Assembly Line

Alejandro Millan, Joshua Pena, and Harsh Bhakta

Abstract—In todays world, the automobile industry
almost entirely relies upon assembly lines as a primary
method of large-scale production. The process usually
consists of state-of-the-art robotics along with intricate
software that is customized as per the the manufacturer’s
needs. However, despite the exceptional advances that
have been made in automobile production, machine
failures continue to remain an issue. Machine break-
downs are detrimental to the throughput of automobiles,
resulting in a potential loss of profit for manufacturers.
This paper discusses a proposition in order to address this
problem such that the throughput level can be maintained
above the zero mark. The goal is to maintain production
regardless of any functional mishaps that may occur. The
algorithm suggested does not fully restore the level of
throughput, but rather has production operate at less
than the optimal level.

[. INTRODUCTION
A. Background

Throughput is the key performance measure in
an assembly line. Automobile companies need to
reach their target throughput as planned. If the tar-
get isnt reached, the company will lose customers
as well as money. The largest threat to production
on assembly lines is the breakdown of robots. So,
the best way to optimize production is to work on
preventing machine breakdown[1].Though break-
down is unavoidable, there must be solutions that
attempt to deal with the breakdown of machines.
There has been many literature papers that are
published in respect to machine breakdown. Ilar
researched the effects on productivity when a new
machine replaces an old one[2]. There has been
work done surrounding the production of the as-
sembly line. For example, there has been work
done to focus on the optimal path of a single
machine when given multiple tasks to complete
[6]. Additionally, there has also been work done
to focus on the optimal placement of machines
in a factory [4]. These examples serve as ways
to optimize an assembly line such that they are
more efficient. While we are also working toward

improving the assembly line, our goal is to prevent
the production from halting rather than optimizing
the assembly line.

B. Overview

Our project will try to demonstrate the produc-
tion slow down effect by having one robot shut
down in an assembly line production. Then we
will simulate and compare the effects of having a
different robot take over the powered down robot’s
task. This project will try to extend the efficiency
of assembly line robots by having robots take over
the tasks of the shut down robot. Ideally, if a
robot were to fail, there will be an autonomous
communication to the cloud server. This wireless
communication will allow the bots to start taking
over the task of the broken robot without any
human intervention. Though the production line is
expected to decrease, we expect the throughput to
be greater than zero.

To achieve this project goal we must be certain
that the robots have an overlapping workspace.
Since we cannot have one robot completely over-
lap another robot’s workspace, we must find ways
for the task to be completed by other robots. This
could be done by either making the task achievable
in the workspace of a different robot or by having
the workspaces overlap such that another robot can
reach the needed area.

Fig. 1. Overlapping Workspace

Robot

Robot B

Robot C

Figure 1 demonstrates the overlapping
workspace the robots would have to have in order
to completely take over a task.

C. Goal

The goal of the project is to demonstrate that the
shutdown of assembly lines due to the breakdown
of a machine can be prevented by taking advantage
of other machine’s workspaces to cover the task
that the broken machine was responsible for.

D. Requirements

In order to ensure that the production line will
run smoothly, there are a few requirements that
must be met.

1) The malfunctioning robot must get out of the
way of the assembly line and return to its
idle position to avoid collision with another
robot.

2) Each robot has the ability to communicate
with the network in order to check if it has
to take on an additional task.

3) Speed of production is automatically ad-
justed to allow enough time for the func-
tioning robots to take over a task.

4) There exists multiple machines with similar
tool tips such that a robot can easily take
over the task of a malfunctioning robot

5) Each robot has similar tool tips to perform
the same task as each robot in the production
line

E. Limitations

Though the workspaces of the robots may over-
lap, there are still limitations to what a robot
can take over. For example, the orientation of
the robot matters in the task. Though the robots
would be able to reach in the same location as
one another, if the robot cannot perform the task
in the correct orientation then the robot would fail
to take over the task. Another limitation is in the
case the robot at the end of the production line
fails. Since the robots at the beginning and end
of the assembly line have workspaces outside the
range of all the other robots, the production line
may stop completely or result in one bad product.

To help increase the chances of a robot taking
over another robot’s task, it i1s beneficial for the
robot to have more number of joints. This gives the

robot more freedom to be in different angles and
orientations in order to be able to complete tasks
that might not otherwise have been completed.

II. SIMULATION SETUP

In our assembly line simulation, the robots are
assigned to stack boxes that are 3 units high. The
simulation we created has two parts. The first part
is the VREP part which simulates the robots and
the packages while the second part consists of
python scripts that serve as a communication from
the network to the robots.

A. VREP

Fig. 2.

VREP layout

Figure 2 shows the layout view of our VREP
simulation. The object in the far right produces
packages until there is a box in front of each
robot. Then it waits until all the boxes are cleared
before pumping more boxes out. The boxes move
via a conveyor belt. In this example, the robot in
the middle is considered to be the deadiobot. As
you can see the dead robot stands away from the
conveyor belt in order to avoid collisions with the
other robots while they grab the dead robot’s box.

We are using the IRB140 robot that VREP pro-
vided along with it’s template code. With Inverse
kinematics, we were able to grab the box in front
of the robot by using the following Cartesian co-
ordinates: 0, 0.5, 0.5. This is because the conveyor
belt is 0.5m in front of my robot and the box
is elevated 0.5m from the floor. Since this robot
has a maximum functional workspace of up to
0.6m radius, we decided to place each robot 0.6m
away from the previous robot. This gives the robots
enough space to prevent them from being in each

other’s way while still making it possible to have
overlapping workspaces.

Originally, I had the robots move from the
conveyor belt to the desk right away. However, the
software did not choose the best path for carrying a
package. Every time a robot picked up a package
it would drop the package before getting to the
destination. In order to correct this, I added an
intermediate position. This intermediate path gave
the robot a more structured way into getting to the
destination.

I first attempted to have the robots stack 4 boxes,
but when the robot tried to assist the malfunction-
ing robot, a singularity point was reach and the
functional robot didn’t have the proper orientation
to drop the 4th box on top.

B. Python

We used Python to communicate between the
network and VREP. Using python scripts, we were
able to retrieve the necessary information from
the server, calculate changes that may need to
be made, and manipulate the machines in VREP.
Figure 3 shows how the communication was set
up. Information such as the robot’s initial task that

Fig. 3.

[Database Server éPythonInterfa(e VREP J

Network layout

was assigned, the placement of the robot in the
assembly line and information about the the ma-
chines and the state of those machines were stored
in a database. Once the information is processed
using the python scripts,VREP is launched to show
the visual representation. The network system was
initially intended to be solely run through the
server. The system was then changed to fit the
Python aspect in. The server had a similar role, but
instead of maintaining the database and processing
the information, it just maintained the database.
This way Python can make requests to the server,
process the information, and communicate with
VREP to show the results.

III. CONCLUSION
A. Results

When all robots are functional, the maximum
throughput is achieved. The robots can stack 9
boxes in 32 seconds. If these robots were to operate
8 hours per day, then they could stack 8,100
boxes as shown in Eq.1, assuming that no failures
occurred on that particular day. This means that
the maximum throughput for a regular day (when
the robots are in operation for 8 hours a day) is
8,100 boxes/day.

9boxes . 60s
32s

60mi
« T R —8,100 (1)
1hr

1min

Fig. 4. Right Robot Taking Over the Task

When we have one robot that starts to malfunc-
tion, one of the working robots need to take over.
In Fig. 4, it is shown that the middle robot breaks
down. We tested to see how the throughput would
be like if the robot on the right took over the bro-
ken robot’s task. We expected that our throughput
would be half of the maximum throughput that was
calculated from Eq.1. However, the experimental
throughput turned out to be 9 boxes in 70 seconds.

9boxes 60s 60min
=3,7 2
05 * * T «*8hr=3,703 (2)

Therefore, when the middle robot is broken the
entire day and the rightmost robot takes over its
task, we can stack only 3,703 boxes. The through-
put went down by 54%. This means in order to
stack 8,100 boxes, it will take approximately 17

1min

TABLE 1

HOURS OPERATED VS BOXES STACKED

” Hours Operated | Boxes Stacked | Loss

8 3,703 54%
12 5,554 31%
14 6,480 20%
16 7,406 9%

17.5 8,100 0%

hours and 30 minutes instead of 8 hours. Below in
Table 1, is the total amount of boxes that can be
stacked in the case the middle robot is broken and
the rightmost robot takes over.

Fig. 5.

Left Robot Taking Over the Job

The second scenario we tested is if the left robot
takes over the broken robot’s task as shown in
Fig.5. We expected that our throughput would be
half of the maximum throughput that we got from
Eq.1. However, the experimental throughput turned
out to be 9 boxes in 65 seconds. This is 5 seconds
faster than the rightmost robot. This is because the
rightmost robot has to take a longer path than the
leftmost robot in order to take over the task of the
broken robot.

9boxes 60s 60min

65s * Imin i 1hr
Therefore, when the middle robot is broken for the
entire day, and the leftmost robot takes over, we
can stack only 3,987 boxes. The throughput went
down by 50% as we predicted for this robot. In

*8hr=3,987 (3)

TABLE I

HOURS OPERATED VS BOXES STACKED

” Hours Operated | Boxes Stacked | Loss

8 3,987 50%

10 4,984 38%

12 5,981 26%

16 7,975 1%
TABLE III

HOURS OPERATED VS BOXES STACKED

” Hours Operated | Boxes Stacked | Loss

8 4,712 41%
10 5,891 27%
12 7,069 13%
13.75 8,100 0%

order to stack 8,100 boxes, it will take 16 hours
and 15 minutes. Below in Table 2, is the total
amount of boxes that can be stacked in the case
the middle robot is broken and the leftmost robot
takes over for various hours operated.

In the third scenario was had the leftmost and
rightmost robots alternate taking over the broken
robot’s task. We expected this scenario to be the
best in terms of throughput. As a result of this
setup, the experimental throughput turned out to
be 9 boxes in 55 seconds. This is 10 seconds faster
than the rightmost robot taking over the entire task
and 5 seconds faster than the leftmost robot taking
over the entire task.

9boxes 60s 60min
* *

555 " Tmin < T FShr=4T12 ()

Therefore, when the middle robot is broken the
entire day, and both robots alternate between tak-
ing over the broken robot’s task, we can stack a
total of 4,712 boxes. The throughput went down
by 41%. This is much better than 54% and 50%,
the throughputs resulting from the other scenarios.
We were able to increase the throughput by 9%
compared to the second scenario and by 13%
compared to the first scenario. This means in order
to stack 8,100 boxes, it will take approximately 13
hours and 45 minutes. Below in Table 3, is the total
amount of boxes that can be stacked in the case
the middle robot is broken and both the leftmost
and rightmost robots take over.

After analyzing these three scenarios, we can
clearly see that having both the leftmost and the
rightmost robots contribute to taking over the task
of the middle robot yields the highest throughput.
Therefore, The idea of having robots cover for
their broken comrades is possible. This would help
assembly lines from completely stopping.

B. Future Works

To improve our proposed solution, we can use
the works other people who have worked on this
problem. Using the work of Shin and Zheng[6], we
can find the shortest path for the robot that could
complete the task the quickest in the assembly line.
Using the work of Lee, Khoo, and Yin[4] we can
optimize the placement of the robots such that they
can have overlapping workspace. Other ways to
improve the system is to possibly break tasks down
into smaller parts so once a robot breaks down, the
task gets split into multiple parts. This way, robots
that take over can work on smaller tasks rather
than the entire task. This way, the time a robot has
to add on to their originally assigned workload is
decreased than if the robot were to take over the
entire task.

In order to have proof of concept, we are using
three robots to pick and place boxes. Since this
works, we can keep adding additional pick and
place machines. We can also add machines with
other functions. The caveat is that there needs to
be multiple of the same types of machines in order
to be covered in case of breakdown. If machines of
different tool tips are added, the order of operations
must be taken into account. For example, if a
cover is placed over a section of the object, then
part of the workspace is no longer available. In
these particular case, the robot may not be able to
complete their required tasks on time.

Another experiment that could be done is to see
how different tool tips can affect the throughput.
We could compare the throughput of picking up
boxes with the throughput of soldering a box.
Then we can compare how quickly the other robots
could take over the task and complete it.

Lastly, a more complex examination on how
the throughput is affected by the position of the
malfunctioning robot in the assembly line can be
done. Our experiment only examines the case in
which the middle robot fails but we could compare

those results with the case in which the first robot
or last robot in the assembly line malfunctions
instead.

APPENDIX

The simulation videos are uploaded on the
Google Drive and have been shared.

ACKNOWLEDGMENT

We would like to thank our professor for sup-
porting us and guiding us to get better quality
results and simulations.

REFERENCES

[1] M. Ozkok, The effects of machine breakdown on hull struc-
ture production process, Scientia Iranica, Volume 20, Issue 3,
2013, Pages 900-908, ISSN 1026-3098.

[2] T. Iar, Simulation of production linesthe importance of break-
down statistics and the effect of machine position, Int. J.
Simul. Model, 4 (2008), pp. 176-185

[3] L. Poultney, Hey Tesla, how hard can it be to actually
make a car?, WIRED, 01-May-2018. [Online]. Available:
http://www.wired.co.uk/article/tesla-model-3-production-
stock-problems-engineering.

[4] S.G. Lee, L. P. Khoo, and X. F. Yin, Optimising an Assembly
Line Through Simulation Augmented by Genetic Algorithms,
The International Journal of Advanced Manufacturing Tech-
nology, vol. 16, no. 3, pp. 220228, 2000.

[5] Regular API function list (by category), V-REP User Manual.

[6] K. Shin and Q. Zheng, Scheduling job operations in an
automatic assembly line, Proceedings., IEEE International
Conference on Robotics and Automation.

[7]1 Shin, F. A decision tool for assembly line breakdown action,
Proceedings of the 2004 Winter Simulation Conference, pp.
11221127 (2004).

