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Abstract. A central issue in molecular biology is understanding the regulatory
mechanisms that control gene expression. The recent flood of genomic and post-
genomic data opens the way for computational methods elucidating the key com-
ponents that play a role in these mechanisms. One important consequence is
the ability to recognize groups of genes that are co-expressed using microarray
expression data. We then wish to identify in-silico putative transcription factor
binding sites in the promoter regions of these gene, that might explain the co-
regulation, and hint at possible regulators. In this paper we describe a simple
and fast, yet powerful, two stages approach to this task. Using a rigorous hyper-
geometric statistical analysis and a straightforward computational procedure we
find small conserved sequence kernels. These are then stochastically expanded
into PSSMs using an EM-like procedure. We demonstrate the utility and speed of
our methods by applying them to several data sets from recent literature. We also
compare these results with those of MEME when run on the same sets.

1 Introduction

A central issue in molecular biology is understanding the regulatory mechanisms that
control gene expression. The recent flood of genomic and post-genomic data, such as
microarray expression measurements, opens the way for computational methods eluci-
dating the key components that play a role in these mechanisms.

Much of the specificity in transcription regulation is achieved by transcription fac-
tors, which are largely responsible for the so called combinatorial aspects of the regu-
latory process (the number of possible behaviors being much larger than the number of
factors). These are proteins that, when in the suitable state, can bind to specific DNA
sequences. By binding to the chromosome in a location near the gene, these factors can
either activate or repress the transcription of the gene. While there are many potential
sites where these factors can bind, it is clear that much of the regulation occurs by fac-
tors that bind in the promoter region which is located upstream of the transcription start
site.

Unlike DNA-DNA hybridization, the dynamics of protein-DNA recognition are not
completely understood. Nonetheless, experimental results show that transcription fac-
tors have specific preference to particular DNA sequences. Somewhat generalizing, the
affinity of most factors is determined to a large extent by one or more relatively short
regions of 6–10bp. (One must bear in mind that DNA strands span a complete turn
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every 10 bases, thus geometric considerations make it unlikely that a single protein
binds to a longer region, although counterexamples are known.) A common situation is
the formation of dimers in which two DNA binding proteins form a complex. Each of
the two proteins, binds to a short sequence, and together they bind to a sequence that
can be 12–18bp long, with a short spacer separating the two regions. Common protein
motifs such as the DNA binding Helix-Turn-Helix (HTH) motif also induce the same
preference on the regulatory site.

The recent advances in microarray experiments allow to monitor the expression
levels of genes in a genome-wide manner [8,9,14,15,22,23]. An important aspect of
these experiments is that they allow to find groups of genes that have similar expres-
sion patterns across a wide range of conditions [12]. Arguably, the simplest biological
explanation of co-expression is co-regulation by the same transcription factors. 1

This observation sparked several works on in-silico identification of putative tran-
scription factor binding sites [4,17,19,20,21]. The general scheme that most of these pa-
pers take involves two phases. First, they perform, or assume, some clustering of genes
based on gene expression measurements. Second, they search for short DNA patterns
that appear in the promoter region of the genes in each particular cluster. These works
are based to a large extent on methods that were developed to find common motifs in
protein and DNA sequences. These include combinatorial methods [ 6,19,21,24,25], pa-
rameter optimization methods such as Expectation Maximization (EM) [ 1], and Markov
Chain Monte Carlo (MCMC) simulations [18,20]. See [19] for a review of these lines
of work.

The use of expression profiles helps to select relatively “clean” clusters of genes
(i.e., most of them are indeed co-regulated by the same factors). Our interest here lies
with the second phase, and is thus not limited to gene expression analysis. Given high
quality clusters of genes, suspected for any reason to be co-regulated, we address the
hardness of the computational problem of finding putative binding sites in these clusters.

In this paper we describe a fast, simple, yet powerful, approach for finding putative
binding sites with respect to a given cluster of genes. Like some of the other works we
divide this phase into two stages. In the first stage we scan, in an exhaustive manner,
for simple patterns from an enumerable class (such as all 7-mers). We use a straight-
forward, natural, and well understood statistical model for filtering significant patterns
out of this class. Using the hyper-geometric distribution, we compute the probability
that a subset of genes of the given size will have these many occurrences of the pat-
tern we examine, when chosen randomly from the group of all known genes. In the
second stage, we use the patterns that were chosen as seeds for training a more ex-
pressive position-specific scoring matrix (PSSM) to model the putative binding site.
These models are both more accurate representation of the binding site, and potentially
capture much longer conserved regions.

By assuming that most binding sites do contain highly conserved short subsequences
and by explicitly using our post-genomic knowledge of all known and putative genes
to contrast clusters of genes against the genome background, we acquire quality seeds

1 Clearly this is not always the case. Co-regulation can be achieved by other means, and similar
expression patterns can be a result of parallel pathways or a close serial relationship. Nonethe-
less, this is often the case, and a reasonable hypothesis to test.
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for the construction of PSSMs through a simplified hyper-geometric model. The seeds
allow us to track down potential binding site locations through a specific relatively con-
served region within them. We then use these short seeds to guide the construction of
potentially much longer PSSMs encompassing more, or possibly the complete bind-
ing site. In particular, they allow us to align multiple sequences without resorting to an
expensive search procedure (such as MCMC simulations).

Indeed, an important feature of our approach is the evaluation speed. Once we finish
a preprocessing stage, we can evaluate clusters very efficiently. The preprocessing is
genome-wide and not cluster specific. It can be done only once and stored for all future
reference. This is important both for facilitating interactive analysis, and for serving
as computationally-cheap quality starting points for other, more complex analysis tools
(such as [2]) on top of our method.

In the next three sections we outline our algorithmic approach, discussing signifi-
cance of events, seed finding, and seed expansion into PSSMs, respectively. In Section 5
we describe experimental and comparative results, and then conclude with a discussion.

2 Scoring Events for Significance

2.1 Preliminaries

Suppose we are given a set of genes G. Ideally, these are all the known and putative
genes in a genome. With each gene g ∈ G we associate a promoter sequence 2 sg . For
simplicity we assume that each of these sequences is of the same size, L.

Suppose we are now given a subset of genes G ⊂ G suspected to be co-regulated by
some transcription factor. (For example, based on clustering of genes by their expres-
sion patterns.) Our aim is to find patterns in the promoter region of these genes, that we
will consider as putative binding sites. The assumption being that the co-regulation is
mediated by factors that are present in most of the genes in group G, but overall rare in
G. Thus, a pattern is considered significant if it is characteristic of G compared to the
background G.

Before we discuss what constitutes a pattern in our context, we address the basic
statistical definition of a characteristic property. Suppose we find a pattern that appears
in the promoter sequences of several genes in G. How do we measure the significance
of these appearances with respect to G? A related question one may ask, is whether the
set G is significantly different, in terms of the composition of its upstream region, from
G.

For now, we concentrate on events occurring in the promoter region of a gene. We
focus on binary events, such as “sg contains the subsequence ACGTTCG or its reverse
complement”. Alternatively, one can consider counting the number of occurrences of an
event in each promoter sequence, e.g., “the number of times the subsequence ACGTTCG
appears in sg”. The analysis of such counting events, while attractive in our biological
context, is more complex, in particular since multiple occurrences of an event in a se-
quence are not independent of each other. See [ 21,24] for approximate solutions to this
problem.

2 Or an upstream region that best approximates it, when the transcription start site is unknown.



Simple Binding-Site Discovery Algorithm 281

Formally, a binary event E is defined by a characteristic function I
E

:
{A,C,G, T }� → {0, 1}, that determines whether that event occurred or not in any
given nucleotide sequence. Given a set G, we define #E(G) =

∑
g∈G IE (sg) to be the

number of times E occurs in the promoter regions of group G. We want to assess the
significance of observing E at least #E(G) times in G, when taking the set of genes G
as the background for our decision.

There are two general approaches for testing such significance. In both cases we
compute p-values: the probability of the observations occurring under the null-hypothe-
sis. This value serves as a measure of the significance of the pattern - the lower p-value
is, the more plausible it is that an observation is significant, rather than a chance artifact.
The two approaches differ, however, in the nature of each null-hypothesis.

2.2 Random Sequence Null Hypothesis

In this approach, the null hypothesis assumes that the sequences s g for g ∈ G are gener-
ated from a background sequence model P0(s). This background distribution attempts
to model “prototypical” promoter regions, but does not include any group-specific mo-
tifs. Thus, if the event E detects such special motifs, then the probability of randomly
sampling genes that satisfy E is small.

The background sequence model can be, for example, a Markov process of some
order (say 2 or 3) estimated from the sequences in G (or, preferably, from G−G). Using
this background model we need to compute the probability p

E
= P0(IE

(s) = 1) that a
random sequence of Length L will match the event of interest. Now, if we also assume
under the null hypothesis that the n sequences in G are independent of each other, then
the number of matches to E in G is distributed Bin(n, pE). We can then compute
the p-value of finding #E(G) or more such random sequences by the tail weight of a
Binomial distribution.

The key technical issue in this approach is computing pE . This, of course, depends
on the assumed form of the background distribution, and on the complexity of the
event. However, even for the simple definition of a pattern as an exact subsequence
(i.e., IE (s) = 1 iff s contains a specific subsequence) and background probability of
the form of an order 1 Markov chain, the required computation is not trivial. This forces
the development of various approximations to pE of varying accuracy and complexity
[4,7,21].

2.3 Random Selection Null Hypothesis

Alternatively, in the approach we focus on here, one does not make any assumption
about the distribution of promoter sequences. Instead, the null hypothesis is that G was
selected at random from G, in a manner that is independent of the contents of the genes’
promoter regions.

Assume that K = #E(G) out of N = |G| genes satisfy E. Thus, we require the
number3 of genes that satisfy E in G. The probability of an observation under the null
hypothesis is the probability of randomly choosing n = |G| genes in such a way that

3 But not the identity, simplifying the implied underlying in-vitro measurements.
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k = #E(G) of them include the event E. This is simply the hyper-geometric probabil-
ity of finding k red-balls among n draws without replacement from an urn containing
K red balls and N −K black ones:

Phyper(k | n,K,N) =

(
K
k

)(
N−K
n−k

)
(
N
n

)

The p-value of the observation is the probability of drawing k or more genes that satisfy
E in n draws. This requires summing the tail of the hyper-geometric distribution

p-value(E,G) =
n∑

k′=k

Phyper(k′ | n,K,N)

The main appeal of this approach lies in its simplicity, both computationally and sta-
tistically. This null hypothesis is particularly attractive in the post-genomic era, where
nearly all promoter sequences are known. Under this assumption, irrelevant clustering
selects genes in a manner that is independent of their promoter region.

2.4 Dealing with Multiple Hypotheses

We have just defined the significance of a single event E with respect to a group of
genes G. But when we try many different events E1, . . . , EM over the same group of
genes long enough, we will eventually stumble upon a surprising event even in a group
of randomly selected sequences, chosen under the null hypothesis.

Judging the significance of findings in such repeated experiments is known as mul-
tiple hypotheses testing. More formally, in this situation we have computed a set of p-
values p1, . . . , pM

, the smallest corresponding to the most surprising event. We now ask
how significant are our findings considering that we have performed M experiments.

One approach is to find a value q = q(M), such that the probability that any of the
events (or the smallest one) has a p-value less than q is small. Using the union bound
under the null hypothesis we get that

P (min
m

pm ≤ t) ≤
∑

m

P (pm ≤ q) = M · q

Thus, if we want to ensure that this probability of a false recognition is less than 0.01
(i.e., 99% confidence), we need to set the Bonferroni threshold q = 0.01

M (see, for ex-
ample, [11]).

The Bonfferoni threshold is strict, as it ensures that each and every validated scoring
event is not an artifact. Our aim, however, is a bit different. We want to retrieve a set of
events, such that most of them are not artifacts. We are often willing to tolerate a certain
fraction of artifacts among the events we return. A statistical method that addresses this
kind of requirement is the False Discovery Rate (FDR) method of [3]. Roughly put, the
intuition here is as follows. Under the null hypothesis, there is some probability that the
best scoring event will have a small p-value. However, if the group was chosen by the
null hypothesis, it can be shown that the p-values we compute are distributed uniformly.
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Thus, the p-value of the second best event is expected to be roughly twice as large as
the p-value of the best event. Given this intuition, we should be less strict in rejecting
the null hypothesis for the second best pattern and so on.

To carry out this idea, we sort the events by their observed p-values, so that p 1 ≤
p2 ≤ . . . ≤ p

M
. We then return the events E1, . . . , Ek where k ≤ M is the maximal

index such that pk ≤ kq
M and q is the significance level we want to achieve in selecting.

We have replaced a strict validation test of single events, with a more tolerable version
validating a group of events. We may now detect significant patterns, weaker than the
most prominent one, that were previously below the threshold computed for the later.

3 Finding Promising Seeds

3.1 Simple Events

We want to consider patterns over relatively short subsequences. We fix a parameter �
that determines the length of the sequences we are interested in. Events are then defined
over the space of 4 �-mers.

Arguably the simplest �-mer pattern is a specific subsequence (or consensus). Thus,
if σ is an �-mer it defines the event “σ is a subsequence of s”. A useful aspect of such
events, is that they are exhaustively enumerable for the range of � we are interested in.
This suggests examining all �-mer patterns in G and ranking them according to their
significance.

However, known binding sites that are identified by biological assays, display vari-
ability in the binding sequence. Thus, we do not expect to see only exact matches to the
�-mer consensus. Instead, we want to allow approximate matches when we search G.
To formalize, consider a distance measure between two �-mers, d(σ, σ ′). The simplest
such function is the hamming distance. However, we may consider more realistic func-
tions, such as distances that penalize changes in a position specific manner. (Biology
suggests, for example, that central positions in short binding sites are more conserved.)
For concreteness, we focus on the hamming distance measure in the reminder of the
paper. However, we stress that the following discussion applies directly to any chosen
distance measure.

Let σ be an �-mer. We define a δ-ball centered around σ to be the set Ball δ(σ) of
�-mers that are of distance at most δ from σ. Thus, in the hamming distance, example,
Ball1(AAA) = {AAA, CAA, GAA, TAA, ACA, AGA, ATA, AAC, AAG, AAT}. We match an
event E with Ballδ(σ) such that I

E
(s) = 1 iff s or its reverse complementary contain

an �-mer ∈ Ballδ(σ).
Given � and δ we wish to examine all balls that have at least one occurrence in G

(the rest will never appear in any sub group). Balls that occur in all genes in G are also
discarded (as they occur in all genes of any sub group). We denote this set of non-trivial
events with respect to G as B(,δ). Note that for δ > 0, it may include balls whose
centers do not appear in any promoter region.

Finding the set B(,δ) of balls, and annotating for each gene whether it matches each
ball can be done in a straightforward manner. The time requirement then is N · L · 4 ,
and the space requirement N · |B(,δ)|.
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This genome-wide preprocessing needs to be done only once. Storing its results we
can rapidly compute p-values of all B(,δ) events with respect to any proposed subset of
genes. We simply look up which events occurred in the genes in the cluster, and then
compute the hyper-geometric tail distribution. Furthermore, one may wish to increase,
shrink, or shift the regions under consideration (e.g., from 1000bp to 2000bp upstream),
or adjust the upstream regions of several genes (say, due to elucidation of exact tran-
scription start site). While in general the preprocessing phase must be repeated, in prac-
tice, since it is mainly made up of counting events, we may efficiently subtract, and
add, respectively the counts in the symmetrical difference between the old and new sets
of strings, avoiding repeating the complete process over again. With many completely
sequenced genomes and gene expression data of model organisms in various settings
just beginning to accumulate, our division of labour is especially useful.

3.2 Reducing the Event Space

The definition of B(,δ), holding all events we wish to examine, may include as many as
min(4, LN) balls. We note however, that many of these balls overlap. Thus, if σ and
σ′ are two �-mers that differ, in the hamming distance example 4, in exactly one letter,
then the overlap between Ballδ(σ) and Ballδ(σ′) is clearly substantial. Moreover, if we
notice that most of the “mass” of these balls (in terms of the number of occurrences in
genes in G) lies in the intersection, we expect that the significance of the events defined
by both of them will be similar, since they will be highly correlated.

A way to decrease the storage requirements, and thus extend the range of manage-
able �’s can be found by a guided choice of a representative subset of B (,δ) during
preprocessing. Based on the above intuitions we want a covering set of balls with max-
imal mass, to minimize the size of the subset, and minimal overlap, to diversify the
events themselves. A heuristic solution can be offered in the form of a greedy algo-
rithm. Starting from an empty subset we repeatedly choose balls of maximal mass that
do not violate the minimal overlap demand, until we can no longer continue. We now
proceed to examine and store the results only for the events corresponding to the chosen
balls.

We stress that since this sparsification is done during preprocessing, before we ob-
serve any group G, it should not alter the statistical significance of the results we ob-
serve when G is later given to us.

4 Learning Finer Representations

4.1 Position Specific Scoring Matrices

Using the methods of the previous section we can collect a set of promising patterns
that are significant for G. These patterns are based on the notion of a δ-ball. Biologi-
cal knowledge about transcription factor binding sites suggests that the definition of a
binding site is in fact more subtle. Some positions are highly conserved, while others
are less so. In the literature, there are two main representation of such sites. The first

4 Analogous proximity thresholds can be defined for other distance measures.
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is the IUPAC consensus sequences. This approach determines the consensus string of
the binding site using a 15 letter alphabet that describe which subset of {A, C, G, T} is
possible at each position.

A position specific scoring matrix (PSSM) (see, e.g., [10]) offers a more refined
representation. A PSSM of length � is an object P = {p1, . . . , p}, composed of �
column distributions over the alphabet {A, C, G, T}. The distribution p i, specifies the
probability of seeing each nucleotide at the i’th position in the pattern.

Once we have a PSSM P , we can score each �-mer σ by computing its combined
probability given P . A more common practice is to compute the log-odds between the
PSSM probability and a background probability of nucleotides. Thus, if p 0 is assumed
to be the nucleotide probability in promoter regions, then the score of an �-mer σ is:

ScoreP(σ) =
∑

i

log
pi(σ[i])
p0(σ[i])

If this score is positive σ is more probable according to P than it is according to the
background probability. In practice we set a threshold α (replacing zero) for detecting
a pattern. Thus, a pair (P , α) defines an event I(P,α)(s). This event occurs iff the best
matching subsequence of length � in s, or in its reverse complement, has a score higher
than α. That is, if

max
i

(ScoreP (s[i, . . . , i + �− 1]), ScoreP(s[i, . . . , i + �− 1]) > α

4.2 Selecting a Threshold

Before we discuss how to learn the PSSM, we consider choosing a threshold α for a
given PSSM P . It is possible to set α = 0, treating the background and the PSSM as
equiprobable. However, since the pattern is a rarer event, we want a stricter threshold.
Another potential approach tries to reduce the probability of false recognition. That is,
to find an α such that the probability that a random background sequence σ will score
higher than α is smaller than a prespecified ε. Then, if we want to allow on average one
false detection every k genes, we would set ε = 1

k∗L . Unfortunately, we are not aware
of an efficient computational procedure to find such thresholds.

Here we suggest a simple alternative. We search for a threshold α, such that the
induced detections in the group G will be most significant. Thus, given a group G of
genes, and a PSSM P , we search for

α∗ = arg min
α

p-value(G, I(P,α))

That is, we adjust the threshold α so that the event defined by (P , α) has the smallest
p-value with respect to G. This discriminative choice of a threshold ensures that we
adjust it to take into account the amount of “spurious” matches to the PSSM outside
of G. Thus, we strive for a threshold that maximizes the number of matches within G
and at the same time minimizes the number of matches outside G. The use of p-values
provides a principled way of balancing these two requirements.

We can find this threshold quite efficiently. We compute the best score of the PSSM
over each gene in G, and sort this list of scores. We then evaluate only thresholds which
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are, say, half way between any two adjacent values in our list of sorted scores (each
succeeding threshold admits another gene into the group of supposedly detected events).
Using, for example, radix sort, this procedure takes time O(NL).

4.3 Learning PSSMs

Learning PSSMs is composed of two tasks. Estimating the parameters of the PSSM
given a set of training sequences that are examples of the pattern we want to match, and
finding these sequences. The latter is clearly a harder problem and requires some care.

We start with the first task. Suppose we are given a collection σ1, . . . , σn of �-mers
that correspond to aligned sites. We can easily estimate a PSSM P that corresponds
to these sequences. For each position i, we count the number of occurrences of each
nucleotide in that position. This results in a count N(i, c) =

∑
j 1{σj [i] = c}.

Given the counts we estimate the probabilities. To avoid entries with zero probabil-
ity, we add pseudo-counts to each position. Thus, we assign

pi(c) =
N(i, c) + γ

n + 4γ
(1)

The key question is how to select the training sequences and how to align them.
Our approach builds on our ability to find seeds of conserved sequences. Suppose that
we find a significant δ-ball using the methods of the previous section. We can then use
this as a seed for learning a PSSM. The simplest approach takes the �-mers that match
the ball within the promoter regions of G as the training sequences for the PSSM. The
learned PSSM then quantifies which differences are common among these sequences
and which ones are rare. This gives a more refined view of the pattern that was captured
by the δ-ball.

This simple approach learns an �-PSSM from the δ-ball events found in the data.
However, using PSSMs we can extend the pattern to a much longer one. We start by
aligning not only the sequences that match the δ-ball, but also their flanking regions.
These are aligned by virtue of the alignment of the core �-mers. We can then learn a
PSSM over a much wider region (say 20bp). If there are conserved positions outside
the core positions, this approach will find them.5

Consider, for example, a HTH DNA binding motif, or a binding factor dimer, where
each component matches 6-10bps with several unspecific gap positions between the two
specific sites. If we find one of the two sites using the methods of the previous sections,
then growing a PSSM on the flanking regions allows us to discover the other conserved
positions.

Once we construct such an initial PSSM, we can improve it using a standard EM-
like iterative procedure. This procedure consists of the following steps. Given a PSSM
P0, we compute a threshold α0 as described above. We then consider each position in
the training sequences and compute the probability that the pattern appears at that po-
sition. Formally, we compute the likelihood ratio (P0, α0) assigns to the appearance of

5 This assume that there are no variable lengths gaps inside the patterns. The structural con-
straints on transcription factors suggest that these are not common.
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the pattern at s[i, . . . , i+�−1]. We then convert this ratio to a probability by computing

ρs,i = logit(ScoreP0(s[i, . . . , i + �− 1]) − α0)

where logit(x) = 1/(1 + e−x) is the logistic function. We then re-scale these prob-
abilities by dividing by a normalization factor Zs so that the posterior probability of
observing the pattern in s and its reverse complement sums to 1. Once we have com-
puted these posterior probabilities, we can accumulate expected counts

N(i, c) =
∑

g

∑

j

ρsg,j

Zsg

1{sg[j + i] = c}.

These represent the expected number of times that the i’th position in the PSSM takes
the value c, based on the posterior probabilities.

Once we collected these expected counts, we re-estimate the weights of the PSSM
using Eq. 1 to get a new a PSSM. We optimize the threshold of this PSSM, and repeat
the process. Although this process does not guarantee improvement in the p-value of the
learned PSSM, it is often the case that successive iterations do lead to significant such
improvements. Note that our iterations are analogous to EM’s hill-climbing behaviour,
and differ from Gibbs samplers where one performs a stochastic random walk aimed at
a beneficial equilibrium distribution.

5 Experimental Results

We performed several experiments on data from the yeast genome to evaluate the util-
ity and limitations of the methods described above. Thus, we focused on several re-
cent examples from the literature that report binding sites found either using computa-
tional tools or by biological verification. To better calibrate the results, we also applied
MEME [1], one of the standard tools in this field, on the same examples.

In this first analysis we chose to use the simple hamming distance measure and treat
the 1000bp sequence upstream of the ORF starting position as the promoter region. We
note that the latter is a somewhat crude approximation, as this region also contains an
untranslated region of the transcript.

We ran our method in two stages. In the first stage, we searched for patterns of
length 6–8 with δ ranging between 0–2 mismatches, and an allowed ball overlap factor
of 0–1. Generally speaking, in these runs the patterns found with no mismatches or
ball overlaps had better p-values. This happens because we search for relatively short
patterns, allowing for a non-trivial probability of a random match. For this reason we
report below only results with exact matches and no overlap. We believe that higher
values of both parameters will be useful for longer patterns (say of length 12 or 13). In
the second stage we run the EM-like procedure described above on all the patterns that
received significant scores. We chose to learn PSSMs of width 20 using 15 iterations of
our procedure.

To compare the results of these two stages, we ran MEME (version 3.0.3) in two
configurations. The first restricted MEME to retrieve only short patterns of width 6–
8, corresponding to our �-mers stage. The second configuration used MEME’s own
defaults for pattern retrieval resembling our end product PSSMs.
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We applied our procedure to several data sets from the recent literature. Selected
results are summarized in Table 1. In this table we rank the top results from the different

Table 1. Selected results on binding site regions of several yeast data sets, comparing
our findings with those of MEME.

Source/ Trans. Consensus Seed PSSM MEME ≤ 8 MEME ≤ 50
Cluster Factor rank p-value rank p-value rank e-value rank e-value

Spellman et al. [22]
CLN2 MBF ACGCGT 1 4e-26 1 3e-42 1 1e-18 1 7e-31
SIC1 SWI5p CCAGCA 1 1e-07 1 1e-12 1 8e-00 8 5e+02
Tavazoie et al. [23]
3 putative GATGAG 2 9e-07 5 6e-09 4 1e+06 2 1e-14

putative GAAAAatT 3 4e-07 2 1e-11 23 8e+07 3 7e-10
8 STRE aAGGgG 1 6e-07 3 4e-06 20 1e+08 – –
14 putative TTCGCGT 1 2e-09 2 7e-11 13 1e+07 – –

putative TGTTTgTT 3 2e-07 – – – – 13 4e+05
30 MET31/32p gCCACAgT 1 2e-11 1 2e-11 2 5e+02 8 1e+03
Iyer et al. [16]
MBF MBF ACGCGT 1 1e-12 1 3e-18 3 1e+04 19 1e-03
SBF SBF CGCGAAA 1 1e-32 1 1e-37 2 1e-17 – –

runs of each procedure by their p-values (or e-values) reported by the programs after
removing repeated patterns. We report the relative rank of the patterns singled out in
the literature and their significance scores. We discuss these results in order.

The first data set is by Spellman et al. [22]. They report several cell-cycle related
clusters of genes. In a recent paper, Sinha and Tompa [ 21] report results of a systematic
search for binding sites in these clusters of IUPAC consensus regions using a random
sequence null hypothesis utilizing a Markov chain of order 3. The main technical devel-
opments in [21] are methods for approximating the p-value computation with respect to
such a null-hypothesis.

We examined two clusters reported on by Sinha and Tompa. In the first one, CLN2,
our method identifies the pattern ACGCGT and various expansions of it. This pattern was
found using patterns of length 6, 7, and 8 with significant p-values. The PSSMs learned
from these patterns were quite similar, all containing the above motif. Figure 1(a) shows
an example. In the second cluster, SIC1, the signal appears with a marginal p-value
(close to the Bonfferoni cutoff) already at � = 6. The trained PSSM recovers the longer
pattern with a significant p-value. In both cases, the top ranking patterns correspond to
the known binding site.

The second data set is by Tavazoie et al. [23]. That paper also examines cell-cycle
related expression levels that were grouped using k-means clustering. They examined
30 clusters, and applied an MCMC-based procedure for finding PSSM patterns in the
promoter regions of genes in each cluster. We examined the clusters they report as
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Fig. 1. Examples of PSSMs Learned by Our Procedure. (a) CLN2 cluster. (b) SBF clus-
ter. (c) Gasch et al. Cluster M. (d) Gasch et al. Cluster I/J.

statistically significant, and were able to reproduce binding sites that are very close to
the PSSMs they report; see Table 1.

In a recent paper, Iyer at al. [16] identify, using experimental methods, two groups
of genes that are regulated by the MBF/SBF transcription factor. Here, again, we man-
aged to recover the binding sites they discuss with high confidence. For example, we
show one of our matching PSSMs in Figure 1(b).

Finally, we discuss the recent data set of yeast response to environmental stress by
Gasch et al. [14]. We report on two clusters of genes “M”, and “I/J”. In cluster M the
string CACGTGA is found in several of the highest scoring patterns. However, when we
turned to grow PSSMs out of our seeds, a matrix of a lower ranking seed GATAAGA
exceeded the rest, exemplifying that seed ordering is not necessarily maintained when
the patterns are extended. The latter, more prominent PSSM is shown in Figure 1(c). In
cluster I/J a significant short pattern rising above our threshold is not found. However
when we extended the top most seed we obtained the PSSM of Figure 1(d) which both
nearly crosses our significance threshold, and holds biological appeal, showing two
conserved short regions flanking a less conserved 2-mer.

In general, the scores of the learned PSSMs vary. In some cases, the best seeds
yield the best scoring PSSMs. More often, the best scoring PSSM corresponds to a seed
lower in the list (we took into account only seeds that have p-value matching the FDR
decision threshold). In most cases the PSSM learned to recognize regions flanking the
seed sequence. In some cases more conserved regions were discovered. In general our
approach manages to identify short patterns that are close to the pattern in the data.
Moreover, using our PSSM learning procedure we are able to expand these into more
expressive patterns.

We note that in most analysed cases MEME also identified the shorter patterns.
However, there are two marked differences. First and foremost is run time. Compared
on a 733 MHz Pentium III Linux machine our seed discovery programs ran between
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half a minute and an hour, exhaustively examining all possible patterns, while the EM-
like PSSM growing iterations added a couple of minutes. The shortest MEME run on
the same data sets took about an hour, while longer ones ran for days, when asked to
return only the top thirty patterns. Second, MEME often gave top scores to spurious pat-
terns that are clear artifacts of the sequence distributions in the promoter regions (such
as poly A’s). When using MEME one can try to avoid these problems by supplying a
more detailed background model. This has the effect of removing most low complex-
ity patterns from the top scoring ones. Our program avoids most of these pitfalls by
performing its significance tests with respect to the genome background to begin with.

6 Discussion

In this paper we examined the problem of finding putative transcription factor binding
sites with respect to a selected group of genes. We advocate significance calculations
with respect to the random selection null hypothesis. We claim that this hypothesis
is both simple and clear and is more suitable for gene expression experiments than
the random sequence null hypothesis. We then use a simple hyper-geometric test in
a framework for constructing models of binding sites. This framework starts by sys-
tematically scanning a family of simple “seed” patterns. These seeds are then used for
building PSSMs. We describe how to construct statistical tests to select the most surpris-
ing threshold value for a PSSM and combine this with an EM-like iterative procedure
to improve it. We thus combine a first phase of kernel identification based on a rigorous
statistical analysis of word over-representation, with a subsequent phase of optimiza-
tion, leading to a PSSM, which can be used to scan sequences for new matches of the
putative regulatory motif.

We showed that even before performing iterative optimization of the PSSMs, our
method recovers highly selective seed patterns very rapidly. We reconstructed results
from several recent papers that use more elaborate and computationally intensive tools
for finding binding sites, as well as present novel binding sites.

A potential weakness of our model is the fact that we disregard multiple copies of a
match in the same sequence (the restriction to binary events). Despite the fact that this
phenomenon is known to happen in eukaryotic genes, we recall that a mathematical
analysis of counting the number of occurrences in a single string is more elaborate,
and computationally intensive. This may indeed lead in such cases to under-estimation,
which is problematic mainly for small clusters of co-regulated genes. The recognition
of two conserved patterns separated by a relatively long spacer (say of 10bp or more),
resulting from a HTH motif or a dimer complex, can however be attacked by looking
for proximity relationships between pairs of occurrences of different significant seeds.

As this field is showing an influx of interest, our work resembles several others in
different aspects. We highlight only the most relevant ones.

The use of the hyper-geometric distribution in the context of finding binding sites is
used by Jensen and Knudsen [17] to find short conserved subsequences of length 4–6
bp. They demonstrate the ability to reconstruct sequences, but suffer statistical problems
when they consider longer �-mers, due to the large number of competing hypotheses.
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Already in Galas et al. [13], word statistics are used to detect over-represented mo-
tifs, and a definition of a general concept of “word neighborhood” is given similar
to the ball definition we give here. However, the analysis there is restricted to over-
representations at specific positions with respect to a common point of reference across
all sequence, deeming it mostly appropriate for prokaryotic transcription or translation
promoter region elucidation.

The general outline of our approach is similar to that of Wolferstetter et al. [ 27] and
Vilo et al. [26]. Both search for over-represented words and try to extend them. Vilo
et al. examine �-mers of varying sizes that are identified by building a suffix tree for
the promoter regions. Then, they use a binomial formula for evaluating significance.
For the clustering they constructed, this resulted in a very large pool of sequences (over
1500). They use multiple alignment-like procedure for combining these �-mers into
longer consensus regions. Thus, to learn longer binding sites with variable position,
they require overlapping subsequences to be present in the data. This is in contrast to
our approach that uses PSSMs to extend the observed patterns, and so is more robust to
highly variable positions that flank the conserved region.

Van Helden et al. [24] also use binomial approach. They try to take into consider-
ation the presence of multiple copies of a motif in the same sequence, but suffer from
resulting inaccuracies with respect to auto-correlating patterns. Our work can be seen as
generalizing this approach in several respects, including the use of a hyper-geometric
null model, the discussion of general distance functions and event space coarsening,
and the iterative PSSM improvement phase.

There are several directions in which we can extend our approach, some of them
embedding ideas from previous works into our context.

First, in order to estimate the sensitivity of our model it will be interesting to exam-
ine it on smaller, and known, gene families, as well as on synthetic data sets, as those
advocated in [19]. Extending our empirical work beyond yeast should also provide new
insights and challenges.

Our method treats the complete promoter region as a uniform whole. However, bi-
ological evidence suggests that the occurrence of binding sites can depend on the posi-
tion within the promoter sequence [22]. We can easily augment our method by defining
events on sub-regions within the promoter sequence. This will facilitate the discovery
of subsequences specific to certain positions. Another biological insight already men-
tioned is the phenomena of two conserved patterns separated by a relatively long spacer.
In the case of homeodimers we can easily expand our scope to handle events that require
two appearances of the subsequence within the promoter region. Otherwise, we can try
to extend our PSSMs further to flank the seed while weighting each column such as to
allow for longer spacers between meaningful sub-patterns.

So far we have looked for contiguous conserved patterns within the binding site.
More complex extensions involve defining new distance measures that incorporate pref-
erences for more conserved positions in specific positions in the pattern, and random
projection techniques, akin to [5], which will allow us to easily handle longer �-mers.
We can also further generalize our model by allowing ourselves to express our �-mer
centroids over the IUPAC alphabet. This allows both for a reduction of the event space
and the natural incorporation of biological insight, as outlined above. Our current
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method for diluting the set of “covering” δ-balls is highly heuristic. Interesting theo-
retical issues include the formal criteria we should optimize in selecting this approxi-
mating set of δ-balls and how to efficiently optimize with respect to such a criterion.
Finally, we intend to combine the putative sites we discover with learning methods that
learn dependencies between different sites and between sites and other attributes such
as expression levels and functional annotations [2].
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