteresis, we define a binary-policing state Hk(t) for

each class k as

Hk(t) =

�
��������
��������

1 if Hk(t−) = 0 and Qk(t) ≥ hu

0 if Hk(t−) = 1 and Qk(t) ≤ hl

Hk(t−) otherwise.

We allow hl to equal hu if we choose not to have hysteresis. We define the process Λf (t),

which we call the thinned arrival process, to count the flow f packets that are allowed

beyond the policing point at the ingress. Therefore,

Λf (t) =

Ef (t)�
j=1

�
C(f)

(1 − Hk(τj)) (5.1)

where τj = Uf (0) +
�j−1

m=1 ξf (m) is the time of the jth arrival to the policing point.

5.4 A Simple Example

After having introduced the general model, it is useful to consider an example of such a

network. Our example is illustrated by Figure 5.1. The example network consists of 4

stations, and carries 3 flows. Flow 1 passes only through station 1, where it is queued as

class 1. Flow 2 passes through stations 1, 2, and 3, and where it is queued as class 2, 4,

and 5 respectively. Flow 3 passes through stations 2 and 4, where it is queued as class 3,
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Figure 5.1: Simulated trajectories of an example network, for two choices of policing
threshold: h = 10 and h = 100.
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and 6 respectively. All three flows have a weight wf = 1. The station service rates are:

µ1 = 1.2, µ2 = 1.0, µ3 = µ4 = 0.6. The service times are exponential, and the queueing

discipline is round-robin. The exogenous flow arrival rates are α1 = 0.65, α2 = 0.8,

and α3 = 0.6. The inter-arrival time distributions are chosen to have “heavy tails.”

In particular, they are Pareto distributed, with complementary cumulative distribution

function given by

P(ξf (j) > s) =
1

(αfs + 1)2

for each flow f and for s ≥ 0. Thus the inter-arrival times have mean 1/αf and infinite

variance.

Figure 5.1 shows simulated trajectories for two choices of thresholds. The inside

plots, the 3 plots immediately above and below the network drawing, correspond to a

threshold of h = 10, while the outside plots are for h = 100. In this example we have no

hysteresis and thus hu = hl = h.

We begin by considering the h = 10 case. In this case, the queues start from

an initial condition Q̄2(0) = 10, Q̄5(0) = 20, Q̄6(0) = 7, and the other queues start from

0.

The natural way to start analyzing such an example is to find the station that

is the most constrictive bottleneck. In this case station 2 has a capacity of 1.0, carries

two flows, and thus has a capacity of 0.5 per flow, which is less than the capacity per

flow of the other stations, and less than the arrival rate of any of the flows. Thus one

should expect station 2 to be the governing constraint, eventually having its queues fill

up to threshold and then applying policing to throttle flows 2 and 3 to rates of around
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0.5 each. Once this occurs, we can treat flows 2 and 3 as constant rate flows, “subtract”

them from the network by deducting their final rates from the capacities of the other

stations they cross, and then analyze the flows of the reduced network. By doing this,

we find that station 1 has a remaining capacity of 0.7, but since flow 1 arrives at a slower

rate, flow 1’s final rate is “demand” limited to 0.65. By doing this analysis, we can

conclude that the max-min fair rates for this example are (0.65, 0.5, 0.5).

Indeed, Figure 5.1 shows that the queues at station 2 fill to their thresholds and

tend to stay near them. However, the class 2 queue empties and remains close to empty

between times 300 and 350. Because flow 2’s queue at station 2 is “starved” during this

epoch, flow 2 packets miss opportunities to be served at station 2, which is the most

constrictive bottleneck of the network. Indeed the table at the bottom of Figure 5.1

shows the average rate, averaged over the last 80% of the simulation time to reduce

some of the initial transient effect, is 0.4025. This is substantially below the max-min

fair rate of 0.5. Most likely, a string of long inter-arrival times of flow f , caused the flow

2 queues at station 2 to starve.

We can make a more general observation that the fluctuations of the inter-

arrival and service times can cause queues that we expect to remain near their thresholds

to starve occasionally. If this starvation happens non-negligibly often over the long term,

the long term rates will differ from the ideal max-min fair share rates.

To prevent or at least reduce starvation of queues at bottleneck stations, the

natural thing to do is to raise the thresholds. This would ensure that bottleneck queues

have enough backlog to smooth over fluctuations in the arrival process and the service
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processes of upstream queues. To test that intuition, we simulate the network with

policing thresholds of h = 100. As we have scaled the thresholds by 10, we also scale

the initial condition by 10, and simulate for 10 times longer– this decision will make this

example useful to refer back to later when we talk about the fluid scaling. Figure 5.1

shows that the queues at station 2 do not starve after the first 20% of the simulation run,

as they did in the h = 10 case. The table at the bottom of Figure 5.1 shows the average

throughput of the flows over the last 80% of the simulation run for both the h = 10 and

h = 100 cases. Flow 2’s average throughput is indeed better in the h = 100 case than

in the h = 10 case, suggesting that the reduction in starving has helped. However, the

average throughput of the other two flows actually declined a little.

This example does offer some support to our hypothesis that increasing thresh-

olds makes long term average rates approach max-min fair share. Yet, it shows that it is

far from obvious that the long term average rates can be made close to the max-min rates

with large enough thresholds. Consequently, this example has bolstered our motivation

to validate the hypothesis analytically.

5.5 Threshold Scaling

Because we want to show that there exist large enough thresholds to achieve fair flow

rates, we study the system behavior as we increase the policing threshold. A change

in threshold changes the dynamics of the system, so we are actually considering the

behavior of a series of systems indexed by n = 1, 2, ..., where the thresholds hu and hl
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for system-n are given by the following assignments:

hu := nh

hl := nh −
√

nς

for some constants h > ς ≥ 0, where ς = 0 if we choose not to have hysteresis. It is

worth emphasizing that h is a scalar, and thus all queues use the same upper and lower

thresholds.

The other aspects of the systems 1, ..., n: routing, service disciplines, inter-

arrival, and service time distributions of systems are all identical.

5.6 Candidate Equilibrium and “Relative” Initial Condi-

tion

The vector X(t) = (Q(t);U(t);V (t);H(t)) is the full system state of the network, where

the “;” symbol denotes column concatenation. In the sections that follow, we try to show

that the state of the stochastic network tends toward the equilibrium of its fluid model.

We therefore define a vector e which we will later assign to be equal to the equilibrium

queue depths of the fluid model with unit thresholds. However we have not yet derived

the fluid model, so at this point e is left to be an arbitrary K dimensional vector.

The example in the preceding section has given us some idea of what the fluid

model equilibrium will look like. Roughly speaking, we expect that in equilibrium queues

that are “bottlenecks” fill up to their policing thresholds and then “chatter” there as

policing turns on and off so as to thin the arrivals process to match the bottleneck queue
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rate. Other queues tend to remain empty. In this case, e equals a vector of 1’s and 0’s

with 1’s corresponding to queues that fill to their thresholds in the fluid model.

Because system-n has upper thresholds of nh we should expect the bottleneck

queues of system-n to tend towards nhe. The full system state also contains U , V , and

H so a complete candidate equilibrium should specify these states as well. We therefore

define the full candidate equilibrium as nhe = (nhe; 0U ; 0V ; 0H), where 0U , 0V , and 0H

are zero vectors of appropriate dimension.

We shall find that it useful to specify an initial condition relative to this candi-

date equilibrium, and scaled by the system size. We therefore define the relative initial

condition, y for system-n as

y =
1

n
(x − nhe) (5.2)

where x = X(0).

5.7 Dynamics of System-n

We now write a series of equations to describe the dynamics of system-n, starting from

initial condition y = n−1(x−nhe). The equations have the same form as those originally

derived by Harrison [41], [39] for Brownian models of queueing systems. Because all of

the random processes involved depend both on relative initial condition y, and system

scale n we define

n �

�
����
n

y

�
���� =

�
����

Threshold Scale Factor

Relative Initial Condition

�
����
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for notational convenience. The overall state Xn(t) of the system-n, at time t, having

started from relative initial condition y, is written as

Xn(t) �

�
Qn(t);Un(t);V n(t);Hn(t)

�
.

The n superscript emphasizes a process’s dependence on n.

5.7.1 Arrivals, Departures, and Routing

We begin by defining a process Φk(j) to track how often a class k packet is routed to

class l for each l. Thus Φk(j) satisfies

Φk(j) =
j�

i=1

φk(i).

We define An
k (t) to be the cumulative arrivals, both exogenous and internal, up to time

t for class k. Dn
l (t) denotes the cumulative departures from class l from time 0 to t and

therefore,

An
k (t) =

K�
l=1

Φl(Dn
l (t)) + Λn

k (t). (5.3)

For k ∈ {1, ..., g}, the thinned exogenous arrival process Λn
k (t) is defined by (5.1). Oth-

erwise Λn
k (·) ≡ 0, reflecting that these classes do not receive exogenous arrivals.

The population of Qn
k for k = 1, ..., K evolves according to

Qn
k (t) = Qn

k (0) + An
k (t) − Dn

k (t), (5.4)

Qn
k (t) ≥ 0. (5.5)

We define the K dimensional column vector Tn(t) such that the kth element Tn
k (t) is

the cumulative time spent serving class k up to time t. Thus we have

Tn
k (t) is nondecreasing and Tn

k (0) = 0. (5.6)
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Using the notation Ci to denote the ith row of the constituency matrix C, we define the

cumulative idle time In
i (t) of station i as

In
i (t) = t − CiT

n(t) is nondecreasing and In
i (0) = 0. (5.7)

The service disciplines that we consider are work conserving therefore,

� ∞

0
CiQ

n(t)dIn
i (t) = 0. (5.8)

5.7.2 Queueing Discipline

For a station i, the departures of class k ∈ C(i) are determined by the composition of the

service time counting process Sn(t), and the process Tn(t) as described by the equation

Dn
k (t) = Sn

k (Tn
k (t)). (5.9)

The queueing discipline of a station i serves each flow in proportion to the flow weights

over long time intervals. More precisely for some constant c,

w−1
f(k)

Dn
k (t, t + τ) ≥ w−1

f(l)
Dn

l (t, t + τ) − c

whenever Qk(s) > 0 ∀s ∈ [t, t + τ ] (5.10)

for all k, l ∈ C(i), where the notation Dn
k (t, t + τ) � Dn

k (t + τ)−Dn
k (t). We also assume

that the instantaneous service rate of any queue is a function of the current state.

Ṫn
k (t) = f(Xn(t)) For some function f(·).

If the instantaneous rates depend on other information, like the position in the polling

cycle of a round robin discipline, that information may be appended to the H portion of
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the state vector X in some way. This also ensures that X is a true state in that it contains

sufficient information to compute statistics of the future evolution of the network. We

assume that |H(t)n | ≤ c for some constant c for all n, y, t. (Even this assumption can

be relaxed to allow this encoding to scale with n, at the price of more complexity in the

proof of Theorem 7.5.)

5.7.3 Trajectory Notation

The Markovian state of the system-n is

Xn(t) �

�
Qn(t);Un(t);V n(t);Hn(t)

�
.

We claim that the process Xn is Markov by the following argument which follows that

given by Dai [32] whose argument in turn followed from Kaspi and Mandelbaum [42].

Consider the evolution of Xn(t) starting from a particular time t∗. Each component

of the residual time vector Un(t∗ + s) declines deterministically at rate 1, while the

components of V n(t∗ + s) decline according to Ṫn(·), which is a deterministic function

of Xn . This continues until one of these components hits 0, say at time t∗ + s′. Because

this evolution is deterministic, s′ was predictable from the value of Xn(t∗). At time

t∗ + s′, some components of Q, and perhaps H are incremented or decremented in a

fashion that was also predictable with knowledge of Xn(t∗). Also at time t∗ + s′, the

component of Un or V n that hit zero takes a jump by a fresh inter-arrival or service

time that is independent of the past. Hence, the conditional distribution of the future

state after the jump, given the state Xn(t∗) is the same as given knowledge of the entire

past. As the process continues to evolve in this manner, the probability distribution of
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the state at any future time t conditioned on the entire past before t∗ is the same as it

conditioned on Xn(t∗). This shows that the process is Markov. Furthermore, because

the process behaves deterministically between jump times, Xn(t∗) is a type of process

termed a piecewise deterministic Markov (PDM) process by Davis [43]. Davis shows that

a PDM process whose expected number of jumps on [0, t] is finite for each t is strong

Markov [43]. As we assume that the inter-arrival and service times have a positive and

finite mean, the expected number of jumps of Xn(t∗) in any closed time interval is finite.

Therefore Xn(t∗) has the strong Markov property.

At times, we need to consider not only the trajectory of the state Xn(t) but

also the evolution of the companion processes Tn(t), Λn(t), and the system-n threshold

nh. Thus we define

Xn(t) �

�
Xn(t);Tn(t); Λn(t);nh

�
.
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Chapter 6

Proof Strategy

To obtain our desired result we need to use two different types of fluid limits.

In the first type, we consider a sequence of systems indexed by n in which:

• System-n has policing thresholds nh.

• Time and space are scaled by the factor n.

• The initial condition x of each system-n is within some neighborhood of a candidate

equilibrium (|x − nhe| ≤ nζ). Equivalently, |y| ≤ ζ.

• n → ∞

We call the resulting fluid limit a TFL (Threshold Fluid Limit), while we call the sequence

{(n, y)} a TFL sequence. We show that such a limit converges along some subsequence,

uniformly on compact sets, to a trajectory of a model satisfying a set of equations.

We then show that if all trajectories of the fluid model converge, then the fluid limit

converges (strongly) along the original sequence. Using this we conclude that there exist
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large enough thresholds such that whenever the initial condition is within a neighborhood

of the candidate equilibrium, the expected rates of the stochastic network are close to

the rates predicted by the fluid model over a compact time interval of some length t0

seconds of n-scaled-time. This alone is not enough to obtain our desired result, because

we want to show that the network achieves the desired rate over the long term, not just

a compact time interval. This motivates the second type of fluid limit.

In the second type of fluid limit, we consider the limit along a sequence of

system scale and relative-initial condition pairs {(n, y)} such that:

• System-n has thresholds nh.

• Time and space are scaled by the factor n|y|.

• The initial condition x of each system-n is outside some neighborhood of a candi-

date equilibrium (|x − he| > nζ). Equivalently |y| > ζ.

• n|y| → ∞

We call this fluid limit a JFL (Joint threshold & initial condition Fluid Limit), and

the sequence {(n, y)} a JFL sequence. As with the other fluid limit, we will show that

such a limit converges along some subsequence to a fluid model trajectory and that

we can upgrade that convergence to convergence of the original sequence if the fluid

model converges. In a similar fashion as [32], we exploit this convergence to construct a

Lyapunov function which shows that the expected state of system-n contracts whenever

n|y| > L for some constant L. Thus by choosing n larger than L/ζ, we can make

the Lyapunov function “active” for all y outside of the ζ-neighborhood (which we call
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B) of the origin. This allows us to show that the invariant distribution of the system

is concentrated in B. In particular, we show that the expected first return to B that

happens at least t0 seconds (in n-scaled-time) after starting in B, can be made arbitrarily

close to t0 for large n.

To complete the proof of the main result, we combine the results: that rates are

close to desired for t0 seconds after starting in B and that the expected first return to B

after t0 seconds is close to t0 to conclude that the long term rates are close to the fluid

model rates. A stopping time argument using the strong Markov property formalizes

this reasoning.

In Chapter 8 we show that for networks in which flows follow loop-free paths

without splitting the fluid model converges to an equilibrium and the rates approach

the max-min fair share rates. However, this result holds only if each flow has a unique

bottleneck station, a notion that we make precise later. The result allows us to invoke

the fluid limit results to conclude that the corresponding stochastic network has rates

close to max-min fair share.

Much of the analysis of the JFL and TFL fluid limits are identical. To avoid

repetition, we define a scaling function 〈n〉 that allows us to consider both fluid limits

at once. The function 〈n〉 is defined by

〈n〉ζ =

�
����
����

n |y| ≤ ζ

ζ−1n|y| |y| > ζ

where the ζ parameter is an arbitrary positive constant. To make the notation less

cumbersome, we will omit the ζ subscript when either the choice of ζ does not matter,
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or when its value is clear from the context.

6.1 Result Summary

The upcoming Chapter 7 consists of a series of lemmas and theorems that culminate

in Theorem 7.10, which shows that the long term rates of the stochastic network an be

made close to the fluid model rates for large n. We briefly survey the steps that lead to

that result:

Theorem 7.5: For both TFL or JFL sequences {nm}, there exists a subsequence

{nj} for which

〈nj〉−1Xnj (〈nj〉t) → X̄(t)

for some trajectory X̄(t) that is dependent on sample path ω, and choice of subsequence,

but must satisfy a set of fluid model equations (which are (7.5)-(7.19)).

Lemma 7.6: Suppose we have a functional F that operates on system trajecto-

ries. (In the proof of the subsequent theorem we will pick F(t) to extract the difference

between the actual service rates vs. a vector of desired rates over a compact time inter-

val, and later we will pick F(t) to extract the distance between the current state and the

candidate equilibrium.) Also suppose that any solution X̄(t) to the fluid model equa-

tions (7.5)- (7.19) (we call such a X̄(t) a fluid trajectory) is such that F ◦ [X̄(·)](t) goes

to zero in a time proportional to the distance of the initial condition’s distance to the

fluid model equilibrium h̄e. Note that h̄ is the threshold of the fluid model, which we

will see later may not be h. Under these suppositions, |F◦ [〈nm〉−1X(〈nm〉t)](t)| → 0 a.s.

for each t greater than some critical time ζt0. (The functional F must be continuous on
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the topology of uniform convergence on compact sets for this to hold.)

Theorem 7.7: Suppose that any fluid trajectory X̄(t) that solves equations (7.5)-

(7.19) has service rates equal to some vector R (which we later show to be the max-min

fair rates), after some time that is proportional to the starting distance from the fluid

model’s candidate equilibrium h̄e. Then for any positive numbers ζ < 1 and any γ < 1,

there exists a critical scale L1(ζ, γ) such that for any system with n > L1, and initial

condition |y| ≤ ζ

E[M−1Tn(nt0)] ≥ R(1 − ζ)(1 − γ)(nt0)

where t0 is the time the fluid model takes to reach the ideal rates after starting one unit

distance away from the equilibrium.

Theorem 7.8: Suppose that any fluid trajectory is such that the state goes

to the equilibrium in a time proportional to the starting distance from the candidate

equilibrium, then for any ζ < 1, and δ < 1 their exists a critical scale L2(ζ, γ) such that

for any system n > L2/ζ and initial condition |y| > ζ,

E[Y n,y(t0|y|)] < δ|y|.

where Y n,y is a “relative” state given by

Y n,y(t) �
1

n
(Xn(nt) − nhe) .

(Roughly, states outside the ζ neighborhood tend to contract.) Also shown in Theo-

rem 7.8, is that for any b < 1, there exists n large enough so that

E[Y n,y(t0)] < b for all y : |y| ≤ ζ.
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Lemma 7.9: If the conclusions of Theorem 7.8 hold, then the expected first

return of Y to a ζ neighborhood of the origin that happens at least t0 seconds after

having started in that neighborhood, can be made close to t0, if the constants ζ, b, and

δ of Theorem 7.8 are chosen to be small.

Theorem 7.10: If the necessary conditions for Theorems 7.7 and 7.8 hold, then

the long term average rates can be made arbitrarily close to the fluid model rates, by

making n large enough.
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Chapter 7

Fluid Limit Analysis

7.1 Preliminary Lemmas

In the this chapter, we will state and prove Theorem 7.5 that shows that given any

sequence of initial conditions and system scales {nm} with 〈nm〉 → ∞ there exists a

subsequence {nj} ⊂ {nm} for which the sequence of system trajectories with initial

condition yj , thresholds njh, and time and space scaled by 〈nj〉 converges to a fluid

model trajectory satisfying a set of differential equations.

The proof of Theorem 7.5 depends on the lemmas presented in this section.

The reader may either read this section first, or skip to the proof of Theorem 7.5 in

Section 7.1 and turn back to this section as needed.

Lemmas 7.1, 7.2, and 7.3 all assume that we start with some sequence {nj} that

satisfies the following property concerning the residual arrival and service time processes

in the fluid limit:
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Property 1: {nj} is a sequence of initial condition yj and scale nj pairs with 〈nj〉 →

∞ and

Unj (0) → Ū(0) V nj (0) → V̄ (0)

for some Ū(0), V̄ (0).

This property ensures that there are well defined residual arrival and service

times in the fluid limit. (When we eventually prove Theorem 7.5, when a sequence does

not satisfy Property 1, we will find a subsequence for which it does.)

Lemma 7.1 is a form of the Functional Strong Law of Large numbers for renewal

processes, and is taken from [32].

Lemma 7.2 is a new result showing that the thinned arrivals (the packets that

make it beyond the policing point) converge to a fluid limit along a subsequence.

Lemma 7.3 is a result taken from [32] showing that the residual initial arrival

and service times decline to zero at rate 1 in the fluid limit. The lemma also shows that

the sequence of functions we use to take the fluid limit are uniformly integrable, which

will later be used to show a sequence of expected values evaluated at a time t converges

to 0 when the sequence of functions evaluated at time t converge to 0 almost surely.

We say that fj(t) → f(t) uniformly on compact sets (u.o.c.) if for each t ≥ 0

lim
j→∞

sup
0≤s≤t

|fj(s) − f(s)| = 0.

We also use the notation ḟ(t) = d
dtf(t) where such a derivative exists. If a

function f(·) is differentiable at t, we say that t is a regular point.

Lemma 7.1 (Dai, Lemma 4.2 of [32]). Suppose that {nj} is a sequence satisfying
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Property 1. Then for almost all ω,

〈nj〉−1Φk(�〈nj〉t�) → P ′
kt u.o.c.,

〈nj〉−1E
nj

k (〈nj〉t) → αk(t − Ūk(0))+ u.o.c.,

〈nj〉−1S
nj

k (〈nj〉t) → µk(t − V̄k(0))+ u.o.c.

Proof. See Lemma 4.2 of Dai [32]. The result is an instance of the Strong Law of Large

Numbers for Renewal Processes [50].

Lemma 7.2 (Thinned Arrival Convergence). Suppose that {nv} is a sequence sat-

isfying Property 1. Then for almost all ω, there exists a subsequence {nj} ⊂ {nv} such

that

〈nj〉−1Λnj (〈nj〉t) → Λ̄(t) u.o.c.

where Λ̄(t) is some Lipschitz continuous process with for all regular t ≥ 0,

˙̄Λf (t) ≤ αf for each flow f . (7.1)

Proof. By Lemma 7.1,

〈nv〉−1Env

k (〈nv〉t) → (αkt − ¯V (0)k)
+ u.o.c. (7.2)

for each class k. For notational convenience in the development that follows, we define:

Ēk(t) � (αkt − V̄ (0)k)
+

∆v(t) � 〈nv〉−1Env(〈nv〉t) − Ē(t). (7.3)

Pick a compact time interval [s0, s1]. Because the number of packets allowed past the

policing point cannot exceed the number of packets arriving to the policing point in any
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time interval (5.1), we have

1

〈nv〉
[Λnv(〈nv〉(t + ε)) − Λnv(〈nv〉t)] ≤

1

〈nv〉
[Env(〈nv〉(t + ε)) − Env(〈nv〉t)] (7.4)

for any positive ε ≤ s1 − s0 and t : s0 ≤ t ≤ s1 − ε. Adding −∆v(t + ε) and ∆v(t) to

both sides and substituting (7.3) and (7.2), we have

1

〈nv〉
Λnv(〈nv〉(t + ε)) − ∆v(t + ε) −

�
1

〈nv〉
Λnv(〈nv〉t) − ∆v(t)

�
≤ Ē(t + ε) − Ē(t) ≤ εα.

Define the family of functions:

Lv(s0, t) := sup
s∈[s0,t]

�
〈nv〉−1Λnv(〈nv〉s) − ∆v(s)

�

Because the arguments of the sup functions are vectors, sup is taken component-wise.

Note that for any (t, ε) with t ∈ [s0, s1 − ε],

Lv(s0, t + ε) = Lv(s0, t) ∨ Lv(t, t + ε)

and Lv(t, t + ε) ≤ εα + Lv(t, t)

≤ εα + Lv(s0, t).

Thus Lv(s0, t+ε)−Lv(s0, t) ≤ εα and clearly Lv(s0, t+ε)−Lv(s0, t) ≥ 0 because Lv(s0, ·)

is monotone. Hence the functions Lv(s0, ·) are equicontinuous and individually Lipschitz

continuous. Thus, by Arzela’s theorem, there exists a further subsequence {nj} ⊆ {nv}

such that

Lj(s0, t) → Λ̄(t)

uniformly on the compact set t ∈ [s0, s1] for some monotone-nondecreasing, Lipschitz-

continuous process Λ̄(t). But by (7.2), ∆j(t) → 0 uniformly on compact sets. Because
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of this and the fact that 〈nj〉−1Λnj (〈nj〉s) is monotone, it follows that the maximizing

values of each sup term approach 〈nv〉−1Λnv(〈nv〉t). Thus

sup
s∈[s0,t]

�
1

〈nv〉
Λnv(〈nv〉s) − ∆v(s)

�
→ 1

〈nv〉
Λnv(〈nv〉t) → Λ̄(t).

Because the choice of [s0, s1] was arbitrary, we have 〈nj〉−1Λnj (〈nj〉t) → Λ̄(t) u.o.c.

Furthermore, (7.2) and (7.4) imply that Λ̄(t) satisfies (7.1).

Lemma 7.3 (Lemmas 4.3 & 4.5 of Dai [32]). Suppose that {nj} is a sequence

satisfying Property 1. Then almost surely:

lim
j→∞

〈nj〉−1U
nj

f (〈nj〉t) = (Ūf (0) − t)+ u.o.c.,

lim
j→∞

〈nj〉−1V
nj

k (〈nj〉t) = (V̄k(0) − t)+ u.o.c.

Also, for each fixed t ≥ 0, the sets of functions:

�
〈nj〉−1Unj (〈nj〉t) : 〈nj〉 ≥ 1

�
,

�
〈nj〉−1V nj (〈nj〉t) : 〈nj〉 ≥ 1

�
,

�
〈nj〉−1Qnj (〈nj〉t) : 〈nj〉 ≥ 1

�

are uniformly integrable.

Proof. See Lemmas 4.3 and 4.5 of Dai [32]

The following lemma will be used later to show that because all of the systems

we consider are work conserving, which we stated with the integral expression (5.8), the

fluid limit must also be work conserving. In the lemma below, the notation DR[0,∞)

denotes the space of right continuous functions on R+ having left limits on (0,∞),
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and endowed with the Skorohod topology [44]. CR[0,∞) ⊂ DR[0,∞) is the subset of

continuous paths.

Lemma 7.4 (Lemma 2.4 of Dai and Williams [45]). Let {(zj , χj)} be a sequence in

DR[0,∞)×CR[0,∞). Assume that χj is nondecreasing and (zj , χj) converges to (z, χ) ∈

CR[0,∞) × CR[0,∞) u.o.c. Then for any bounded continuous function f ,

� t

0
f(zj(s))dχj(s) →

� t

0
f(z(s))dχ(s) u.o.c.

Proof. See Lemma 2.4 of Dai and Williams [45].

7.2 Convergence to a Fluid Limit along a Subsequence

The following proof parallels the proof of Theorem 4.1 of Dai [32]. The proof here differs

in that we deal with a sequence of systems and two different types of fluid limits, as

discussed in Section 6.

Theorem 7.5. Suppose one of the following cases hold for some constant ζ:

TFL Case: {nm} = {(nm, ym)} is a sequence of (system scale, relative initial condition)

pairs satisfying:

|ym| ≤ ζ and 〈nm〉ζ = nm → ∞.

JFL Case: {nm} = {(nm, ym)} is a sequence of (system scale, relative initial condition)

pairs satisfying:

|ym| > ζ and 〈nm〉ζ =
1

ζ
nm|ym| → ∞.
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Then for almost all ω there exists a subsequence {nj} ⊆ {nm} for which

〈nj〉−1Xnj (〈nj〉t) → X̄(t) u.o.c.

for some fluid trajectory X̄(t) with components

X̄(t) � [X̄(t); T̄ (t); Λ̄(t); h̄]

where, in turn, the process X̄(t)has components

X̄(t) � [Q̄(t); Ū(t); V̄ (t); B̄(t)]

where B̄(t) ≡ 0. The process X̄(t) may depend upon ω and the choice of subsequence

{nj} but must satisfy the following properties for all t ≥ 0:

Ūf (t) = (t − Ūf (0))+, V̄k(t) = (t − V̄k(0))+, (7.5)

T̄k(t) is nondecreasing and starts from zero, (7.6)

Īi(t) := t − CiT̄ (t) is nondecreasing , (7.7)

D̄k(t) := µs(k)(T̄k(t) − V̄k(0))+, (7.8)

Ā(t) := R�D̄(t) + Λ̄(t), (7.9)

Q̄(t) := Q̄(0) + Ā(t) − D̄(t), (7.10)

Q̄(t) ≥ 0, (7.11)

� ∞

0
(CQ̄(t))dĪ(t) = 0, (7.12)

where (7.5), (7.6), and (7.8) hold for each flow f and class k, while (7.7) holds for each

station i. Assignments (7.7), (7.8), (7.9), and (7.10) define Ī(t), D̄(t), Ā(t), and Q̄(t)
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respectively. Also, the following hold for each flow f for regular t ≥ 0:

˙̄Λf (t) = 0 whenever Q̄k(t) > h for some k ∈ C(f), (7.13)

˙̄Λf (t) = αf1(t ≥ Ūf (0)) whenever Q̄k(t) < h for all k ∈ C(f), (7.14)

˙̄Λf (t) ≤ αf . (7.15)

Also, for station i and for any k, l such that {k, l} ∈ C(i) the following are satisfied for

all regular t ≥ 0:

w−1
k

˙̄Dk(t) ≥ w−1
l

˙̄Dl(t) whenever Qk(t) > 0 , (7.16)

w−1
k

˙̄Dk(t) = w−1
l

˙̄Dl(t) whenever Qk(t) > 0 and Ql(t) > 0. (7.17)

In addition the following case specific conditions on h̄, and X̄(0) hold:

TFL Case: h̄ = h, |X̄(0) − h̄e| ≤ ζ, (7.18)

JFL Case: 0 ≤ h̄ ≤ h, |X̄(0) − h̄e| = ζ. (7.19)

Proof. We first consider the parts of the proof that require case specific analysis. For

the TFL case we have

nm

〈nm〉h =
nmh

nm
= h,

thus

nj

〈nj〉
h → h̄ = h

along any subsequence {nj} ⊂ {nm} giving us the first part of (7.18). For the JFL case

we have

nm

〈nm〉h =
nmh

ζ−1nm|ym| =
ζh

|ym| < h. (7.20)
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Thus by the Bolzano-Weierstrass Theorem, there exists a further subsequence {ni} ⊆

{nm} for which

ni

〈ni〉
h → h̄ (7.21)

holds for some h̄. The first part of (7.19) follows from (7.20). We also note that in the

JFL case, (7.20) implies

h̄ = lim
i→∞

ζh|yi|−1. (7.22)

For the TFL case, we use the definition of relative initial condition (5.2) and

〈n〉 to write

〈ni〉−1|Xni(0) − nihe| =
1

ni
(|niyi + nhe − nhe|)

≤ |yi| ≤ ζ. (7.23)

Similarly for the JFL case we have

〈ni〉−1|Xni(0) − nihe| =

�
�
�
�

ni(yi + he)

ni|yi|
− h̄e

�
�
�
�

≤ ζ + (ζh|yi|−1 − h̄)|e| (7.24)

≤ ζ + h|e|. (7.25)

Thus we may apply the Bolzano-Weierstrass theorem in either case to conclude that

there is a subsequence {nr} ⊆ {ni} for which 〈nr〉−1Xnr(0) → X̄(0) for some X̄(0). In

addition 〈nr〉−1Hnr(〈nr〉t) → 0 u.o.c. because Hnr(〈nr〉t) is bounded by a constant by

its definition. Thus,

〈nr〉−1Xnr(0) → [Q̄(0); Ū(0); V̄ (0); 0] (7.26)

〈nr〉−1Hnr(t) → 0 u.o.c. (7.27)
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Property (7.26) allows us to use Lemma 7.3 to conclude

〈nr〉−1

�
����
Unr(〈nr〉t)

V nr(〈nr〉t)

�
���� →

�
����
Ū(t)

V̄ (t)

�
���� u.o.c.

where Ū(t) and V̄ (t) satisfy (7.5).

In the TFL case, the second part of (7.18) follows from (7.23). For the JFL case,

(7.24) combined with (7.22) imply that (ζh|yr|−1 − h̄) → 0 and thus |X̄(0) − h̄e| = ζ,

giving us the second part of (7.19).

From this point on, the arguments apply for both cases. Tni satisfies

〈nr〉−1[Tni(〈nr〉t) − Tnr(〈nr〉s)] ≤ (t − s). (7.28)

Thus by Arzela’s theorem [46], there exists a further subsequence {nv} ⊆ {nr} for which

〈nv〉−1Tnv(〈nv〉t) → T̄ (t).

Property (7.6) follows from (5.6). Property (5.7) implies

〈nv〉−1Inv(〈nv〉t) → Ī(t)

u.o.c. where Ī(t) satisfies (7.7).

By Lemma 7.1, 〈nv〉−1Snv

k (〈nv〉t) → (µkt − V̄ (0)k)
+ u.o.c. for each class k.

This fact combined with (5.9) and (7.28) gives (7.8).

Property (7.26) allows us to use Lemma 7.2 to conclude that there is a subse-

quence {nj} ⊂ {nv} where

〈nv〉−1Λnj (〈nj〉t) → Λ̄(t) u.o.c.

for some Lipschitz continuous process Λ̄(t) satisfying (7.15).
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Lemma 7.1 combined with (5.3) gives us 〈nj〉−1A
nj

k (〈nj〉t) → Āk(t) u.o.c. where

Āk(t) is defined by (7.9). Furthermore, Āk(t) is Lipschitz continuous because it is equal

to a linear combination of functions we have already shown to be Lipschitz continuous.

Thus using (5.4) we have that

〈nj〉−1Qnj (〈nj〉t) → Q̄(t) u.o.c. (7.29)

where Q̄(t) is a Lipschitz continuous function given by (7.10). Property (7.11) follows

easily from (5.5).

The next few arguments are similar to the proof of Proposition 4.2 in [33].

Suppose that Q̄k(t) > h̄ for some k ∈ C(f). By Lipschitz continuity of Q̄k(t),

there exists some small τ > 0 such that

min
t≤s≤t+τ

Q̄k(s) > h̄.

By the uniformity of the queue convergence in (7.29) and the threshold convergence in

(7.21), there exists j∗ such that for all j > j∗, Q
nj

k (〈nj〉s) > njh for all s ∈ [t, t + τ ].

Thus, by (5.1) one finds that

Λ
nj

f (〈nj〉s) − Λ
nj

f (〈nj〉t) = 0 ∀s ∈ [t, t + τ ].

Therefore, it follows that

Λ̄f (s) − Λ̄f (t) = 0 ∀s ∈ [t, t + τ ]

and consequently, ˙̄Λf (t) = 0, which is (7.13).

Suppose that Q̄k(t) < h̄ for all k ∈ C(f). First note that in this case h̄ > 0 and

therefore (7.21) implies that nj → ∞. By the Lipschitz continuity of Q̄k(t) for each k,



97

there exists some small τ > 0 such that

max
k∈C(f)

max
s∈[t,t+τ ]

Q̄k(s) < h̄.

Because nj → ∞, the uniformity of the convergence in (7.29), and the convergence in

(7.21), there exists j′ such that for all j > j′, Q
nj

k (〈nj〉s) < njh. Furthermore there

exists a j∗ ≥ j′ such that for all j > j∗ and k ∈ C(f), Q
nj

k (〈nj〉s) < njh −√
njhς. Thus

by (5.1):

Λ
nj

f (〈nj〉s) − Λ
nj

f (〈nj〉t) = E
nj

f (〈nj〉s) − E
nj

f (〈nj〉t) ∀s ∈ [t, t + τ ]

and consequently we have (7.14).

Suppose that for some class k, Q̄k(t) > 0. By the Lipschitz continuity of Q̄k(t)

there exists some small τ > 0 such that

min
t≤s≤t+τ

Q̄k(s) > 0.

Because of the uniformity of convergence in (7.29) there exists j∗ such that for all j > j∗,

Q
nj

k (〈nj〉s) > 0 ∀s ∈ [t, t + τ ].

By (5.10), for almost all ω, and all classes l we have

w−1
k [Dk(〈nj〉s) − Dk(〈nj〉t)] ≥ w−1

l [Dl(〈nj〉s) − Dl(〈nj〉t)] ∀s ∈ [t, t + τ ]

and thus we have (7.16).

If Q̄l(t) > 0 and Q̄k(t) > 0 (7.16) is true as written or with the k and l and

indices swapped. This implies (7.17).

We observe that (5.8) is equivalent to

� ∞

0
f(χj)dzj = 0 (7.30)
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where

χj := 〈nj〉−1CiQ
nj (〈nj〉t)

zj := 〈nj〉−1I
nj

i (〈nj〉t)

f(·) := (·) ∧ 1. (7.31)

Noting that χj and zj meet the required conditions for Lemma 7.4 we have,

� ∞

0
[CiQ̄(t)] ∧ 1dĪi(t) = 0 (7.32)

which is equivalent to (7.12).

7.2.1 Sliding Modes

We refer to equations (7.5) through (7.17) as the fluid model equations, while we call a

solution to the fluid model equations a fluid trajectory. The fluid model equations are

ordinary differential equations with respect to time, but the values of the derivatives are

discontinuous functions of the state. For example (7.13) and (7.14), imply that ˙̄Λf (x)

is discontinuous because the value changes abruptly when a queue in C(f) crosses the

threshold h̄. Differential equations with right-hand discontinuities, as they are called,

may not have unique solutions for a given initial condition [47]. Fortunately, we will not

have to show that the fluid model equations admit a unique solution. Instead, it will

suffice to show that all solutions converge to an equilibrium.

Consider the boundary set on the state space Sf , defined to be the states for

which all queues in C(f) are at or below their thresholds and at least one such queue is
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exactly at its threshold. Relation (7.15) restricts

˙̄Λf (x) ∈ [0, αf ] for x ∈ Sf .

Thus the fluid model equations are differential inclusions at the switching boundaries.

Fillipov [47] gives a general treatment of discontinuous differential equations with differ-

ential inclusions at the switching boundaries. One type of solution to such equations is

a sliding mode, where the trajectory “sticks” to the switching boundary.

For instance, the fluid model of a network with a single queue, served at rate

µ, and single flow arriving at rate α > µ will admit a sliding mode solution. The fluid

model equations dictate that

˙̄Q(t)

�
��������
��������

= α − µ when Q̄(t) < h̄

∈ [0, α] when Q̄(t) = h̄

= −µ when Q̄(t) > h̄

for regular t. One can show that a solution, and in this case the only solution, of this

system is a trajectory that goes from its initial condition to the sliding boundary in finite

time, and then stays at the sliding boundary Q̄(·) ≡ h̄. Once the trajectory sticks to the

boundary, it must be that the policing is throttling the flow so that its thinned rate ˙̄Λ(t)

is equal to µ. We informally call this a sliding mode policing. A sliding mode policing in

the fluid model looks almost if the queue were giving a real number valued throttle signal

to the policing point. However, in the original stochastic system this must correspond

to a sequence of on and off policing events, with some amount of time between events at

least as long as the service time of a single packet. This chattering gets smoothed into

a continuous trajectory in the fluid scaling.
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7.3 Upgrading Convergence along Subsequences to Con-

vergence on Sequences

In the previous section, we showed that for both TFL and JFL sequences, we can extract

a sample path dependent subsequence that converges to a fluid trajectory. The objective

of this section is to upgrade this result to convergence along the original sequence, and

not just the sample path dependent subsequence. In particular, we show in Lemma 7.6

which follows that if a functional F of the fluid model trajectory goes to zero in a time

proportional to the initial condition’s distance from the fluid model equilibrium, then

we get our desired convergence property. In later sections, we will invoke Lemma 7.6

choosing F to extract the service rates from the fluid model, and later choosing F to

extract the distance from the fluid model equilibrium. Lemma 7.6 is a generalization of

an argument used by Dai in the proof of Theorem 4.2 of [32].

Lemma 7.6. Suppose that F is a functional that maps R
r × R

+ into R
s × R

+ where r

is the dimension of Xn(t) and s is arbitrary. Also suppose that F is continuous on the

topology of uniform convergence on compact sets.

Recall that h̄ is a component of X̄(t), and suppose that the following statement

is true:

• The fluid model equations (7.5) - (7.17) are such that any trajectory X̄(t) with

h̄ > 0 that satisfies them, X̄(t) must also satisfy

F ◦ [X̄( · )](t) ≡ 0 ∀t ≥ t0|X̄(0) − h̄e|. (7.33)

Then,
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(TFL Case:) For any sequence {nm} = {(nm, ym)} that satisfies |ym| ≤ ζ and nm → ∞

for some ζ > 0,
�
�
�
�
F ◦

�
1

〈nm〉X
nm(〈nm〉 · )

�
(t)

���� → 0 a.s. (7.34)

for each t ≥ ζt0, and any initial condition y.

(JFL Case: ) Suppose Condition (7.33) can be strengthened to hold for any trajectory

X̄ with h̄ ≥ 0. Then for any sequence {nm} = {(nm, ym)} that satisfies

|ym| > ζ and nm|ym| → ∞

for some ζ > 0, conclusion (7.34) holds.

Proof. By Theorem 7.5, for almost all sample paths ω, and for any subsequence {nj} ⊂

{nm} there is a sample-path-dependent further-subsequence {nl(ω)} ⊂ {nj} for which

〈nji(ω)〉−1X
nji(ω)(〈nji(ω)〉t, ω) → X̄(t, ω) u.o.c. (7.35)

where X̄(t, ω) satisfies (7.6) - (7.17). The notation l(ω) and X̄(t, ω) emphasize that

the further-subsequence and fluid trajectory depend on ω. Now fix an ω for which

subsequences have convergent further subsequences as described. For the next few steps

we suppress the ω arguments to simplify notation, but the reader should remember we

are working with a particular ω. We also note that the h̄ component of X̄ satisfies

h̄ > 0 in the TFL Case and h̄ ≥ 0 in JFL case by conclusions (7.18) and (7.19) of

Theorem 7.5 respectively. Consequently, condition (7.33) holds for the TFL Case, and

the strengthened version of condition (7.33) holds in the JFL Case. Thus in both cases,

we have

F ◦
�
X̄( · )

�
(t) = 0 for each t ≥ |X(0) − he|t0.
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Furthermore |X(0) − he| ≤ ζ in both cases by (7.18) and (7.19), thus

F ◦
�
X̄( · )

�
(t) = 0 for each t ≥ ζt0. (7.36)

Because F is assumed to be continuous on the topology of uniform convergence

on compact sets, (7.35) implies

F ◦
�
〈nl〉−1Xnl(〈nl〉 · )

�
(t) → F ◦ [X̄(·)](t) u.o.c.,

which combined with (7.36) yields

���F ◦
�
〈nl〉−1Xnl(〈nl〉 · )

�
(t)

��� → 0 (7.37)

for each t ≥ ζt0. So for this fixed ω, any subsequence {nj} ⊆ {nm} has a further

subsequence {nl(ω)} ⊆ {nj} for which (7.37) holds. Therefore the original sequence

{nm} converges for this fixed ω:

���F ◦
�
〈nm〉−1X(〈nm〉 · , ω)

�
(t)

��� → 0

for each t ≥ ζt0. But the same argument can be used to conclude that this holds for

almost all ω. Thus, we have (7.34).

7.4 Convergence to Fluid Model Rates on a Compact Time

Interval

The objective of this section is to use Lemma 7.6 to conclude that the rates of the

stochastic system are close to those of the fluid model. As a consequence of the conver-

gence to the fluid limit in Theorem 8.9 being uniform on compact sets, and not uniform

on R
+ we will only be able to show that the rates are close over a compact time interval.
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Theorem 7.7. Suppose there exists t0 such that

M−1 ˙̄T (t) ≡ R ∀t ≥ t0|X̄(0) − h̄e| (7.38)

for any fluid model trajectory X̄(t) with limiting threshold h̄ > 0 satisfying (7.5) - (7.17).

Then, for any positive γ < 1 and ζ < 1, there exists L1(ζ, γ) such that for all n ≥ L1,

inf
|y|≤ζ

E
�
M−1Tn,y(nt0)

�
≥ R(1 − ζ)(1 − γ)nt0. (7.39)

(Note that we write Tn,y in place of Tn to give extra emphasis on the dependence on y.)

Proof. Let {nl} = {(nl, yl)} be a sequence of system scale and relative initial condition

pairs satisfying nl → ∞ and |yl| ≤ ζ. We invoke the TFL case of Lemma 7.6 by picking

F so that

F ◦ [X̄(·)](t) := T̄ (ζ−1t) − T̄ (t) − MR(ζ−1 − 1)t.

F is easily seen to be continuous on the topology of uniform convergence on compact

sets. Also note that

F ◦ [X̄(·)](t) = 0 ∀t ≥ t0|X̄(0) − h̄e|

by (7.38), and thus Lemma 7.6 yields:

lim
l→∞

����
Tnl(nlt0) − Tnl(ζnlt0)

nl(1 − ζ)t0
− MR

���� = 0 a.s., (7.40)

where we have used the fact that 〈nl〉ζ = nl. The left hand side of (7.40) is bounded

from above by a constant for all l, and thus by the dominated convergence theorem [50]:

lim
l→∞

E

����
Tnl(nlt0) − Tnl(ζnlt0)

nl(1 − ζ)t0
− MR

���� = 0. (7.41)
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Also note (7.41) holds for any sequence {nl} with 〈nl〉 → ∞ and |yl| ≤ ζ, because these

were the only restrictions for our initial choice of sequence.

Now pick a positive constant γ < 1. Observe that there exists a constant

L1(γ, ζ) such that whenever n > L1,

inf
|y|≤ζ

E [Tn(nt0) − Tn(nζt0)]

n(1 − ζ)t0
≥ MR(1 − γ)

for if otherwise we could construct a sequence {nl} that violates (7.41). By the mono-

tonicity of Tnl(·), we have (7.39).

7.5 Stochastic System Attracted to Fluid Equilibrium

The objective of this section is to show that the stochastic system is attracted to the

fluid model equilibrium. In particular we show that the expected norm of the state

declines geometrically for starting states outside a neighborhood of the equilibrium. We

also show that the expected norm of the state is small, some fixed time after starting

inside the neighborhood. The proof technique is similar that of Theorem 3.1 of Dai [32].

Before stating the theorem of this section, we define the following notation:

Y n,y(t) �
1

n
(Xn(nt) − nhe). (7.42)

Y n,y(t) is a “relative” state of system-n, that is it is re-centered so that the candidate

equilibrium is at the origin and is scaled by 1/n in size, and by n in time. This trans-

formation parallels our definition of relative initial condition y in (5.2).

Theorem 7.8. Suppose that there exists t0 such that

X̄(t) ≡ h̄e ∀t ≥ t0|X̄(0) − h̄e| (7.43)
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for any fluid model trajectory X(t) with limiting threshold h̄ ≥ 0 satisfying equations

(7.6) - (7.17). Then the following conclusions are true:

i) For any ζ > 0, and any positive δ < 1 there exists L2(ζ, δ) such that for all n ≥

ζ−1L2 and |y| > ζ,

E |Y n,y(t0|y|)| ≤ δ|y|, (7.44)

ii) For any ζ > 0, and any b > 0 there exits L3(ζ, b) such that for all n ≥ L3 and all

|y| ≤ ζ,

E |Y n,y(t0)| ≤ b. (7.45)

Proof. We first prove conclusion (i). Pick any sequence of pairs {nl} = {(nl, yl)} satis-

fying nl|yl| → ∞ and |yl| > ζ for some ζ > 0 (A JFL sequence). We invoke Lemma 7.6,

picking F such that

F̄ (t) � F ◦
�
X̄(·); T̄ (·); Λ̄(·); h̄

�
(t) := X̄(t) − h̄e.

Note that F̄ (|X̄(0) − h̄e|t) = 0 ∀t ≥ t0 by Assumption (7.43), and F is easily seen to be

continuous on the topology of uniform convergence on compact sets. Lemma 7.6 yields

1

〈nl〉
|Xnl(〈nl〉t) − nlhe| → 0 a.s.

for each t ≥ t0. Noting that 〈nl〉 = nl|yl|, and taking t = t0 we have that

1

nl|yl|
|Xnl(nl|yl|t0) − nlhe| → 0 a.s.

By Lemma 7.3, (nl|yl|)−1Xnl(nl|yl|t0) is uniformly integrable. Therefore

lim
l→∞

1

nl|yl|
E |Xnl(nl|yl|t0) − nlhe| = 0.
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Applying definition (7.42), and noting that our initial choice of sequence {nl} was arbi-

trary, up to some constraints, we have that the following statement is true:

a) For any ζ > 0, and any sequence {nl} with nl|yl| → ∞, and |yl| > ζ,

lim
l→∞

1

|yl|
E |Y nl,yl(t0|yl|)| = 0. (7.46)

We claim that this fact implies the following statement is true:

b) For any ζ > 0, and any positive δ < 1 there exists L2(ζ, δ) such that for all n|y| ≥ L2

and |y| > ζ,

1

|y|E |Y n,y(t0|y|)| ≤ δ. (7.47)

Suppose statement (b) were not true. Then for some ζ > 0 and some positive δ, we

would have that for any L2 there would exist a pair (n, y) with n|y| > L2 and |y| >

ζ with 1
|y|E |Y n,y(t0|y|)| > δ. We therefore could construct a sequence that violates

statement (a), which is a contradiction. A special case of (b) is when n > L2ζ
−1 and

|y| > ζ. Hence we have conclusion (i) of the lemma.

We now turn to showing conclusion (ii). Pick an arbitrary sequence of pairs

{nl} = {(nl, yl)} satisfying nl → ∞ and |yl| ≤ ζ for some constant ζ (A TFL sequence).

We again invoke Lemma 7.6 by taking F to be the same functional as before,

F̄ (t) � F ◦
�
X̄(·); T̄ (·); Λ̄(·); h̄

�
(t) := X̄(t) − h̄e.

Using Lemma 7.6, and the fact that 〈nl〉ζ = nl when |yl| ≤ ζ we have

1

nl
|Xnl(nlt) − nlhe| → 0 a.s.
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for each t ≥ ζt0. Now take t = t0,

1

nl
|Xnl(nlt0) − nlhe| → 0 a.s.

By Lemma 7.3, (nl)
−1Xnl(nlt0) is uniformly integrable. Therefore

lim
l→∞

1

nl
E |Xnl(nlt0) − nlhe| = 0.

Applying definition (7.42),and noting that our initial choice of sequence {nl} was arbi-

trary, up to some constraints, we have that the following statement is true:

c) For any ζ > 0, and any sequence {nl} with nl → ∞, and |yl| ≤ ζ,

lim
l→∞

E |Y nl,yl(t0)| = 0. (7.48)

We claim that fact (c) implies conclusion (ii). Suppose (ii) were not true. Then for some

choice ζ and b, we would have that for every constant L3, there would exist an n ≥ L3

and y ≤ ζ satisfying E |Y n,y(t0)| > b. This would allow us to construct a sequence that

violates statement (c), which is a contradiction.

7.6 Hitting Times on a Neighborhood of the Fluid Equi-

librium

The objective of this section is to show that the results of Theorem 7.8 imply that the

expected return time of the ζ ball around the fluid equilibrium is small. Later on we will

combine this with the results of Theorem 7.7 that show that the expected rates, when

starting from within the ball are close to the fluid rates on a compact time interval, to

show the long term rates are close to the fluid rates.
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The proof of Lemma 7.9 is adapted from the proof of Theorem 2.1(ii) of [48],

which was for a discrete time Markov chain.

In the proof of Lemma 7.9, and in subsequent proofs, when we want to express

Y n,y(t) without specifying an initial condition we will write Y n(t) where the choice of

initial condition is implicit by the choice of probability measure. We define Py to be a

probability measure for which

Py{Y n(0) = y} = 1,

and thus,

Y n(t) = Y n,y(t) Py-a.s., and Ey[Y
n(t)] = E[Y n,y(t)].

Lemma 7.9. If for n fixed, we have the following inequalities

Ey|Y n(t0|y|)| ≤ δ|y| for all |y| > ζ, (7.49)

Ey|Y n(t0)| ≤ b for all |y| ≤ ζ, (7.50)

then Y n is positive Harris recurrent and furthermore,

sup
y∈B

Ey[τ
n
B(t0)] ≤ t0

�
1 +

ζ + b

1 − δ

�
(7.51)

where B � {y : |y| ≤ ζ} and τn
B(t0) is defined by

τn
B(t0) � inf{t ≥ t0 : Y n(t) ∈ B}. (7.52)

Proof. That Y n is positive Harris recurrent follows directly from Theorem 3.1 of [32].

The rest of the argument that follows is adapted from the proof of Theo-

rem 2.1(ii) of Meyn and Tweedie [48]. We will use the following Fact taken from Theorem

14.2.2 of [49]:
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Fact 1: (Meyn and Tweedie [49]) Suppose a discrete time Markov chain Φ̂ =

{Φ̂k, k ∈ Z
+} is defined on a general state space X with transition kernel P̂(x, A) =

P(Φ̂x ∈ A), where A ∈ B(X), the Borel subsets of X. If V and f are nonnegative

measurable functions satisfying

�
P̂(x, dy)V (y) ≤ V (x) − f(x) + b̃1B(x), x ∈ X (7.53)

then

Ex

�
�τ̂B−1�

k=0

f(Φk)

�
� ≤ V (x) + b̃

where

τ̂B = inf{k ≥ 1 : Φk ∈ B}.

We now turn to setting up our problem to make use of Fact 1. We define the following

two mappings, the first mapping each y to a time n(y), and the second mapping each y

to a integer valued Lyapunov function V (y):

n(y) �

�����
����
|y|t0 if |y| > ζ

t0 if |y| ≤ ζ

(7.54)

V (y) �
t0

1 − δ
|y| (7.55)

Substituting our assignment of n(y) into relation (7.49), and adding a term to that

relation’s right hand side so that it holds for y both inside and outside B, we have

Ey|Y n(n(y))|

≤ δ|y| +
	

sup
y∈B

Ey|Y n(t0)|



1B(y)

≤ |y| − 1 − δ

t0
n(y) + (1 − δ + b) 1B(y).
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We multiply both sides by t0/(1 − δ) to get

Ey|V (Y n(n(y))) | ≤ V (y) − n(y) + b̃1B(y) (7.56)

where b̃ = t0 +
t0

1 − δ
b. (7.57)

The transition kernel Pt for the Markov process Y n is defined by

Pt(y, A) = Py(Y
n(t) ∈ A),

where A is any set in B(Y), the Borel subsets of the state space Y. We define the discrete

time “embedded” Markov chain Φ̂ = {Φ̂k, k ∈ Z+} with transition kernel P̂ given by

P̂(y, A) = Pn(y)(y, A).

Note that

�
P̂(y, dz)V (z) =

�
Pn(y)(y, dz)V (z) = E|V (Y (n(y))) |. (7.58)

Combining (7.58) with (7.56) we have

�
P̂(y, dz)V (z) ≤ V (y) − n(y) + b̃1B(y). (7.59)

Recognizing this is the form of expression (7.53), we may use Fact 1 to conclude

Ey

�
�τ̂B−1�

k=0

n(Φ̄k)

�
� ≤ V (y) + b̃, (7.60)

where τ̂B = inf{k ≥ 1 : Φk ∈ B} is the first return time of the embedded discrete time

chain Φ to the set B. Fix a particular ω and initial condition y. If the embedded chain

hits B in τ̂B discrete steps, then the original chain must also hit B in a time equal to the

sum of the embedded times that those discrete steps correspond to. It is also possible
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that the original chain hits B earlier, in addition to hitting at a time equal to the sum

of the embedded times. Thus the first hitting time of the original chain satisfies

inf{t ≥ 0 : Y n(t) ∈ B} ≤
τ̂B−1�

k=0

n(Φ̂k) Py-a.s.

for each y ∈ Y. Furthermore, whenever the initial condition y ∈ B, the first embedded

time is t0 seconds by (7.54). Consequently, the time of the first hitting of B after t0

seconds expire satisfies

inf{t ≥ t0 : Y n(t) ∈ B} ≤
τ̂B−1�

k=0

n(Φ̂k) Py-a.s.

for each y ∈ B. Substituting (7.52), taking the expectation, and using (7.60), we have

Ey[τ
n
B(t0)] ≤ V (y) + b̃ for all y ∈ B.

Taking the supy∈B of both sides, substituting (7.57) and (7.55) we have

sup
y∈B

Ey[τ
n
B(t0)] ≤ t0 +

t0
1 − δ

[ζ + b] ,

which is (7.51).

7.7 Convergence of Long Term Rates

The objective of this section is to tie together all of the preceding results to conclude

that the long-term rates of the stochastic system are close to the fluid rates for large

enough n. We pick n large enough so that the stochastic system’s rates are close to the

fluid rates for the first t0 seconds after having started in a ζ neighborhood and that the

expected time of first return to a ζ neighborhood, t0 seconds after having started there
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is close to t0. At this point, intuition suggests that the long term rates must be close to

the fluid rates over the long term. We formalize that intuition with an argument based

on stopping times and the strong Markov property.

Theorem 7.10. Suppose both of the following are true:

• For any fluid model trajectory X̄(t) with limiting threshold h̄ ≥ 0 that satisfies (7.6)

- (7.16),

X̄(t) ≡ h̄e ∀t ≥ t0|X̄(0) − h̄e|. (7.61)

• For any fluid model trajectory X̄(t) with limiting threshold h̄ > 0 satisfying (7.6) -

(7.16):

M−1 ˙̄T (t) ≡ R ∀t ≥ t0|X̄(0) − h̄e| (7.62)

where R is a constant K dimensional vector of flow rates.

Then for any ε > 0, there exists a system-scale nc such that for all system-scales n ≥ nc

lim
t→∞

Dn,y(t)

t
≥ (1 − ε)R a.s.

Proof. We observe that equations (7.62) and (7.61) are the necessary conditions to apply

Theorems 7.7 and 7.8 respectively. Therefore, we may arbitrarily pick the constants ζ, δ,

and b of Theorem 7.8 and the constants ζ and γ of Theorem 7.7 (using the same ζ value

in Theorems 7.7 as we use when we apply Theorem 7.8), and then fix an n satisfying

n > max[L1(ζ, γ), ζ−1L2(ζ, δ), L3(ζ, b)] (7.63)

so that the conclusions of both Theorems 7.8 and 7.7 hold.
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In addition, conclusions (i) and (ii) of Theorem 7.8 allow us to invoke Lemma 7.9

to conclude

sup
y∈B

Ey[τ
n
B(t0)] ≤ t0(1 +

ζ + b

1 − δ
) (7.64)

where τn
B(t0) is defined by (7.52). Because the constants ζ, b, δ could have been selected

to be arbitrarily small, equations (7.64) and (7.63) imply that the expected first hitting

time of B, t0 seconds after having started in B, can be made to be arbitrarily close to t0

by choosing n large enough. For convenience we collect some of the constants in (7.64)

in the term t′0 defined by

t′0 = t0

�
1 +

ζ + b

1 − δ

�
. (7.65)

We have also chosen n large enough so that the following conclusion from The-

orem 7.7 holds,

inf
|y|≤ζ

E [Tn,y(nt0)] ≥ MR(1 − ζ)(1 − γ)nt0. (7.66)

Define the stopping times

σ0 = 0,

σi+1 = inf{t ≥ t0 + σi : Y (t) ∈ B}, ∀i ≥ 0. (7.67)

Figure 7.1 illustrates how these stopping times are defined. Note that for any initial

condition y ∈ Y (the state space of Y n) and index i ≥ 1,

Ey[σi+1 − σi] = EY n,y(σi)[τ
n
B(t0)] ≤ sup

ỹ∈B
Eỹ[τ

n
B(t0)] ≤ t′0. (7.68)

This follows from the fact that Y n,y(σi) ∈ B, the strong Markov property, the stopping

time definitions (7.52) & (7.67), and expressions (7.64) & (7.65). Also, Y n is positive
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Figure 7.1: The top half of the figure illustrates the definition of the stopping times
σi, σi+1, ... The bottom half illustrates the intuition behind the proof of Theorem 7.10
by plotting the stopping times on a time line, and showing the bound on expected
throughput between such stopping times. That the expected time elapse between σi

and σi+1 is upper-bounded by t′0 is a consequence of Lemma 7.9. The lower-bound on
expected throughput between stopping times comes from Theorem 7.7.

Harris recurrent by Lemma 7.9 and therefore,

Ey[σ1] < ∞ (7.69)

for any y ∈ Y. We define a counting process N(t) for the stopping times σi as

N(t) = inf{i : σi ≤ t}.

Because Y n is positive Harris recurrent, σi < ∞ almost surely, and therefore

N(t) → ∞ a.s. (7.70)
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We now turn to bounding the expected “arrival” rate of the stopping times σi. By (7.68)

for each i,

Ey[σi]

i
=

�i−1
j=1 Ey[σj+1 − σj ] + Eyσ1

i
≤ t′0(1 + 1/i) +

Eyσ1

i
(7.71)

Additionally, along any sample path

t

N(t)
≤

σN(t)+1

N(t) + 1

N(t) + 1

N(t)
.

Thus by taking lim inft→∞ Ey(·) of both sides, and using (7.70), and (7.71) we have

lim inf
t→∞ Ey

�
t

N(t)

�
≤ t′0.

Also, by Fatou’s Lemma

Ey

�
lim inf
t→∞

t

N(t)

�
≤ lim inf

t→∞ Ey

�
t

N(t)

�
≤ t′0. (7.72)

Recall that the process Tn(t) = Tn,y(t) is defined in terms of the time scale

of Xn, and not that of Y n, which we defined in expression (7.42) by scaling time by a

factor of n. Therefore we define a re-scaled service process �Tn,y with time re-scaled to

match the time scale of the Process Y (t) according to the definition

�Tn,y(a, b) = Tn,y(nb) − Tn,y(na). (7.73)

We also define the random vectors ρi to track the throughput between stopping times

σi as made precise by the definition

ρi = M−1�Tn(σi, σi + σi+1), (7.74)
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where the y superscript in �Tn,y is omitted because the initial condition will be specified

implicitly by the choice of probability measure. Note that for i ≥ 1 and each y ∈ Y,

Ey[ρi] ≥ EY n,y(σi)[M
−1�Tn(t0)]

≥ inf
ý∈B

Eý[M
−1�Tn(t0)]

≥ Rt0(1 − ζ)(1 − γ). (7.75)

This follows from the fact that Y n,y(σi) ∈ B, the strong Markov property, the definition

of σi (7.67), the definition of ρi (7.74), and relation (7.66). Figure 7.1 illustrates the fact

that the throughput between stopping times σi and σi+1 is lower-bounded according to

relation (7.75).

Because, we have shown that Y n is positive Harris recurrent, by [33] the fol-

lowing ergodic property holds for every measurable f on Y with π(|f |) < ∞,

lim
t→∞

1

t

� t

0
f(Y n(s))ds = π(f) Py-a.s. for each y ∈ Y

where π is the unique invariant distribution of Y n. Assigning the function

f(y) := M−1 �̇T n,y(0)

to be the instantaneous service rates when the process is in state y, (Recall that we

assumed the service rates are a function of the state in Section 5.7.2.) we have,

lim
t→∞

1

t

� t

0
f(Y n,y(s))ds = lim

t→∞
1

t
M−1�Tn,y(t) = R a.s. (7.76)

for some constant vector R.

Consider the random variable

N = lim inf
t→∞

t

N(t)
.
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The random variable N is a Pπ invariant random variable, and therefore is a constant.

Hence by (7.72),

N is a constant and N ≤ t′0. (7.77)

A more detailed explanation of this argument is provided in the Appendix.

We observe that for any sample path the following inequalities hold,

t

N(t)

M−1�Tn,y(t)

t
≤
�N(t)

j=0 ρj

N(t)
≤ t

N(t)

σN(t)+1

t

M−1�Tn,y(σN(t)+1)

σN(t)+1
. (7.78)

Taking the lim inft→∞ of both sides, and using (7.76), (7.70), & (7.77) we have that

lim inf
t→∞

�N(t)
j=0 ρj

N(t)
= NR a.s. (7.79)

Now we need to apply the dominated convergence theorem. Before doing so, we note

that

M−1
�Tn,y(σN(t)+1)

σN(t)+1
≤ M−11

where 1 is a column vector of 1’s of appropriate dimension. This fact combined with

(7.78) and (7.77) yield that for each i > 0,

inf
k≥i

�k
j=1 ρj

i
≤ lim inf

t→∞
t

N(t)
M−11 ≤ t0(1 + φ)M−11.

and thus the random variables

�
inf
k≥i

�k
j=1 ρj

i
: i > 0

�

are dominated by a constant. Consequently, the dominated convergence theorem applied

to (7.79) yields,

lim inf
i→∞

E

��i
j=1 ρj

i

�
= NR.
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Also for each i > 0 by (7.75),

E

��i
j=1 ρj

i

�
≥ Rt0(1 − γ)(1 − ζ).

Thus,

NR ≥ Rt0(1 − γ)(1 − ζ).

Substituting (7.72) we have that

R ≥ (1 − γ)(1 − ζ)t0
t′0

R.

Which by (7.65), (7.73), and (7.76) implies

lim
t→∞

1

t
M−1Tn,y(t) ≥ (1 − γ)(1 − ζ)

1 + ζ+b
1−δ

R a.s.

Recall that the parameters γ, ζ, b, and δ may be chosen arbitrarily close to 0, and still

have all of the preceding development hold by choosing a large enough n according to

(7.63). Thus for a large enough n,

lim
t→∞

1

t
M−1Tn,y(t) ≥ (1 − ε)R a.s.

for any relative initial condition y. By the strong law of large numbers for renewal

processes [50],

lim
t→∞

1

t
Sn,y

k (t) → mk a.s.

Thus by (5.9),

lim
t→∞

1

t
Dn,y(t) ≥ (1 − ε)R a.s.
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Chapter 8

Round Robin Network without

Loops

In this section we specialize and consider networks whose flows traverse the

network without splitting and without visiting the same class more than once. For such

networks the routing matrix P is binary and nilpotent, because packets must leave the

network in a bounded number of hops.

Our objective in this section is to show that, starting from any initial condi-

tion, the fluid model of such a network converges to an equilibrium state h̄e, in a time

proportional to the distance of the initial condition from the equilibrium. Furthermore,

we need to show that after reaching equilibrium, the departure rates for each flow are

max-min fair. This will allow us to invoke Theorem 7.10 to conclude that the flows in

the stochastic model of the network achieve close to the max-min fair share rates over

the long term.
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Figure 8.1: A fluid model trajectory of the example network introduced in Section 5.4.

8.1 Fluid Model Example.

To motivate the techniques we use in our proof, we consider the fluid model of the

example network that we introduced in Section 5.4. We consider the TFL fluid limit

of the example network, found by setting the base thresholds h to 1, and then scaling

the thresholds, time, and space by n → ∞. A trajectory of the resulting fluid model

is illustrated in Figure 8.1. The illustrated trajectory has initial condition Q̄2(0) = 1,

Q̄5(0) = 2, Q̄6(0) = 0.7, and all other queues starting from 0. This initial condition

matches the initial conditions of the stochastic model trajectories pictured in Figure 5.1,

but scaled in magnitude in proportion to the threshold size. Looking at the h = 10 and

h = 100 cases of Figure 5.1, and then looking at the fluid model trajectory of Figure 8.1,

we see that the trajectory of the stochastic system with larger thresholds looks more like

the trajectory of the fluid model.
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As we discussed in Section 5.4, we expect station 2 to be the primary bottleneck,

and therefore its queues should fill to their thresholds. Afterwards, we should expect the

fluid system to enter a sliding mode, (a term we introduced in Section 7.2.1) where the

queues in the bottleneck station stick to their thresholds. Consequently the policing must

throttle the arrivals so that the rates of the thinned arrival process match the service

rate of the bottleneck station. Recall that in Section 7.2.1 we termed this phenomenon

sliding mode policing.

Looking at figure 8.1, we indeed see that the queues at the station 2 do indeed

fill up and eventually stick to their thresholds. After this happens, the rates of the fluid

system exactly match the max-min fair share rates. However, the transient trajectory of

the queues is rather complicated before the system reaches this final state. In order to

apply Theorem 7.10, we need to be certain that the fluid model converges to the desired

state from any initial condition, and in a time proportional to the distance of that initial

condition from the equilibrium state. Therefore, we need a systematic argument that

shows that for all initial conditions, and for all loop free round-robin networks, this

convergence happens.

A natural approach is to find a Lyapunov function on the fluid model state space

that declines to 0. To construct such a Lyapunov function, we need to find a quantity

that declines monotonically along any fluid model trajectory. Intuition suggests that the

queues downstream of the main bottleneck, station 2, should decline. However we see

from the plots in Figure 8.1 that the class 6 queue actually increases for a time. This

is explained as follows. The class 5 queue (queue 5 for short) starts above the policing
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threshold, and thus flow 2 starts off policed. Consequently, the rate of flow through

queue 2 and queue 4 is zero in the beginning. As a result, station 2 devotes all of its

service rate to queue 3, allowing queue 3 to drain into queue 6 at rate 1.0. This is faster

than the service rate of queue 6, resulting in its level rising, and even causing flow 3

to be policed for a short time. This example shows that the queues downstream of the

bottleneck do not monotonically decrease to 0.

However, we claim that there is a quantity that does decrease monotonically to

zero, and that is the sum of all the queues downstream from any queue at the bottleneck

station. In this case, that quantity is the sum of queues 5 and 6. To see this consider the

rate of fluid being expelled from queue 5. Whenever queue 5 is nonempty, fluid leaves

at rate 0.6. When queue 5 is empty, but an upstream queue is nonempty, fluid arrives

to queue 5 at at least the bottle neck rate of 0.5, and as this is a fluid network, there is

no delay in the fluid arriving from the upstream queue to queue 5. Because the service

capacity of queue 5 exceeds 0.5, queue 5 expels fluid at a rate of at least 0.5 whenever

an upstream queue is nonempty. Also, if queue 5 and all the other flow 2 queues are

empty, flow 2 is not policed and thus its fluid arrives to the network at rate 0.8, a rate

that exceeds the bottleneck rate. After passing through the bottleneck, the fluid arrival

rate to queue 5 is at least 0.5, and this fluid arrives without delay. This exhausts all

cases, so the rate of fluid leaving queue 5 is at least 0.5 at all times.

The same observations can be made about the fluid release from queue 6. We

also see that the combined arrival rates to queue 5 and 6 can be no more than 1.0 because

they are constricted by the service rate of station 2. We also note that because queue 5
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and queue 6 can be served at a rate of 0.6 when they are nonempty fluid leaves them at

a combined rate of at least 1.1 when at least one of them is nonempty. Thus their sum

must fall monotonically to zero at a rate of at least 0.1. We will use this same strategy

of considering the sum of the queues downstream of the bottleneck for the general proof

we present later in the chapter.

We continue to look at the evolution of the example. Once the queues down-

stream of station 2 drop below their thresholds, fluid passes through the queue 3 and

queue 4 at a rate of exactly 0.5. To see this, consider the possible cases. Either the

queue 4 is nonempty, an upstream queue is nonempty, or flow 2 is not policed, or some

combination of any of these. In all of these cases, there is either fluid in the queue 4 or

fluid is arriving at faster than the bottleneck rate. The same can be said of queue 3.

Because the queueing discipline is fair and work conserving, the only possibility is for

each flow to be served at rate 0.5.

Once this has occurred, we should expect both queue 3 and queue 4 to rise

monotonically towards their thresholds. Figure 8.1 shows that this indeed happens.

When queue 4 reaches its threshold and activates policing, it continues to rise for a short

time, before eventually falling back down to threshold. This is because the upstream

queue has some fluid left in it. Eventually the fluid in the upstream queue empties, then

queue 4 drains towards the threshold. When it reaches threshold, it enters a sliding mode.

To see this, consider what would happen if the queue were to dip below threshold. There

would be full release of the policing, causing a surge of fluid that would immediately push

the queue back to its threshold. Thus, a sliding mode solution is the only possibility.
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Similarly, queue 3 enters a sliding mode, but it does not “overshoot” the thresh-

old as queue 4 does. This is because there are no queues upstream of queue 3. Once

queues 3 and 4 settle to their equilibrium sliding modes, flows 2 and 3 have rates of 0.5,

throughout the network. Consequently, station 1 has a remaining service capacity of

1.2 − 0.5 = 0.7 to devote to the other flow it serves – flow 1. As flow 1’s arrival rate

is only 0.65, queue 1 drains to 0, and stays there. Flow 1’s final rate is 0.65, and the

governing constraint is its own rate of demand.

The example suggests the following strategy for proving the convergence of a

general network:

• Identify the tightest bottleneck station in terms of rate per flow, or if the flows

have different weights, the rate per unit weight of flow.

• Show that the sum of the queues downstream from the bottleneck empty, using

the argument we gave for the example network.

• Once the downstream queues empty, the queues at the bottleneck station drain at

constant rate. Furthermore, when the bottleneck queue is below threshold it must

be rising monotonically. When it is above threshold, it may continue to rise as an

upstream queue drains into it. However, the sum of the bottleneck queues and the

upstream queues declines, because the flow is policed and new fluid is not being

introduced. Using these two observations, we can construct a Lyapunov function

of the form,

V =
�

[Upstream Q’s] +
�
[Bottleneck Q] −h̄

�+
+ L

�
[Bottleneck Q] −h̄

�−
.
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Here L is a large enough number so that the when the bottleneck queue is below

threshold, the effect of the bottleneck queue rising towards its threshold dominates

any contribution of the other queues behavior. Once this Lyapunov function de-

clines to 0 for each bottleneck queue at a bottleneck station, the bottleneck queues

are all at their threshold h̄. Also, the bottlenecked flows that use these queues all

have been sliding-mode policed to rates that match the bottleneck rate.

• After the rates of the bottlenecked flows converge, they can be treated as constant

rate, and can be removed from consideration by deducting their final rates from

the capacity of the other stations through which the flows pass. Then one finds the

most constrictive bottleneck from the “reduced network”, and repeats the above

analysis.

• At any point in this procedure, a flow’s offered rate (its α) may be less then

the most constrictive bottleneck station in the reduced network. In this case,

one should proceed by considering the flow itself to be a bottleneck. One then

shows that the queues that the flow passes through must drain to zero in finite

time. One then removes the flow from consideration by deducting the flow’s rate

from the stations through which it passes, and then proceeds by finding the most

constrictive bottleneck station or flow in the reduced network.

8.2 Pipeline Notation and Properties

In this section we will need to consider the queues that are either “upstream” or “down-

stream” of a particular queue in a systematic way. To that end, we define an ordered
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set of classes which we call a Pipeline . To make our definition precise, we define the

following notation: We say that k ≺ l if flow f = f(k) packets pass through the class k

queue before passing through the class l queue, and 1j is a K dimensional column vector

with a 1 at position j and zeros elsewhere.

Definition 1. A Pipeline is an ordered set of classes P = {k1 ≺ k2 ≺ ... ≺ km} such

that

P1kj
= 1kj+1 ∀j : 1 ≤ j < m. (8.1)

Because of the assumptions given in Section 5.1: that only class f receives

exogenous arrivals for flow f , the routing matrix does not mix flows (i.e. Pkl = 0 if

f(k) �= f(l)), the sum of any row of P is not more than 1; and because of the additional

assumption that P is binary and nilpotent that we have made in this section, it is easy

to verify that a pipeline P satisfies these additional properties:

[P1l]
�1kj

= 0 ∀l /∈ P, ∀j : 2 ≤ j ≤ m (8.2)

αkj
= 0 ∀j : 2 ≤ j ≤ m. (8.3)

It is also easy to verify that for any class k, there is a Pipeline P[k] that includes class

k and all downstream queues. (i.e. P = {k ≺ k2 ≺ ... ≺ km} where Pkm,l = 0 for all l.)

We call P[k] the pipeline rooted at k. Because flow f packets always enter as class f ,

P[f ] is the pipeline containing all the classes that flow f passes through, and thus has

all the elements of K(f). In summary:

P [k] = k ∪ Classes downstream of k

P [f ] = All classes of flow f .
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We also define:

H [k] � P[f(k)] \ P[k], Classes Upstream of k

T [k] � P[k] \ k, Classes Downstream of k

where H, T are mnemonics for Head and Tail respectively.

We state a series of lemmas to show additional properties of pipelines. In the

lemmas, we use the notation

Q(t,P) �
�

k∈P
Q̄k(t)

to represent the occupancy of the queues in P. The following lemma is a law of conser-

vation of flow for pipelines.

Lemma 8.1. Consider a pipeline P with elements indexed as {k1 ≺ k2 ≺ ... ≺ km}.

Then for regular points t,

Q̇(t,P) = ˙̄Ak1(t) − ˙̄Dkm
(t).

Proof. See the Appendix.

The following lemma says that if fluid arrives to a pipeline at rate greater than

r, and all the queues along that pipeline can offer at least rate r, then fluid passes through

at a rate of at least r.

Lemma 8.2. Suppose a pipeline P with elements indexed as {k1 ≺ k2 ≺ ... ≺ km}

satisfies the following conditions for some r and τ , and for all regular points t ≥ τ :

i) ∀ kj ∈ P, ˙̄Dkj
(t) ≥ r whenever Q̄kj

(t) > 0.

ii) ˙̄Ak1(t) ≥ r.
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Then ˙̄Dkm
(t) ≥ r at regular points t ≥ τ .

Proof. See the Appendix.

The following lemma says that if all the queues along a pipeline have an available

rate of r and one of those queues is nonempty, then fluid is expelled from the pipeline

at a rate of at least r.

Lemma 8.3. Suppose a pipeline P with elements indexed as {k1 ≺ k2 ≺ ... ≺ km}

satisfies the following conditions for some rate r, and critical time τ :

i) For all kj ∈ P and regular t ≥ τ ,

˙̄Dkj
(t) ≥ r whenever Q̄kj

(t) > 0.

ii) For some k∗ ∈ P and some time interval [s0, s1] with s0 ≥ τ ,

Q̄k∗(t) > 0 ∀t ∈ [s0, s1].

Then ˙̄Dkm
(t) ≥ r at regular points t ∈ [s0, s1].

Proof. See the Appendix.

8.3 Max-Min Fair Definitions

We say a vector of flow rates is r is feasible if

�

f∈F[i]

rf ≤ µi

for each station i and rf ≤ αf for each flow f . A vector of rates is r is weighted max-min

fair if there is no flow rate rf , which can be feasibly increased without decreasing the
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rate of some other flow f ′ for which
rf ′

wf ′

≤ rf

wf
. In [28] it is shown that such a rate vector

always exists.

Let r be a weighted max-min fair flow rate allocation. We say that the nor-

malized rate of a flow f is the fair rate rf divided by the weight wf . We say a flow

f crosses a station i if f ∈ F[i]. A station i is saturated if its capacity constraint is

tight in the max-min allocation (i.e. µi =
�

F[i] rf ). A bottleneck station of a flow f∗ is

any saturated station i that f∗ crosses for which the normalized rate of f∗ is greater or

equal to the normalized rate of any other flow crossing that station. A flow has a unique

bottleneck if it has only one bottleneck station.

If the normalized arrival rate αf∗ of flow f∗ is less than or equal to the nor-

malized rate any other flow f that crosses any station that f∗ crosses, we say that flow

f is demand-limited. Similarly, if the arrival rate αf∗ of flow f∗ is strictly less than the

normalized rate any other flow f that crosses any saturated station that f∗ crosses, we

say flow f is strictly demand-limited . It is straightforward to show [28] that a rate allo-

cation vector is max-min fair if and only if every flow either has at least one bottleneck

station or is demand limited.

In our proof that the long term rates of the stochastic network are close to the

max-min fair rates for large thresholds, we will need to assume that each flow has either

a unique bottleneck or is strictly demand limited. The following proposition shows that

this is not a strong assumption.

Proposition 8.4. Consider a network where the following are fixed: the arrival rate

vector α, the flow weight vector w, and the routing. For almost all, with respect to
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Lesbesgue measure, choices of station capacity vector µ, each flow has either a unique

bottleneck or is strictly demand limited in a max-min fair allocation.

Proof. See the Appendix.

For the remainder of this chapter, we fix the K dimensional vector e by making

the following assignment for each entry ek,

ek =

�����
����

1 if station s(k) is a bottleneck of flow f(k)

0 otherwise.

(8.4)

We also fix the full candidate equilibrium e by the assignment e := [e; 0U ; 0V ; 0H ] where

0U , 0V , 0H are zero vectors of the same dimension as U(t), V (t), and H(t) respectively.

8.4 Fluid Model Rate Lemmas

The following lemma supposes that some subset of the flows that cross a station i have

been shown to converge to stable rates. The lemma concludes that the remaining flows

of the station must share the remaining capacity in proportion to their weights.

Lemma 8.5. Suppose that for some station i, some �C[i] ⊆ C[i], and some �F[i] = {f :

f = f(k) for some k ∈ �C[i]}, it has been shown that

˙̄Dk(t) = µi
˙̄Tk(t) = rf(k)

∀k ∈ C[i] − �C[i]

for all t ≥ τ for some critical time τ ≥ max(V̄ (0)). Then for each k∗ ∈ �C[i] and all

regular t ≥ τ ,

˙̄Dk∗(t) ≥ wf(k∗)

µ̃i��F[i]
wf

whenever Q̄k∗(t) > 0.
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where

µ̃i = µi −
�

f∈F[i]\�F[i]

rf .

Proof. See Appendix.

We will also need the following Lemma, concerning Lyapunov functions that

decline at regular points t.

Lemma 8.6. If V (t) : R
+ → R

+ is an absolutely continuous function with V̇ (t) < −a

for almost all regular t for which V (t) > 0, then V (s) ≡ 0 for all s ≥ V (0)/a.

Proof. See the Appendix.

8.5 Demand Limited Flow Analysis

Lemma 8.7. Consider the max-min allocation vector r, a strictly demand limited flow

f∗, and all fluid model trajectories X̄(t) with h̄ > 0. Suppose that for each flow f

satisfying
rf

wf
<

rf∗

wf∗
it has been shown that for all initial conditions X̄(0) that

˙̄Dk(t) ≡ rf ∀k ∈ P [f ]

for all t greater than or equal to some critical time τ(X̄(0)) ≥ max(Ū(0)) ∨ max(V̄ (0)).

Then for all k ∈ P [f∗] the following hold:

˙̄Dk(t) ≡ rf∗

Qk(t) ≡ 0 = ek

for all t ≥ τ∗ for some critical time τ∗(X̄(0)). Furthermore τ∗(X̄(0)) ≤ a|X̄(0) − h̄e| +

bτ(X̄(0)) for some constants a and b.
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Proof. Let �F be the set of all flows f for which rf/wf ≥ rf∗/wf∗ . For each station i,

define the reduced flow constituency set �F[i], the reduced class constituency set �C[i],

and the reduced capacity µ̃i by

�F[i] � F[i] ∩ �F , �C[i] � C[i] ∩

�
��
�F
P [f ]

�
� , and

µ̃i � µi −
�

F[i]\�F[i]

rf (8.5)

respectively. Now consider any station i that flow f∗ crosses. Also let s be the slackness

of the capacity constraint at station i under the max-min allocation. In other words,

s := µi −
�

F[i] rf . Suppose s = 0. Then there must exist a flow f ∈ �F[i] for which

rf∗

wf∗

<
rf

wf

by the following reasoning. If there did not exist such a flow, then f∗ would have the

highest normalized rate at a saturated station i, and thus station i would be a bottleneck

for flow f∗. As we have assumed that f∗ is strictly demand-limited, this is not possible.

Additionally, by the definition of the set �F[i], it must be that

rf∗

wf∗

≤ rf

wf
∀f ∈ �F[i].

By listing the inequalities for each flow f ∈ �F[i] expressed by the above form and taking

a convex combination of both sides of the inequalities in the list we deduce that

rf∗

wf∗

≤
��F[i]

rf��F[i]
wf

=
µi − s −�

F[i∗]\�F[i∗]
rf��F[i∗]

wf
.

Furthermore, if s = 0 the above inequality is strict because there would have been a

strict inequality in the list we used to derive the above relation. Thus,

rf∗

wf∗

<
µ̃i�

f∈�F[i]
wf
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were the inequality is strict.

Let κ be the minimum slackness one finds by evaluating the above inequality

across all the stations f∗ crosses. More precisely,

κ := min
k∈P[f∗]

�
� µ̃s(k)�

f∈�F[s(k)]
wf

− rf∗

wf∗

�
� .

Additionally it follows from Lemma 8.5 that for any k ∈ P [f∗],

˙̄Dk(t) ≥ wf∗

µ̃s(k)��F[s(k)]
wf

whenever Q̄k(t) > 0 for regular t ≥ τ .

Because flow f∗ is demand limited, αf∗ = rf∗. Hence for all k ∈ P [f∗]

˙̄Dk(t) ≥ αf∗ + κ whenever Q̄k(t) > 0 for regular t ≥ τ .

While ˙̄Af∗(t) ≤ αf∗ by fluid model equation (7.15). Thus by Lemma 8.3, which recall

describes the departures from a pipeline that has a nonempty queue, and Lemma 8.1,

the flow conservation rule for pipelines, we have

Q̇(t,P [f∗]) ≤ −κ

whenever Q(t,P [f∗]) > 0 and t ≥ τ regular. Thus by Lemma 8.6,

Qk(t) ≡ 0 ∀k ∈ P [f ]

for all t ≥ τ + |Q(τ,P [f∗])|/κ. Because the queues in P [f∗] cannot grow by more than

ταf∗ in the first τ seconds, the same holds for all

t ≥ τ∗ � τ + (αf∗τ + |Q(0,P [f∗])|)/κ.

Once the queues in the pipeline have stabilized to 0, the policing must be off

and hence ˙̄Af (t) = αf by (7.14). Because Lemma 8.1 says that flow is conserved through
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each pipeline {P [f∗] − P [k]} for each k ∈ P [f∗], we may conclude

˙̄Dk(t) = rf∗ ∀t ≥ τ∗ ∀k ∈ P [f∗] . (8.6)

8.6 Bottleneck Limited Flow Analysis

Lemma 8.8. Consider the max-min allocation vector r, a saturated station i∗, and all

valid fluid model trajectories X̄(t) with h̄ > 0. Let B be the maximum normalized rate of

flows crossing i∗. Equivalently let

B = max
f∈F[i∗]

rf

wf
,

and also make the following definitions:

�F[i∗] := arg max
f∈F[i∗]

rf

wf

�C[i∗] := {l ∈ C[i] : ∃f ∈ �F[i∗] with f = f(l)}

Suppose that for every flow f satisfying rf/wf < B it has been shown that for all initial

conditions X̄(0) that

˙̄Dk(t) ≡ rf ∀k ∈ P [f ]

for all t greater than or equal to some critical time τ(X̄(0)) which satisfies τ(X̄(0)) ≥

max(Ū(0)) ∨ max(V̄ (0)).

Then for all l ∈ �C[i∗] the following hold for all k ∈ P
�
f(l)

�

˙̄Dk(t) ≡ rf(l)

Qk(t) ≡ h̄ek
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for all t ≥ τ∗ for some critical time τ∗(X̄(0)). Furthermore τ∗(X̄(0)) ≤ a
�
�X̄(0) − h̄e

�
� +

bτ(X̄(0)) for some constants a and b.

Proof. Let �F be the set of all flows for which rf/wf ≥ B. For each station i define

the reduced flow constituency set �F[i], the reduced class constituency set �C[i], and the

reduced capacity µ̃i, by the assignment rules (8.5). These assignments do not change

the assignment we already made for �F[i∗] and �C[i∗] that we made in the statement of

the lemma.

Consider a class l ∈ �C[i∗] and a station i �= i∗ that flow f(l) crosses. Also let

s be the slackness of the capacity constraint at station i under the max-min allocation.

Equivalently, s := µi −
�

F[i] rf .

Suppose s = 0. Then there must exist a flow f ∈ �F[i] for which

B =
rf(l)

wf(l)

<
rf

wf

by the following reasoning. If there did not exist such a flow, then f(l) would have the

highest normalized rate at station i, and thus station i would be a bottleneck for flow

f(l). As we have assumed that flows may have only one bottleneck and station i∗ is a

bottleneck for flow f(l), this is not possible.

Additionally, by the definition of �F[i] it must be that

B =
rf(l)

wf(l)

≤ rf

wf
∀f ∈ �F[i].

By listing the inequalities for each flow f ∈ �F[i] expressed by the above form and taking

a convex combination of both sides of the inequalities in the list we deduce that

B =
rf(l)

wf(l)

≤
�
�F[i]

rf�
�F[i]

wf
=

µi − s −�
F[i∗]\�F[i∗]

rf�
�F[i∗]

wf
.
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Furthermore, if s = 0 the above inequality is strict because there would have been a

strict inequality in the list we used to derive the above relation. Thus,

rf(l)

wf(l)

<
µ̃i

��F[i∗]
wf

where the inequality is strict. Let κ1 be the minimum slackness one finds by evaluating

the above inequality across all the stations that flows in �F[i∗] cross. More precisely,

κ1 := min
l∈�C[i∗]

min
k∈P[f(l)]\{l}

�� µ̃s(k)�
f∈�F[s(k)]

wf
−

rf(l)

wf(l)

�� .

As flows in �F[i∗] are not demand limited, rf/wf < αf for each f ∈ �F[i∗]. Let κ2 be the

minimum slackness in these inequalities, as made precise by the definition:

κ2 := min
l∈�C[i∗]

�
αf(l) −

rf(l)

wf(l)

�

Finally we set κ = κ1 ∨ κ2.

Thus for each l ∈ �C[i∗] and all k ∈ P
	
f(l)



\ l,

µ̃s(k)��F[s(k)]
wf

≥ B + κ. (8.7)

By Lemma 8.5, the departure rates from each queue in k ∈ P
	
f(l)



satisfy,

˙̄Dk ≥ wf(l)

µ̃s(k)��F[s(k)]
wf

whenever Q̄k(t) > 0 for regular t ≥ τ . (8.8)

Relation (8.7) together with property (8.8) imply that for any l ∈ �C[i∗], the departure

rates of the queues upstream or downstream of l satisfy

˙̄Dk(t) ≥ wf(l)(B + κ) for each k ∈
�
P
	
f(l)



− l

�
and any

regular t ≥ τ for which Q̄k(t) > 0. (8.9)



137

Bottleneck
Station i

Pipeline H Pipeline T

Pipeline P H T

Arrivals discarded when
Q
k
(t) > h for some k  in P

(i*)

Flow f(l)

B

f
(l)

(i*)
(Classes whose normalized rate

equals     in the max-min allocation)

(Classes with a smaller normalized rate
than      in the max-min allocation)

B

B

B

(i*) (i*)

B

= B

Figure 8.2: The class l queue at a bottleneck station i∗, and the available rates of the
upstream and downstream queues.

Also, by the assumptions of this lemma

µ̃i∗
�
�F[i∗]

wf
= B.

Substituting the above relation into (8.7), we have

˙̄Dl(t) ≥ wf(l)B for each l ∈ �C[i∗] and any

regular t ≥ τ for which Q̄l(t) > 0. (8.10)

Properties (8.9) and (8.10) describe the available rate at each queue in a pipeline P
�
f(l)

�

and we will refer to them often in the development that follows. An illustration of the

situation described by these properties is shown in Figure 8.2.

Downstream Queues: We begin analyzing the occupancy of the queues down-

stream of each class in �C[i∗], with the goal of showing that they drain to zero in some
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Bottleneck Station i

Policed

Policed

B B

B

B
1

2

3

B

B

= B

·
3

i*

Policed

Policed

B

Arrival rate:

Figure 8.3: An illustration of why the combined queue depths of queues downstream of
the bottleneck station i∗ decline monotonically to 0. Note that class l1 ∈ PDc(t)∩AZc(t),
class l2 ∈ PD(t) ∩ AZc(t), and class l3 ∈ AZ(t).

finite time. To help partition the possibilities, we define:

PD(t) � {l ∈ �C[i∗] : Q̄k(t) ≥ h̄ for some k ∈ P
�
f(l)

�
}.

AZ(t) � {l ∈ �C[i∗] : Q̄k(t) > 0 for some k ∈ T [l]}.

PD, AZ are mnemonic for “Policed” set, and “Above Zero” set respectively. Also Recall

T [l] is the ordered set of classes downstream of l.

Consider l ∈ PDc(t)∩AZc(t), corresponding flow f(l), and regular t ≥ τ . Class

l1 in Figure 8.3 is an example of such a class. Flow f(l) is not policed at time t. Therefore

˙̄Af(l)(t) = αf(l) by fluid model equations (7.14) and (7.9). By (8.7) αf(l) ≥ wf(l)(B + κ).

This lower bound on the arrivals to the pipeline P
�
f(l)

�
, combined with the properties

(8.9) and (8.10) which describe the departure rates of queues in the pipeline P
�
f(l)

�
,

allow us to invoke Lemma 8.2 to conclude that ˙̄Dk(t) ≥ wf(l)B where k is the last class

in P
�
f(l)

�
. Note that k is also the last class in the pipeline T [l], and class l empties into
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T [l] at rate ˙̄Dl. Thus by Lemma 8.1, which recall is the flow conservation lemma,

Q̇(t, T [l]) ≤ ˙̄Dl − wf(l)B. (8.11)

Consider l ∈ PD(t) ∩ AZc(t), for regular t ≥ τ and corresponding flow f(l).

Class l2 in Figure 8.3 is an example of such a class. By definition, flow f(l) is policed

at time t, and all queues for classes in T [l] are empty. Therefore there exists a class

l∗ ∈ P
�
f(l)
�
− T [l] with Q̄l∗ > 0. By (8.9), (8.10) and Lemma 8.3, ˙̄Dk(t) ≥ wf(l)B where

k is the last class in pipeline P
�
f(l)
�
. Note that k is also the last class in the pipeline

T [l], and class l empties into T [l] at rate ˙̄Dl. Thus

Q̇(t, T [l]) ≤ ˙̄Dl − wf(l)B. (8.12)

Consider l ∈ AZ(t) , and regular t ≥ τ . Class l3 in Figure 8.3 is an example

of such a class. By definition, Q̄k(t) > 0 for some k ∈ T [l]. By (8.9), Lemma 8.3,and

Lemma 8.1

Q̇(t, T [l]) ≤ ˙̄Dl − wf(l)B − w̄κ. (8.13)

Define the Lyapunov function

V (t) :=
�

l∈�C[i∗]

Q(t, T [l])

to be the sum of the queue occupancies downstream of bottleneck station i∗. Taking the

derivative, and substituting (8.11), (8.12), and (8.13) we have for all regular t ≥ τ ,

V̇ (t) ≤
�

l∈PDc(t)∩AZc(t)

˙̄Dl(t) − wf(l)B

+
�

l∈PD(t)∩AZc(t)

˙̄Dl(t) − wf(l)B

+
�

l∈AZ(t)

˙̄Dl(t) − wf(l)(B + κ).
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By rearranging terms, we deduce that

V̇ (t) ≤
�

l∈�C[i∗]

�
˙̄Dl(t) − wf(l)B

�
− |AZ(t)|w̄κ (8.14)

where w̄ � minf∈F wf . Using fluid model equations (7.7) and (7.12), as well as the

definition of µ̃ (8.5), we can bound the combined departure rates from the queues of

station i∗ according to

�
�C[i∗]

µi∗
˙̄Tl(t) +

�
C[i∗]\�C[i∗]

µi∗
˙̄Tl(t) ≤ µi∗

�
�C[i∗]

µi∗
˙̄Tl(t) ≤ µi∗ −

�
F[i∗]∩�F rf

�
�C[i∗]

˙̄Dl(t) ≤ µ̃i∗ . (8.15)

Substituting (8.15) into (8.14) we have,

V̇ (t) ≤ µ̃i −
�

l∈�C[i∗]

wf(l)B − |AZ(t)|w̄κ ∀t ≥ τ

which reduces to

V̇ (t) ≤ −|AZ(t)|w̄κ ∀t ≥ τ.

Thus by Lemma 8.6, V (t) ≡ 0 for all t ≥ V (τ)/(w̄κ). Note that the downstream queues

included in the sum that defines V can not collectively grow by more than µiτ on the

time interval [0, τ ]. Thus

Qk(t) ≡ 0 ∀t ≥ t∗ and k ∈ T (8.16)

where

T :=
�

l∈�C[i]

T [l] and t∗ := (w̄κ)−1

�
µiτ +

�
k∈T

Qk(0)

�
.
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Upstream Queues: Having found a time for which all the queues downstream

of the bottleneck drain to zero, we now consider the queues upstream of the bottleneck

and in the bottleneck itself. Recall that H [l] is the ordered set of queues upstream from

l, but not including l itself.

Consider regular t ≥ τ + t∗, l ∈ PD(t) and flow f(l). By the definition of PD(t),

Q̄k(t) > 0 for some k ∈ P
�
f(l)
�
. But we have established that Q̄k(t) = 0 for all k ∈ T [l].

Thus either Q̄l(t) > 0 or Q̄k(t) > 0 for some k ∈ H [l]. Thus the drain from queue l

satisfies ˙̄Dl(t) ≥ wf(l)B by (8.9), (8.10), and Lemma 8.3.

Consider regular t ≥ τ + t∗, l ∈ PDc(t) and flow f(l). By (7.14), ˙̄Af(l) = αf(l) >

wf(l)B. Thus by (8.9), (8.10), and Lemma 8.2, ˙̄Dl ≥ wf(l)B.

Thus, we have that for regular t ≥ τ + t∗ and all l ∈ �C[i∗], ˙̄Dl ≥ wf(l)B. This

implies
�

l∈�C[i∗]
˙̄Dl(t) ≥ µ̃i But by, (8.15),

�
l∈�C[i∗]

˙̄Dl(t) ≤ µ̃i. All of this is possible

only if

˙̄Dl(t) ≡ wf(l)B, ∀t ≥ τ + t∗, ∀l ∈ �C[i∗]. (8.17)

Now consider the Lyapunov function

Vl(t) = Q(t,H [l]) + (Q̄l(t) − h)+ +
αf(l)

wf(l)κ
(Q̄l(t) − h)− (8.18)

which is equal to the sum of the queues upstream of l, plus the distance of Q̄l from

threshold h̄ – where the distance is weighted more heavily when Q̄l is below threshold.

A level set of this Lyapunov function is illustrated in Figure 8.4. Suppose l ∈ �C[i] and t

regular with t ≥ τ + t∗ We consider three cases, each of which is illustrated in Figure 8.5.

1. Suppose Q̄l(t) < h. Two subcases are possible. Subcase (1a): Q̄k(t) = 0 for all
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Figure 8.4: A level set of the Lyapunov function defined by (8.18). The level set is shown
with a thick line. The arrows illustrate the possible state trajectories of the upstream
and bottleneck queues.
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Figure 8.5: The three cases in analyzing the convergence of the upstream queues are
shown. Also shown are the possible state trajectories for each of the cases. The question
marks on the drawing of Case 3 reflect that it is indeterminate as to whether the back
pressure is on when a queue level is exactly equal to the policing threshold.
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k ∈ H [l] then the policing is off and thus

˙̄Af(l)(t) ≥ wf(l)B + wf(l)κ.

Thus by (8.9) and Lemma 8.2,

˙̄Al(t) ≥ wf(l)B + wf(l)κ.

Subcase (1b): Q̄k(t) > 0 for some k ∈ H(l), then by (8.9) and Lemma 8.3, ˙̄Al(t) ≥

wf(l)B + wf(l)κ. Thus in either case,

˙̄Al(t) ≥ wf(l)B + wf(l)κ (8.19)

for regular t ≥ τ + t∗. This combined with relation (8.17), which describes the

draining from class l, imply

˙̄Ql(t) ≥ wf(l)κ. (8.20)

Also by (8.19) and Lemma 8.1,

Q̇(t,H [l]) < αf(l) − wf(l)B. (8.21)

Differentiating (8.18), evaluating for the case where Q̄l(t) < h, and substituting

(8.20) and (8.21) we have

V̇l(t) < −wf(l)B. (8.22)

2. Suppose Q̄l(t) > h Then the policing is on, and by (7.13). ˙̄Al(t) = 0. By

Lemma 8.3, Lemma 8.1, and (8.9), and (8.10),

Q̇(t,H [l] ∪ l) ≤ −wf(l)B. (8.23)
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Differentiating (8.18), evaluating for the case where Q̄l(t) > h, and substituting

(8.23) we have

V̇l(t) ≤ −wf(l)B. (8.24)

3. Suppose Q̄l(t) = h, and Q̄k(t) > 0 for some k ∈ H [l]. Then Q̄k(t) > ε̃ for some

ε̃ > 0. Now consider any positive ε ≤ ε̃ By Lemma 8.3, and (8.9), ˙̄Al(s) ≥ wf(l)B+κ

for all regular s ∈ [t, t+ε/µmax] where µmax = maxi µi. This combined with (8.17)

implies that Q̄l(s) > h̄ for any s ∈ (t, ε/µmax]. Thus for any positive δ < ε/µmax

, ˙̄Af(l)(s) = 0 for all s ∈ (t + δ, ε/µmax] because the policing is on in such a period

by (7.13). Thus we have

Vl

�
t +

ε

µmax

�
− Vl(t) =

� t+ε/µmax

t

˙̄Af(l)(s) − ˙̄Dl(s)ds

≤ αf(l)δ − wf(l)Bε/µmax.

Since δ is arbitrary, we have

Vl(t + ε/µmax) − V (t) ≤ −wf(l)Bε/µmax. (8.25)

Dividing (8.25) by ε and taking the limit as ε → 0 we have

V̇l(t) ≤ −wf(l)B (8.26)

which therefore holds for any l : Q̄l(t) = h, regular t ≥ τ + t∗ with Q̄k(t) > 0 for

some k ∈ H [l].

Thus by (8.22), (8.24), and (8.26) we have V̇l(t) ≤ −wf(l)B in all cases, for

regular t ≥ τ + t∗.
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To complete the argument that the upstream queues drain to zero in a time

proportional to the initial condition, we define

H :=
�

l∈�C[i∗]

H [l] ,

τ∗ � τ + t∗ +
�

H∪�C[i∗]

��Q̄k(0) − h̄ek

��+ c1c2(τ + t∗) (8.27)

where the constants c1, c2, c3, and c4 are defined by,

c1 � 1 ∨ max
k∈{1,...,K}

αk

κwf(k)
∧ 1

, c2 � max
f∈{1,...,F}

αf ∨ max
i∈{1,...,d}

µi,

c3 � min
µi�

F[i] wf
, c4 � c1/c3.

We have chosen these constants so that

τ∗ ≤ max
l∈�C[i∗]

Vl(τ + t∗)
wf(l)B

+ τ + t∗.

So by Lemma 8.6,

Vl(t) ≡ 0 ∀t ≥ τj+1 ∀l ∈ �C[i∗]

and thus

Q̄k(t) ≡ h̄ek = 0 ∀t ≥ τ∗ ∀k ∈ H. (8.28)

Q̄l(t) ≡ h̄el = 1 ∀t ≥ τ∗ ∀l ∈ �C[i∗]. (8.29)

Relations (8.16), (8.17), (8.28), (8.29), and Lemma 8.1 together imply that the

each Qk in each pipeline P
�
f(l)
�

settle to ek, and that the departure rates of each queue

in each pipeline are Bwf(l) after time τ∗. Hence

˙̄Df (t) ≡ wfB = rf , ∀t ≥ τ∗, ∀f ∈ �F[i∗] (8.30)

and thus we have shown all of the conclusions of the lemma.
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8.7 Final Result

Theorem 8.9. Suppose that every flow has either a unique bottleneck station or is

strictly demand-limited. Then for any ε, there exists a system-scale nc, such that for all

n ≥ nc:

lim
t→∞

1

t
Dn,y(t) ≥ (1 − ε)R a.s.

where Rk = rf(k)
for all k ∈ {1, ..., K}.

Proof. To prove the desired conclusion, we need to prove the necessary conditions to

invoke Theorem 7.10. Recall that these conditions are that fluid model converges to its

equilibrium in a time proportional to the initial condition’s distance from the equilibrium,

and that when h̄ > 0 the departure rates of the fluid model also converge to steady

rates. We therefore divide the analysis into two cases: the case in which the fluid model

threshold h̄ = 0, and the other case being the h̄ > 0 case.

h̄ = 0 case

Suppose h̄ = 0. Consider any flow f and its pipeline P [f ]. By lemma 8.5,

any queue k ∈ P [f ] has a departure rate of ˙̄Dk(t) ≥ wfµs(k)/[
�

F[s(k)] wf ] at regular

t ≥ max(V̄ (0)). Also, whenever any queue k ∈ P [f ] is nonempty, the policing is on

and hence, ˙̄Af (t) = 0. Consequently by Lemma 8.1, Qk(t) ≡ 0 for all t ≥ max(V̄ (0)) +

Q(0,P [f ])/rmin where rmin := (minf wf ) mini(µi/[
�

F[i] wf ]). The same argument may

be repeated for each flow f in the network. Hence,

Q̄(t) ≡ 0 ∀t > a|X̄(0) − h̄e|

for some constant a.
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h̄ > 0 case

Now suppose that h̄ > 0. We proceed by induction. We make the assignment

�F := {1, ..., g} to represent the set of all flows we have not yet analyzed, and thus we will

update �F as we proceed. We also define the function τ1(X̄(0)) = |Ū(0)| + |V̄ (0)|. As we

proceed, we will define functions τ2(·), τ3(·),... in a similar fashion. Finally set j := 1.

We will increment j as we proceed through the induction.

Induction Hypotheses: Suppose that the following hypothesis hold:

τj(X̄(0)) ≤ aj |X̄(0) − h̄e| for some constant aj (8.31)

Q̄k(t) ≡ h̄ek ∀t ≥ τj and forall k ∈
�

f∈�Fc

P [f ] (8.32)

˙̄Dk(t)µs(k) ≡ rf ∀t ≥ τj and for each (f, k) satisfying

f ∈ �Fc and k ∈ P [f ] (8.33)

Note that all of these hypothesis hold for j := 1 and our initial choice of �F and τ1(·).

Consider the following procedure:

1) Pick f ∈ arg min�F

• If f is strictly demand limited use Lemma 8.7. Take τj+1(X̄(0)) := τ∗(X̄(0)), where

τ∗(X̄(0)) comes from the conclusion of Lemma 8.7. Set �F := �F −f , j := j +1. The

conclusions of Lemma 8.7 ensure that hypotheses (8.31), (8.32), and (8.33) remain

true. Return to step 1 if �F �= ∅.

• If f has a unique bottleneck i∗ use Lemma 8.8. Take τj+1(X̄(0)) := τ∗(X̄(0)), where

τ∗(X̄(0)) comes from the conclusion of Lemma 8.8. Set �F := �F −�F[i∗] where �F[i∗]

is defined as in Lemma 8.8, and set j := j + 1. The conclusions of Lemma 8.8
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ensure that hypotheses (8.31), (8.32), and (8.33) remain true. Return to step 1 if

�F �= ∅.

Because at least one flow is removed from �F at each step, the induction must

terminate in a finite number of iterations. By carrying out this induction exhaustively,

we will have verified all of the induction hypotheses for all flows in the network. Thus

for all classes k

˙̄Dk(t) ≡ rf(k)
, Qk(t) ≡ h̄ek,

where both relations hold for all regular t ≥ b|X̄(0) − h̄e|.

Concluding Step:

Combining the results from the h̄ = 0 and h̄ > 0 cases we have that in both

cases,

Q̄(|X̄(0) − h̄e|t) ≡ 0 ∀t ≥ t0.

where t0 = a ∨ b. Because t0 ≥ τ1 ≥ max[Ū(0)] ∨ max[V̄ (0)], fluid model equation (7.5)

ensures that the residual inter-arrival service times decline to 0 in the following way:�
����
Ū(|X̄(0) − h̄e|t)

V̄ (|X̄(0) − h̄e|t)

�
���� = 0 ∀t ≥ t0.

Thus

X̄(|X̄(0) − h̄e|t) ≡ 0 ∀t ≥ t0.

We have also shown that the departure rates of the fluid model converge to the fair rates

when h̄ > 0, and we may express this fact as

M−1 ˙̄T (|X̄(0) − h̄e|t) ≡ R ∀t ≥ t0,
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where Rk := rf(k)
. Thus, we have the necessary conditions to invoke Theorem 7.10, to

conclude that for any ε > 0, there exists n such that

lim
t→∞

1

t
Dn,y(t) ≥ (1 − ε)R a.s.

8.8 Relaxing the Unique Bottleneck Requirement

Our final result that the flow rates of a round-robin network converge to max-min fair

share rates depends on each flow having a unique bottleneck. We needed this condition

to ensure that the bottleneck queues fill to their thresholds. If flows did have more than

one bottleneck, one of the bottlenecks would still fill to the threshold in the fluid model,

but which of these bottlenecks fills would depend on the initial condition. Consequently,

our technique of showing that the stochastic system is attracted to the unique fluid model

equilibrium would break down. Fortunately, the unique bottleneck condition can always

be achieved by perturbing the weights and or the rates of the stations.

However, we feel it should be possible to eliminate the unique bottleneck re-

quirement entirely. Consider the following intuitive conjectures. We conjecture that if

a flow’s weight were increased that its long term average rate cannot decrease, if we

suppose all other parameters of the network are unchanged. Similarly, we conjecture

that if a station that a flow crosses were increased in capacity, its long term rates cannot

decrease. While these monotonicity conjectures as we call them seem like they should be

true, they are not trivial to prove. If we could show the monotonicity conjectures, then

we would be in a position to make pairwise long term rate comparisons of a network
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to a perturbed network where one parameter, a weight or a service capacity, has been

reduced by an arbitrarily small amount. By making a string of such pairwise compar-

isons, it should be possible to show that the long-term rates of a network without unique

bottlenecks can be made arbitrarily close to the long-term rates of a slightly perturbed

network with unique bottlenecks.

There may be another pathway to relaxing the unique bottleneck requirement.

It might be possible to show that the fluid model of a network without unique bottlenecks

converges to an element in some “equilibrium set” of states – the set where at least one

bottleneck of every flow is filled to its threshold. It may then be possible to show that the

stochastic system is attracted to this same set of states, by showing that some distance

metric between the current state and this equilibrium set contracts in expected value.

8.9 Uniformity of the Required Threshold for Different De-

mand Processes

In an application, a network like the round-robin network we have analyzed would be

used to provide fair rates when the demand from the different flows is unknown and

possibly changing over time. Such would be the case in an Internet packet switch for

example. What we have shown is that there exists a large enough threshold scale factor n

to achieve close to the fair rates for each particular choice of demand process. However,

we have not shown that their exists a single scale factor which would work well for any

choice of demand process.

For example, suppose the all the possible demand processes that the network
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might face are described by some vector of parameters v (i.e. the arrival rates α, and any

other parameters needed describe the distribution of the inter-arrival times) that lives in

some space V. For each such vector v, our result shows that their exists a large enough

scale factor n(v, ε) for which the long-term rates are within a factor (1 − ε) of the fair

rates. However, we need a stronger result to show that supv∈V n(v, ε) is not infinite. We

feel that it should be possible to derive such a result, but it is not trivial. One approach

might be to show that the long term rate of each flow is monotone with respect to each

component of v. If the space V were compact, then this monotonicity would allow us to

upgrade our point-wise bound to a bound that holds uniformly over V.
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Chapter 9

Conclusion

In this work we have shown how the analysis of the flow rates of a stochastic

network with a particular flow control scheme may be reduced to an analysis of a fluid

model. While we have focused on a particular flow control scheme, we feel that same

analysis could be carried out for many other control schemes. The key feature that

enabled our approach was that our control scheme has a free parameter, n, which when

increased makes the system look more and more like a deterministic fluid system.

In the future, we would like to make this notion more precise, and develop both

a more systematic test to determine if a rate control scheme is amenable to this sort of

fluid analysis, and a more systematic methodology to carry out the analysis.

It would also be desirable to find a way of quantifying how large n needs to

be to have long-term rates close to the fair rates, rather than just knowing that such a

threshold scale factor n exists. It might be possible to approximate the necessary n with

a reflected Brownian motion model for example, but it is not clear that this approach



153

would yield a value for n for which the long term rates are almost surely within (1 − ε)

of the fair rates.

We feel that in practice the actual size of the thresholds would be best deter-

mined by a simulation study. In this applied context, the methodology developed here

would show whether or not it is possible to find large enough thresholds for a proposed

flow control scheme to work, and therefore wether or not it is worthwhile to carry out a

simulation study.


