
UNIVERSITY OF CALIFORNIA

SANTA CRUZ

BOOST SMOOTHING AND SMRF MODELS

A project document submitted in partial satisfaction of the

requirements for the degree of

MASTER OF SCIENCE

in

STATISTICS AND APPLIED MATHEMATICS

by

Jacob B. Colvin

September 2011

The project document of Jacob B. Colvin

is approved:

Associate Professor Abel Rodriguez, Chair

Professor Raquel Prado

Copyright c© by

Jacob B. Colvin

2011

Table of Contents

List of Figures v

List of Tables vii

Abstract ix

1 State Space Models 1
1.1 Linear State Space Models . 2

1.1.1 Filtering . 3
1.1.2 Smoothing . 3
1.1.3 Sampling . 4
1.1.4 Static Parameters . 4

1.2 Nonlinear State Space Models . 5
1.2.1 Importance Sampling . 6
1.2.2 Filtering . 7
1.2.3 Static Parameters . 12
1.2.4 Forward-Backward Smoothing 15

1.3 Example: AR(1), Fixed And Static Parameters 24
1.3.1 Linear Model 1: Fixed Parameters 27
1.3.2 Linear Model 2: Static Parameters 29

1.4 Example: Nonlinear . 52

2 Markov Random Fields 58
2.1 MCMC Methods For MRFs . 63

2.1.1 Conditional Gibbs Sampling . 63
2.1.2 Joint Gibbs Sampling . 64
2.1.3 Multivariate DLM . 65

2.2 SMC Methods For Sequential MRFs (SMRF) 66
2.2.1 Multivariate SMRF . 66
2.2.2 Univariate SMRF . 68

2.3 MRF Results . 73
2.4 Univariate SMRF Improvements . 88

iii

3 Future Work 94

A Proofs 96
A.1 Proof Of Convergence For Boost Smoothing 96
A.2 Proof Of Convergence For Marginal Kernel Smoothing 99
A.3 Proof For Binding Separate Marginal Distributions 100

Bibliography 101

iv

List of Figures

1.1 General Markov Structure Of State Space Models 1
1.2 Example Of Filtering And Smoothing Distributions 2
1.3 Examples Of Weighted Samples . 7
1.4 Visualizations Of Importance Sampling Operations 8
1.5 Plots Of Weights Versus Locations For Different Proposals 11
1.6 Example Trajectories Of Different Smoothing Methods 16
1.7 Linear Model 1: Filtering Posteriors . 30
1.8 Linear Model 1: Filtering ESS(xt) . 31
1.9 Linear Model 1: Filtering RMSE(xt) . 32
1.10 Linear Model 1: Smoothing Posteriors 33
1.11 Linear Model 1: Smoothing RMSE(xt) 34
1.12 Linear Model 1: Boxplots For ESS, Filtering, And Smoothing 35
1.13 Linear Model 2: Filtering Posteriors . 38
1.14 Linear Model 2: Filtering ESS(xt) . 39
1.15 Linear Model 2: Filtering RMSE(xt) . 40
1.16 Linear Model 2: φ Posteriors . 41
1.17 Linear Model 2: φ RMSE . 42
1.18 Linear Model 2: σ2 Posteriors . 43
1.19 Linear Model 2: σ2 RMSE . 44
1.20 Linear Model 2: τ2 Posteriors . 45
1.21 Linear Model 2: τ2 RMSE . 46
1.22 Linear Model 2: Smoothing Posteriors 47
1.23 Linear Model 2: Smoothing RMSE(xt) 48
1.24 Linear Model 2: Boxplots For ESS, Filtering, And Smoothing 49
1.25 Linear Model 2: Boxplots For Static Parameters 50
1.26 Nonlinear Model: Filtering And Smoothing Posteriors 55
1.27 Nonlinear Model: Filtering And Smoothing, ESS(xt) And RMSE(xt) . . 56
1.28 Nonlinear Model: Boxplots For ESS, Filtering, And Smoothing 57

2.1 Nearest 4 Neighborhood Lattice Model Indexing 59
2.2 State Space Model Indexing Scheme For Sequential MRF 64

v

2.3 6× 6 Observations . 78
2.4 6× 6 Hidden States . 78
2.5 6× 6 Informative Priors: Posteriors . 78
2.6 6× 6 Informative Priors: Hidden States RMSE(xt) 79
2.7 6× 6 Informative Priors: Boxplots For Hidden States 80
2.8 6× 6 Informative Priors: Boxplots For σ2 80
2.9 6× 6 Informative Priors: Boxplots For τ2 81
2.10 6× 6 Informative Priors: Joint And Conditional Gibbs ACF Plots For σ2 82
2.11 6× 6 Vague Priors: Posteriors . 83
2.12 6× 6 Vague Priors: Hidden States RMSE(xt) 84
2.13 6× 6 Vague Priors: Boxplots For Hidden States 85
2.14 6× 6 Vague Priors: Boxplots For σ2 . 85
2.15 6× 6 Vague Priors: Boxplots For τ2 . 86
2.16 6× 6 Vague Priors: Joint And Conditional Gibbs ACF Plots For σ2 . . 87
2.17 10 × 10 Observations . 88
2.18 10 × 10 Hidden States . 88
2.19 10 × 10 Informative Priors: Posteriors 89
2.20 10 × 10 Informative Priors: Hidden States RMSE(xt) 90
2.21 10 × 10 Informative Priors: Boxplots For Hidden States 91
2.22 10 × 10 Informative Priors: Boxplots For σ2 91
2.23 10 × 10 Informative Priors: Boxplots For τ2 92
2.24 10× 10 Informative Priors: Joint And Conditional Gibbs ACF Plots For

σ2 . 93

vi

List of Tables

1.1 Linear Models 1 & 2: Prior Specifications 25
1.2 Linear Models 1 & 2: Algorithm Specifications 25
1.3 Linear Model 1: Average Run Time . 36
1.4 Linear Model 2: Average Run Time . 51
1.5 Nonlinear Model: Average Run Time . 54

2.1 MRF: Method Comparison . 62
2.2 MRF: Prior Specifications . 77
2.3 MRF: Average Run Time . 77

vii

List of Algorithms

1 DLM Filtering Recursion . 3
2 DLM Smoothing Recursion . 4
3 Forward-Filter Backward-Sampling (FFBS) 4
4 DLM Gibbs . 5
5 SMC Filtering Recursion . 9
6 GDW04 Smoothing . 18
7 Boost Smoothing . 19
8 Kernel Smoothing . 24
9 Generic Gibbs . 63
10 Conditional Gibbs . 63
11 Joint Gibbs . 64
12 DLM Gibbs . 66

viii

Abstract

Boost Smoothing and SMRF Models

by

Jacob B. Colvin

This proposal explores the use of Sequential Monte Carlo (SMC) for use in

Bayesian inference for both sequential and non sequential problems. The main con-

tribution are two new joint SMC smoothing algorithms, named Boost Smoothing and

Kernel Smoothing, and a scheme for converting a Markov Random Field (MRF) into a

state space model.

Part I reviews state space models with an introduction to Dynamic Linear

Models (DLM) for linear Gaussian state space models and SMC for general state space

models, both with optional static parameter estimation. The class of Forward-Backward

SMC Smoothing algorithms is then introduced, with preexisting algorithms having a

computational complexity of order O(TN2). Boost Smoothing is introduced as a way

of combining the results of K SMC Smoothing replications using M = N/K particles

and has an improved computational complexity of order O(TKN) for K << N . Ker-

nel Smoothing is introduced as a way of using Kernel Density Estimation (KDE) to

estimate the needed normalizing constant, and has a computation complexity of order

O(TN logN). This section is then concluded with a linear and a nonlinear univariate

state space model to show the relative strengths of the different algorithms.

Part II discusses a variety of Markov Chain Monte Carlo (MCMC) implemen-

tations of MRFs with static parameters, and shows how MRFs can be transformed into

both multivariate and univariate state space models by inducing an ordering on the

hidden states. These state space models are called Sequential MRFs (SMRF) models.

Numerical performance is evaluated on a nearest 4 neighbor Gaussian MRF on a regular

lattice. For this example, it is shown that by using Boost Smoothing on the univariate

SMRF model, samples from the joint posterior can be generated with order O(KNIJ2)

computational complexity.

Chapter 1

State Space Models

State space models are characterized by a set of unobservable hidden states,

XT = {Xt ∈ R
n : t = 1, ..., T}, with observations Y T = {Yt ∈ R

r : t = 1, ..., T}, such

that Yt depends only upon Xt. The hidden state Xt depends only on the hidden states

Xt−1 and Xt+1 and the observation Yt. The model is then described by the system

equation p(Xt|Xt−1, θ), which represents a stochastic process in time, and the observa-

Yt−1 Yt P (Yt+1|Y t)

P (Xt−1|Y t) P (Xt|Y t) P (Xt+1|Y t)

Figure 1.1: General Markov Structure Of State Space Models, Given Y t

1

0 20 40 60 80 100

−
10

−
5

0
5

Y X 95% CI Filtering 95% CI Smoothing

Figure 1.2: Example Of Filtering And Smoothing Distributions, 95% Credible Intervals

tion equation p(Yt|Xt, θ) representing the error distribution of observation Yt given the

hidden state Xt, where θ is an optional vector of static parameters. This limiting of

the dependence structure of the hidden states to only the immediately adjacent hidden

states is known as the Markov property, and simplifies calculations greatly as illustrated

in Figure 1.1. Inference on these models are usually visualized by the marginal distri-

butions of either the filtering densities p(Xt|Y t) or the smoothing densities p(Xt|Y T) as

shown in Figure 1.2. Under Bayesian inference the posterior is specified as follows.

p(XT , θ|Y T) ∝ p(X1, θ)

T∏

t=2

p(Xt|Xt−1, θ)

T∏

t=1

p(Yt|Xt, θ)

1.1 Linear State Space Models

Multivariate Dynamic Linear Models are examples of state space models where

both the observation and system equation are linear and Gaussian, which allows all

distributions of interest to be analytically tractable. DLMs are described by the set

2

{Ft, Gt, Vt,Wt} where t indexes time. This then defines a state space model as follows

for t ∈ 1 : T . [26, 28,34]

Yt|Xt ∼ N(F ′
tXt, Vt)

Xt|Xt−1 ∼ N(GtXt−1,Wt)

Yt Observation Vector (r × 1) Xt Hidden State Vector (n× 1)

Ft Observation Matrix (n× r) Gt System Matrix (n × n)

Vt Observational Variance (r × r) Wt System Variance (n× n)

1.1.1 Filtering

Inference for the hidden states starts with a normal prior on X1 ∼ N(a1, R1),

and then proceeds sequentially, one observation at a time, creating a series of forward

filtering distributions of the form p(Xt|Y t). For the hidden states, the filtering distri-

butions are p(Xt|Y t) = N(mt, Ct), which can be calculated recursively as shown below.

for t = 1 to T do
Prior: p(Xt|Y t−1) = N(at, Rt) where at = Gtmt−1, Rt = GtCt−1G

′
t +Wt

Predictive: p(Yt|Y1:t−1) = N(ft, Qt) where ft = F ′
tat, Qt = F ′

tRtFt + Vt

Filtering: p(Xt|Y t) = N(mt, Ct) where mt = at+At(Yt−ft), Ct = Rt−AtQ
−1
t A′

t,
and At = RtFtQ

−1
t

Algorithm 1: DLM Filtering Recursion

1.1.2 Smoothing

After filtering, the smoothing distributions can be calculated as shown below.

These calculations with the final filtering distribution N(mT , CT) = N(aT |T , RT |T).

3

Forward Filter: p(Xt|Y t) = N(mt, Ct) for t = 1 : T
for t = T − 1 to 1 do

Marginal Smoothing: p(Xt|Y T) ∼ N(at|T , Rt|T) where

at|T = mt +Bt(at+1|T − at+1), Rt|T = Ct −Bt(Rt+1|T −Rt+1)B
′
t, Bt = CtG

′
t+1R

−1
t+1

Joint Smoothing: p(XT |Y T) = N











a1|T
...

aT |T




 ,






Σ1,1 . . . Σ1,T
...

. . .
...

ΣT,1 . . . ΣT |T









 where

Σi,j = Ai,jRj|T for i ≤ j and Ai,j =
∏j

k=iBk.

Algorithm 2: DLM Smoothing Recursion

1.1.3 Sampling

The joint posterior of a DLM can be factored using the filtering distributions.

p(XT |θ, Y T) = p(XT , θ|Y T)
T−1∏

t=1

p(Xt+1|θ,Xt)p(Xt|θ, Y t)

This structure allows states to be efficiently sampled backwards from p(Xt|Xt+1, θ, Y
t),

and is known as Forward-Filter Backward-Sampling (FFBS). [7, 14]

Forward Filter: p(Xt|Y t) = N(mt, Ct) for t = 1 : T
Sample: XT ∼ N(mT , CT)
for t = T − 1 to 1 do

Sample: Xt|Xt+1 ∼ N(m∗
t , C

∗
t), where

m∗
t = mt +Bt(Xt+1 − at+1),C

∗
t = Ct −BtRt+1B

′
t, and Bt = CtG

′
t+1R

−1
t+1

Algorithm 3: Forward-Filter Backward-Sampling (FFBS)

1.1.4 Static Parameters

Static parameters arise in DLMs when any of the matrices {Ft, Gt, Vt,Wt}

are not time dependent constants, but functions of unknown parameters. Common

examples include placing a prior on the observation or system variance indicating that

4

Vt and or Wt are unknown constants. In AR(p) time series models, Gt may need to be

estimated as part of a larger model structure. Except for the case where Vt, Wt, and C0

are all proportional to a common unknown parameter, models with unknown parameters

will not be analytically tractable. For off-line inference, MCMC methods [30] can be

used, and work by iteratively sampling from the full conditional posterior distributions,

discarding the initial samples from the burn in stage until the chain has reached the

stationary distribution. With an appropriately chosen conjugate prior, p(θ|XT , Y T) can

usually be sampled directly. This is generally preferable because it will minimize the

autocorrelation of the MCMC sample.

for i = 1 to N do
Sample: XT (i)|θ(i−1), Y T ∼ p(XT |Y T , θ(i−1)) via FFBS
Sample: θ(i)|XT (i), Y T ∼ p(θ|XT (i), Y T)

Algorithm 4: DLM Gibbs

1.2 Nonlinear State Space Models

The advent of MCMC methods became part of the the foundation of modern

Bayesian inference by allowing for efficient sampling of intractable distributions de-

rived from high dimensional integrals. Unfortunately, the Markov Chain theory behind

MCMC is unscalable for on-line time series applications. Even when computation can

be performed off-line and time complexity is not an issue, finding efficient proposal dis-

tributions for the hidden states can be difficult. Because the hidden states can be multi

modal and highly correlated, sampling each state individually can cause the Markov

chain to mix slowly. Due to these limitations, Sequential Monte Carlo [6] has become a

5

popular alternative to MCMC for state space models.

1.2.1 Importance Sampling

This is the classic Monte Carlo method for approximating expectations.

Ef [h(X)] =

∫

X
h(x)f(x)dx ≈ 1

N

N∑

i=1

h(x(i)) where x(i) ∼ f(x)

Importance Sampling (IS) generalizes this approach by allowing samples to come from

a different importance distribution, creating a weighted sample
{
w(i), x̃(i)

}
N
i=1 with

weights w(i) = f(x̃(i))/g(x̃(i)) to correct for bias and an importance sample x̃(i) ∼ g(x)

to define the support. This weighted sample is a discrete approximation of f(x) such

that ṗ(x) =
∑N

i=1w
(i)δx(i)(x), and is used to calculate expectations as follows. [30]

Ef [h(x)] =

∫

X
h(x)

f(x)

g(x)
g(x)dx ≈ 1

N

N∑

i=1

f(x̃(i))

g(x̃(i))
h(x̃(i)) where x̃(i) ∼ g(x)

The choice of the importance distribution g(x) is arbitrary, but must cover the full

support of f(x). Figure 1.3 shows different weighted samples approximating the same

distribution, but using different importance distributions. To ensure finite variance of

the estimator, g(x) must have heavier tails then the target distribution f(x), and thus

limx→±∞ f(x)/g(x) < ∞. For convenience, g(x) is typically chosen to be an easily

sampled distribution. Also note that f(x) may only be known up to a proportionality

constant, so weights may need to be normalized for certain calculations.

6

x

w
Figure 1.3: Examples Of Weighted Samples, approximating the same distribution

1.2.2 Filtering

The description of SMC filtering algorithms will begin by describing a series

of IS operations. Assume q̇(x) ∼
{
w(i), x(i)

}
N
i=1 and q̇(xt:t+1) ∼

{

w(i), x
(i)
t:t+1

}
N
i=1.

• Reweight: q̇(x|y) ∝ q(y|x)q̇(x) ∼
{
q(y|x(i))w(i), x(i)

}
N
i=1

• Resample: [q̇(x)] ∼
{
1/N, x̃(i)

}
N
i=1 where x̃(i) ∼ q̇(x)

• Propagate: q(xt+1|xt)q̇(xt) ∼
{

w(i), x
(i)
t:t+1

}
N
i=1 where x

(i)
t+1 ∼ q(x

(i)
t+1|x

(i)
t)

• Marginalize:
∫
q̇(xt:t+1)dxt ∼

(

w(i), x
(i)
t+1

)
N
i=1

These operations can be visualized as seen in Figure 1.4. Most existing SMC

algorithms are summarized by the following recursion.

ṗ(xt+1|yt+1) ∝ p(yt+1|xt+1)p(xt+1|xt)ṗ(xt, yt)

∝

(4)Reweight
︷ ︸︸ ︷

p(yt+1|xt+1)p(xt+1|xt)
vt(yt+1, xt)qt(xt+1|xt, yt+1)

(3)Propagate
︷ ︸︸ ︷

qt(xt+1|xt, yt+1)

(1-2)Auxiliary-Resample
︷ ︸︸ ︷
[
vt(y

t+1, xt)ṗ(xt|yt)
]

Implementation is dependent on selecting the auxiliary function, vt(yt+1, xt), to select

which particles to propagate, and the particle propagation distribution, qt(xt+1|xt, yt+1),

7

x

w

(a) Reweight: q̇(x|y) ∝ q(y|x)q̇(x), in this case
the left hand side is the unequally weighted sam-
ple (red), and the right hand side is the result
of applying a reweight function q(y|x) to the
equally weighted sample q̇(x) in black.

x

w

(b) Resample: the original distribution q̇(x) is
represented in red, while the resampled version
[q̇(x)] is the equally weighted approximation of
the same distribution represented in blue.

xt

x t
+1

(c) Propagate: in black is the original weighted
sample q̇(xt), for which the particle locations
xt are propagated using q(xt+1|xt) to obtain
ṗ(xt+1, xt) in red.

xt

x t
+1

(d) Marginalize: in red is the weighted sample
ṗ(xt+1, xt), which is marginalized by dropping
particle locations xt to form the weighted sam-
ple ṗ(xt+1) in blue.

Figure 1.4: Visualizations Of Importance Sampling Operations

8

and is described in Algorithm 5. Depending on these choices, the algorithm simplifies

to one of the SMC algorithms described in the next subsection.

for t = 1 to T do
Auxiliary: ˙̃p(xt|yt+1) ∼ vt(y

t+1, xt)ṗ(xt|yt) → (w̃
(i)
t , xt(i))Ni=1

Resample: ˙̃p(xt|yt+1) ∼
[
˙̃p(xt|yt+1)

]
→ (1/N, x̃t(i))Ni=1

Propagate: ˙̃p(xt+1|yt+1) ∼ qt(xt+1|xt, yt+1) ˙̃p(xt|yt+1) → (1/N, x̃t+1(i))Ni=1

Reweight: ṗ(xt+1|yt+1) ∼ p(yt+1|xt+1)p(xt+1|xt)
vt(yt+1,xt)qt(xt+1|xt,yt+1)

˙̃p(xt+1|yt+1) → (w
(i)
t+1, x

t+1(i))Ni=1

Algorithm 5: SMC Filtering Recursion

1.2.2.1 Sequential Importance Sampling (SIS)

Since SIS lacks a resample step, set vt(y
t+1, xt) ∝ 1 and remember that the

reweight step will be reweighting a weighted sample, which will eventually become

degenerate without a resample step.

ṗ(xt+1|yt+1) ∝
p(yt+1|xt+1)p(xt+1|xt)

qt(xt+1|xt, yt+1)
qt(xt+1|xt, yt+1)ṗ(xt|yt)

1.2.2.2 Sequential Importance Resampling (SIR)

By adding a resample step, the reweight step will be reweighting an equally

weighted sample. This allows the algorithm to recover from degeneracy in the filtering

distributions. [16]

ṗ(xt+1|yt+1) ∝
p(yt+1|xt+1)p(xt+1|xt)

qt(xt+1|xt, yt+1)
qt(xt+1|xt, yt+1)

[
ṗ(xt|yt)

]

9

1.2.2.3 Auxiliary Particle Filter (APF)

The next improvement concerned selecting the optimal particles to propagate

in the resample step using the auxiliary reweight function vt(y
t+1, xt), and then correct-

ing for this bias in the following reweight step. The most natural auxiliary distribution

to use would be p(yt+1|xt) =
∫
p(yt+1|xt+1)p(xt+1|xt)dxt+1 so that particles are resam-

pled according to p(xt|yt+1), but this integral is generally not available in analytical

form. Alternatively, a point estimate x̂t+1, such as E(xt+1|xt, yt+1), can be used with

the observation equation, so that p(yt+1|xt) is approximated by p(yt+1|x̂t+1). [11, 27]

ṗ(xt+1|yt+1) ∝
p(yt+1|xt+1)p(xt+1|xt)

vt(yt+1, xt)qt(xt+1|xt, yt+1)
qt(xt+1|xt, yt+1)

[
vt(y

t+1, xt)ṗ(xt|yt)
]

1.2.2.4 Particle Learning (PL)

In Particle Learning, a specific auxiliary function and propagation distribution

is chosen such that the final reweight step produces equally weighted samples from

p(xt+1|yt+1) by definition. This also allows the reweight step following the propagation

step to be omitted. [8, 18,24]

vt(y
t+1, xt) =

∫

p(yt+1|xt+1)p(xt+1|xt)dxt+1

qt(xt+1|xt, yt+1) ∝ p(yt+1|xt+1)p(xt+1|xt)

ṗ(xt+1|yt+1) ∝ p(xt+1|xt, yt+1)
[
p(yt+1|xt)ṗ(xt|yt)

]

10

(a) Robust: g(x) ∼ Tdf=2 (b) Optimal: g(x) ∼ Tdf=5 (c) Degenerate: g(x) ∼ N(0, 1)

Figure 1.5: Plots Of Weights Versus Locations For Different Proposals g(x). In this
case, the target is f(x) ∼ Tdf=5 and w(i) = f(x(i))/g(x(i)).

1.2.2.5 Discussion On Forward Filtering

One metric for evaluating the efficiency of an importance sample is the Effective

Sample Size (ESS) [23], which is calculated using the normalized weights as

ESS(x) = 1

/ N∑

i=1

(

w(i)
)2

where x ∼
{

w(i), x(i)
}N

i=1

Values near N imply an equally weighted sample, while values near 1 imply sample

degeneracy where a single particle has very large weight.

SMC performance is heavily dependent on the chosen proposal distribution.

Although the system equation p(xt+1|xt) is a natural choice, it is often considered un-

satisfactory because it does not incorporate the current observation yt+1. When analyt-

ically tractable, one natural choice is known as the optimal proposal, p(xt+1|xt, yt+1) ∝

p(yt+1|xt+1)p(xt+1|xt), which minimizes the variance of the weights (or maximizes the

ESS), conditional on the previous particles xt. However, not all particles are good can-

11

didates for propagating to the next step, motivating the need for the auxiliary step.

Figure 1.5 shows graphically how weighted samples behave under different proposal

distributions. [6]

Various forms of systematic sampling [20] can be used in the resample step

to reduce MCMC error compared to using simple random sampling. For example,

after normalizing weights w(i) = w(i)
/∑N

j=1w
(j), take ni copies of particle i where

ni =
⌊
Nw(i)

⌋
to select the first

∑
ni particles deterministically, and then perform

simple random sampling to select N −∑ni particles with weights w∗(i) ∝ w(i) − ni/N .

To reduce machine round off error from degenerate samples with very small

weights, it is best to work on the log weight scale where weights can be multiplied and

divided with addition and subtraction. Since the weights need only be specified up to a

normalizing constant, it is best to center the log weights such that max(w(i)) = 1. This

can be done by setting w(i) = exp
(
logw(i) −max(logw(i))

)
.

To save space and computation, note that ṗ(xt|yt) ∼
{
wt(i), xt(i)

}
N
i=1 can be

marginalized to retain only the forward filtering distributions ṗ(xt|yt) ∼
{
w

(i)
t , x

(i)
t

}
N
i=1 if

the filter smoothing approximation of p(xt|yt) is not needed. Additionally, the auxiliary

weights can be reused in the reweight step if preserved through the resample step.

1.2.3 Static Parameters

While static parameters can be modeled as non-evolving hidden states ini-

tially sampled from the prior distribution, the resulting samples quickly degenerate as

the initial sample is over-dispersed and particle trajectories are removed and duplicated

12

in the resample step. One of the earliest solutions was to add a small amount of ran-

dom noise in the system equation for the static parameters [16], but the inherent loss of

information associated with this artificial evolution created over-dispersion in the poste-

riors. This was later addressed by shrinking the resampled static parameters about the

mean. [22] Later, the next big development was the introduction of sufficient statistics

that allowed for the particle trajectories to be summarized as a deterministically evolv-

ing state of finite dimension, allowing the static parameters to be resampled directly

at each time step. [33] Unfortunately, not all general state space models allow for such

a finite-dimensional sufficient statistic. To incorporate static parameter estimation, a

new replenish step is added to create the following algorithms.

1.2.3.1 Liu & West

This method is similar to discount factors for DLMs, and does not rely on

the sufficient statistics structure. The idea is to replenish from a multivariate nor-

mal while maintaining the same covariance and mean by using a shrinkage factor con-

trolled by δ. The parameters should be transformed to an appropriate scale for a

normal approximation before replenishing. For a good approximation, the discount fac-

tor should be set close to 1 to minimize the use of shrinkage. Typically discount factors

13

are 0.95 ≤ δ ≤ 0.99. [22]

ṗ(xt+1, θ̃|yt+1) ∝

(5)Reweight
︷ ︸︸ ︷

p(yt+1|xt+1, θ̃)p(xt+1|xt, θ̃)
vt(xt, θ̃, yt+1)qt(xt+1|xt, θ̃, yt+1)

×

(4)Propagate
︷ ︸︸ ︷

qt(xt+1|xt, θ̃, yt+1)

∫
(3)Replenish
︷ ︸︸ ︷

qt(θ̃|θ)
(1-2)Auxiliary-Resample

︷ ︸︸ ︷
[
vt(x

t, θ, yt+1)ṗ(xt, θ|yt)
]
dθ

where qt(θ̃|θ) = N(aθ + (1− a)θ̄, (1− a2)Cov(θ)), and a = (3δ − 1)
/
2δ.

1.2.3.2 Storvik

This method introduced the use of sufficient statistics, which allows for re-

plenishing the static parameters by recursively updating St = f(xt, yt, St−1). If the

dimension of St does not grow with time, then the entire particle trajectory is not re-

quired when evaluating p(θ|St). The replenish distribution qt(θ|xt, θ, yt+1) is arbitrary,

but a direct sample from p(θ̃|xt, yt) is the most common. [33]

ṗ(xt+1, θ̃|yt+1) ∝

(5)Reweight
︷ ︸︸ ︷

p(yt+1|xt+1, θ̃)p(xt+1|xt, θ̃)p(θ̃|xt, yt)
vt(xt, θ, yt+1)qt(xt+1|θ̃, xt, yt+1)qt(θ̃|xt, yt+1)

×

(4)Propagate
︷ ︸︸ ︷

qt(xt+1|θ̃, xt, yt+1)

(3)Replenish
︷ ︸︸ ︷

qt(θ̃|xt, yt+1)

∫
(1-2)Auxiliary-Resample

︷ ︸︸ ︷
[
vt(x

t, θ, yt+1)ṗ(xt, θ|yt)
]
dθ

1.2.3.3 Particle Learning (PL)

Choose vt(x
t, yt+1) and qt(xt+1|xt, yt+1) as described earlier for PL with fixed

parameters. After the propagation step at time t, replenish θ̃ ∼ p(θ̃|xt, yt) to maintain

14

sample diversity. Notice that the distribution of θ after the auxiliary step is the same

as θ̃ after the replenish step, and hence the replenish step may be performed only as

need. [8, 9, 18]

ṗ(xt+1, θ̃|yt+1) ∝

(4)Replenish
︷ ︸︸ ︷

p(θ̃|xt+1, yt+1)

(3)Propagate
︷ ︸︸ ︷

p(xt+1|xt, θ, yt+1)

(1-2)Auxiliary-Resample
︷ ︸︸ ︷[
p(yt+1|xt, θ)ṗ(xt, θ|yt)

]

1.2.3.4 Discussion On Static Parameter Estimation

While both Storvik and PL usually assume the common case that p(θ̃|St) can

be sampled directly, PL can also be replenished from p(θ̃|θ, St) in a MCMC step without

burn in since θ is already an equally weighted sample from the stationary distribution

after the auxiliary-resample step. The difficulty, is that PL requires p(yt+1|xt, θ) and

p(xt+1|xt, θ, yt+1) to be analytically tractable while Storvik allows for arbitrary auxiliary

and proposal distributions. For Storvik, a series of MCMC iterations with minimal burn

in is often used in the replenish step when θ cannot be directly sampled.

1.2.4 Forward-Backward Smoothing

The most basic form of SMC smoothing consists of using the particle trajec-

tories from the final filtering distribution and is known as simple smoothing [20], filter

smoothing, or trajectory smoothing. However, filter smoothing progressively degener-

ates as the particle trajectories become less diverse after each resample step. Simple

smoothing can also be used to recover the sufficient statistics used in static parameter

estimation, since it can be shown that S
(i)
t is a function of particle trajectories xt(i)

15

(a) Filter Smoothing (b) GDW04 Smoothing Or
Boost Smoothing

(c) Kernel Smoothing

Figure 1.6: Example Trajectories of Different Smoothing Methods: (a) Simple Smooth-
ing: particles become less diverse as t decreases, (b) GDW04 or Boost Smoothing: no
new particle locations, but particle trajectories are reassigned, (c) Kernel Smoothing:
new particle locations.

as indexed in the particle approximation ṗ(xt|yt). Hence, if filter smoothing performs

poorly, sufficient statistic methods should perform poorly as well. Figure 1.6 shows

example particle trajectories of three types of SMC smoothing methods.

The forward-backward class of smoothing algorithms starts with forward fil-

tering to find ṗ(xt|yt) for t = 1 : T , and then recursively calculates the smoothing

densities using the previously sampled ṗ(xt+1:T |yT). By the Markov property, condi-

tional distributions can be simplified such that p(xt|xt+1:T , y
T) = p(xt|xt+1, y

t). Usually,

p(xt|xt+1, y
t) does not allow for direct sampling, with the notable exception of DLMs

via FFBS, and so the main difficulty is calculating the normalizing constant.

p(xt:T |yT) = p(xt|xt+1, y
t)p(xt+1:T |yT) =

p(xt:t+1|yt)
p(xt+1|yt)

p(xt+1:T |yT)

=
p(xt+1|xt)p(xt|yt)

p(xt+1|yt)
p(xt+1:T |yT) (1.2.1)

p(xt|xt+1:T , y
T) ∝ p(xt+1|xt)p(xt|yt)p(xt+1:T |yT) (1.2.2)

16

The first SMC Smoothing method for joint samples (GDW04) [15] and the new Boost

Smoothing algorithm use the proportionality argument in (1.2.2) to normalize the weight

of each particle. Kernel Smoothing is another new alternative solution that uses kernel

density estimation to approximate the normalizing constant directly using (1.2.1).

The derivation for the static parameter case was introduced in [24]. The version

presented here allows for sampling from the filter smoothing distributions p(xt|yt) to

create joint samples with p(xt+1:T , θ|yT). This allows for forward-backward smoothing

at all time steps t < T , or periodically depending upon the rate that particle trajectories

degenerate in order to save on computation.

p(xT , θ|yT) = p(xt|θ, xt+1, y
t)p(xt+1:T , θ|yT)

=
p(xt+1|xt, θ)p(θ|xt, yt)p(xt|yt)

p(xt+1, θ|yt)
p(xt+1:T , θ|yT)

p(xt|xt+1:T , θ, y
t) ∝ p(xt+1|xt, θ)p(θ|xt, yt)p(xt|yt)p(xt+1:T , θ|yT)

Hence, given x
(i)
t+1:T , θ

(i) ∼ p(xt+1:T , θ|yT), sample xt(j) ∼ p(xt|yt) with weights propor-

tional to w(j) ∝ p(θ(i)|xt(j), yt)p(x(i)t+1|x
(j)
t , θ(i)).

Additionally, there is an alternative class of algorithms known as two filter

smoothing, which is a technique for calculating the marginal distributions p(xt|yT). This

is done by using the forward and backward filtering densities, p(xt|yt) and p(xt:T |yt:T),

in order to sample new states. This class of algorithms are generally order O(TN2)

complexity. [5, 13]

17

1.2.4.1 GDW04 Smoothing

The first SMC smoothing method was introduced in [12] and produced weighted

samples of the marginal distributions p(xt|yT). Next, the method was improved by [15]

to generate joint samples from p(xT |yT). This method was then extended for static pa-

rameter estimation in [24] for Particle Learning, and is presented here for the case where

ṗ(xt, θ|yt) is not an equally weighted sample. The computational cost is O(TN) per

sample or O(TN2) for N samples. Since the forward filtering cost is typically O(TN)

for N samples, the computational complexity is dominated by the smoothing process.

A second issue is that no new particle locations, x
(i)
t , are sampled, merely the links

connecting particle trajectories are reshuffled as in Figure 1.6b. To generate a sample

x̃T , proceed as described in Algorithm 6.

Forward Filter to generate ṗ(xt, θ|yt) =
{

w
(i)
t , x

(i)
t , θ(i)

}N

i=1
for t = 1 : T

Sample x̃T , θ̃ ∼ ṗ(xT , θ|yT)
for t = T − 1 to 1 do

Sample x̃t from x
(i)
t with probability w

(i)
t|T

∝ p(θ̃|xt(i), yt)p(x̃t+1|x(i)t , θ̃)w
(i)
t

Algorithm 6: GDW04 Smoothing

Theoretical results assuming fixed parameters show that the rate of conver-

gence in mean squared error is order O(1/N) for the number of particles and order

O(1/
√
N) in terms of computational complexity. For details, see Theorem A.1.2 in

Appendix A.1.

18

1.2.4.2 Boost Smoothing (New)

The main computational problem with the GDW04 algorithm is that the re-

duction in MC error provided by one additional particle is eventually overshadowed by

the computational cost of that one additional particle.

One solution is to run the filtering algorithm on N particles and the GDW04

smoothing algorithm M times with K particles, combining results for a total of N =

KM samples. Now when GDW04 is applied in the backward pass, the cost is only

O(TK) per sample instead of O(TN). Since the computational complexity of SMC

filtering algorithms is generally O(TN), there is no reason to divide the forward pass

into groups. In Machine Learning terminology this strategy is called Boosting, where

each group of size K represents a weak learner (compared to a group of size N) which

can be combined to make a strong learner. In this case, the motivation for using the

weak learners is computational, because now the computational complexity is order

O(TMK2) = O(TKN) instead of O(TN2). This process is described in Algorithm 7.

Forward Filter to generate ṗ(xt, θ|yt) =
{

w
(i)
t , x

(i)
t , θ(i)

}N

i=1
for t = 1 : T

Sample without replacement, M groups of K particles
Backward Smooth by performing GDW04 on each of the M groups of K particles

Algorithm 7: Boost Smoothing

Theoretical results suggest that Boost Smoothing is making a trade off between

the bias and the variance of the estimate. As seen in Appendix A.1 and assuming fixed

parameters, the rate of convergence in mean squared error is order O(1/KM + µ2)

where µ is the bias of GDW04 with K particles. If the rate of this bias decreases on

19

the order of O(1/N), and setting M = K, then Boost Smoothing has the same order of

convergence in mean squared error, but with a computational complexity of O(TN3/2).

In practice, for well behaving state space models and sufficiently large K, the estimate

is essentially unbiased relative to the variance, and the results of Section 1.3 and 1.4

suggest choosing K << M given sufficient signal in the observations. In this setting,

for fixed K large enough that E(h(xT |yT)) < ǫ, the computational complexity of Boost

Smoothing becomes linear in the number of particles. The choice of K needs to be

tuned for each individual problem and should increase as N increases to even out the

sources of MC error, with an ideal choice minimizing the MC error for a given amount

of computation.

1.2.4.3 Kernel Smoothing (New)

An alternative smoothing method arises from using kernel density estimation

to calculate the normalizing constant in (1.2.1), avoiding the proportionality argument

from (1.2.2). Furthermore, this allows new particle locations to be sampled in the

backward smoothing step. After the obligatory forward filtering pass, the next step is

to calculate ṗ(xt:t+1|yT) for t = T − 1 : 1 where xt are new particle locations and xt+1

are the one step filter smoothing estimates. These will be used later to bind the different

bivariate samples ṗ(xt:t+1|yT), to create joint samples ṗ(xT |yT).

Recall that ṗ(x) = 1
n

∑N
i=1w

(i)δx(i)(x) is the weighted sample representation

20

of a density function. Then the kernel density estimate is

p̂(x) =
1

N

N∑

i=1

w(i)Kh(x
(i) − x)

where Kh(u) is a kernel with bandwidth h and E(Kh(u)) = 0. One common example

is the Gaussian kernel, defined as Kh(u) = N(u|0, h2). The kernel provides for den-

sity estimation between particle locations by smoothing over the gaps in the weighted

sample. In general, the only requirement for consistency of the density estimate is that

limN→∞ h = 0 while limN→∞Nh = ∞. In histogram terminology, this merely means

that the number of samples per bin must increase despite the bin width decreasing. A

bandwidth that is too small produces jagged density estimates, while large bandwidths

over smooth the density estimate and leads to over-dispersion. For known bandwidth

and certain kernel families, efficient calculations can be performed using discrete Fourier

transformations. This creates a grid of K values that can be interpolated to find den-

sity estimates at arbitrary locations in O(NK logK) time. Efficient implementations

of kernel density estimation are available in many statistics packages.

Automatic bandwidth selection schemes range from computationally complex

cross validation techniques to fast plug-in estimates usually based upon a scaled stan-

dard deviation. Plug-in estimators perform well when the estimated density is approxi-

mately normal, while cross-validation or user defined bandwidths are best for distribu-

tions when the standard deviation is a poor estimate of variability. An example of this

is the multi-modal distributions arising from the nonlinear state space model of Section

21

1.4.

This new smoothing algorithm is motivated by the following recursion, simi-

lar to running SIR in the reverse direction, where the needed filtering and prediction

densities for the reweight step are calculated using kernel density estimation.

ṗ(xt:t+1|yT) =

reweight
︷ ︸︸ ︷

p(xt+1|xt)p̂(xt|yt)
p̂(xt+1|yt)q(xt|xt+1, yt)

propagate
︷ ︸︸ ︷

q(xt|xt+1, y
t)

∫

ṗ(xt+1:t+2|yT)dxt+2

For best performance, the predictive density can be rearranged such that the system

equation becomes the kernel in KDE.

p(xt+1|yt) =
∫

p(xt+1|xt)p(xt|yt)dxt ≃
∫

Kh (xt − E(xt+1|xt)) ṗ(xt|yt)dxt

For the case when the system equation is Gaussian, a Gaussian kernel with bandwidth

equal to the standard deviation of the system equation can be used. This improves

the density estimate by removing the limiting argument that h → ∞, which is par-

ticularly important when estimating tail densities. In the general case, p(xt+1|yT)

can be approximated by propagating x
(i)
t+1 ∼ p(xt+1|x(i)t) and performing KDE on

ṗ(xt+1|yt) =
{

w
(i)
t , x

(i)
t+1

}N

i=1
.

This method also depends upon a reasonable choice for the backward prop-

agate distribution q(xt|xt+1, y
t), which is chosen based on similar concerns as the for-

ward filtering propagate distribution. The naturally choice would be q(xt|xt+1, y
t) ∝

p(xt+1|xt)p(xt|yt) whereupon the reweight step would not be necessary. This choice is

22

rarely feasible except for a Dynamic Linear Model (DLM), where this algorithm reduces

to Forward Filter-Backward Sampling (FFBS).

As stated, this algorithm produces samples for the marginal distributions

p(xt|yT), and can be used to find filter smoothing estimates of p(xt:t+k|yT), but this

quickly degenerates for large k. However, samples of the form p(xt:t+1|yT) can be modi-

fied to generate joint samples p(xT |yT) in O(TN logN) time by using the one step filter

smoothing distribution to capture the dependency between states. By sorting the filter

smoothing estimate x̌t+1 from ṗ(xt:t+1|yT) and x̃t+1 from ṗ(xt+1:t+2|yT), ṗ(xt:t+1|yT)

can be approximated by
{

x̌
(i)
t , x̃

(i)
t+1:t+2

}N

i=1
. This is because the distribution of the

order statistics allows for the simple smoothing estimate x̌t+1 to be replenished by a

second sample from the same marginal distribution, since the distribution of central or-

der statistics converge to fixed values and hence central order variates are exchangeable

in the limit. Therefore, joint smoothing is done by using a replenishing series of one

step filter smoothing operations. The O(N logN) time complexity arises from the need

to sort particle locations. See Algorithm 8 for implementation details.

The reason for using three sorting operations per iteration instead of two is to

avoid resampling all of x̃t+1:T particles after each iteration. Hence, x̃t can immediately

be stored on disk to free up main memory. Note that u(1 : N) represents the indices

for sorting t(1 : N), much like how t(1 : N) represents the indices for sorting x
(1:N)
t+1 .

Unfortunately, due to the poor performance of multivariate KDE, the algo-

rithm here is specific for state space models that are univariate in both the observations

and hidden states, and without the inclusion of static parameter estimation. However,

23

Forward Filter to generate ṗ(xt, θ|yt) =
{

w
(i)
t , x

(i)
t , θ(i)

}N

i=1
for t = 1 : T

Sample x̃
(i)
T ∼ ṗ(xT |yT) for i = 1 : N

for t = T − 1 to 1 do
Propagate x

(i)
t ∼ q

(

xt

∣
∣
∣x̃

(i)
t+1, y

t
)

Weights w
(i)
t ∝ p

(

x̃
(i)
t+1

∣
∣
∣x

(i)
t

)

p̂
(

x
(i)
t

∣
∣
∣yt
)/

p̂
(

x̃
(i)
t+1

∣
∣
∣yt
)

q
(

x
(i)
t

∣
∣
∣x̃

(i)
t+1, .

)

Resample ṗ(xt:t+1|yT) =
{

w
(i)
t , x

(i)
t , x̃

(i)
t+1

}N

i=1
to create

ṗ(xt:t+1|yT) = {1, x̌(i)t , x̌
(i)
t+1}Ni=1

Create index s(i) for i = 1 : N such that x̃
s(i)
t+1 < x̃

s(i+1)
t+1:T

Create index t(i) for i = 1 : N such that x̌
t(i)
t+1 < x̌

t(i+1)
t+1:T

Create index u(i) for i = 1 : N such that t(u(i)) < t(u(i + 1))

Then ṗ(xt:T |yT) = {1, x̃(i)t = x̌
s(u(i))
t , x̃

(i)
t+1:T }Ni=1

Algorithm 8: Kernel Smoothing

if multivariate KDE is acceptable, this algorithm easily generalizes to higher dimensions

and static parameters.

1.3 Example: AR(1), Fixed And Static Parameters

This section discusses a standard AR(1) model with normal errors with either

fixed parameters (Model 1) or static parameters (Model 2). For each model, the data set

consist of a common hidden state xT of length 100 generated from the system equation,

and three sets of observations yT for low, medium, and high Signal to Noise Ratios

(SNR). To compare the numerical performance of each algorithm, Root Mean Squared

Error (RMSE) calculations are used with respect to 95% Credible Intervals (CI) over

100 repeated runs of each algorithm with 213 = 8192 particles. The model is described

24

Model 1 Model 2

φ = 0.9 p(φ) = N(0, φ0 = 1)

p(x1|φ, σ2) = N
(

0, xV = σ2

1−φ2

)

p(x1) ∝ 1

σ2 = 1 p(σ2) = IG(σ2
a = 10, σ2

b = 10)

τ2 = {0.12, 1, 102} p(τ2) = IG(τ2a = 10, τ2b = {0.1, 10, 100})

Table 1.1: Linear Models 1 & 2: Prior Specifications

Algorithm Auxiliary Propagate

Bootstrap p(xt+1|xt)
SIR p(xt+1|xt, yt+1)

APF N
(
yt+1|φxt, τ2

)
p(xt+1|xt, yt+1)

PL p(yt+1|xt) p(xt+1|xt, yt+1)

Kernel p(xt|xt+1, y
t)

Liu & West p(yt+1|xt, θ) p(xt+1|xt, θ̃, yt+1)qt(θ̃|θ, δ = 0.99)

Storvik p(yt+1|xt, θ) p(xt+1|xt, θ̃, yt+1)p(θ̃|xt, yt)
PL p(yt+1|xt, θ) p(θ̃|xt+1, yt+1)p(xt+1|xt, θ, yt+1)

Table 1.2: Linear Models 1 & 2: Algorithm Specifications (θ = {φ, σ2, τ2})

with prior specifications found in Table 1.1 and implementation choices in Table 1.2.

yt|xt, τ2 ∼ N
(
xt, τ

2
)

xt|xt−1, φ, σ
2 ∼ N

(
φxt−1, σ

2
)

From this state space model, a number of conditional and derived distributions

25

are used for the different MCMC and SMC implementations and are presented next.

x1|x2, y1, φ, σ2, τ2 ∼ N

(
φx2σ

−2 + y1τ
−2

τ−2 + φ2σ−2
,

1

τ−2 + φ2σ−2

)

xt|xt−1, xt+1, yt, φ, σ
2, τ2 ∼ N

(
φxt−1σ

−2 + φxt+1σ
−2 + ytτ

−2

σ−2 + φ2σ−2 + τ−2
,

1

σ−2 + φ2σ−2 + τ−2

)

xT |xT−1, yT , φ, σ
2, τ2 ∼ N

(
φxT−1σ

−2 + yT τ
−2

σ−2 + τ−2
,

1

σ−2 + τ−2

)

x1|y1, τ2 ∼ N(y1, τ
2)

xt+1|xt, yt+1, φ, σ
2, τ2 ∼ N

(
φxtσ

−2 + yt+1τ
−2

σ−2 + τ−2
,

1

σ−2 + τ−2

)

yt+1|xt, φ, σ2, τ2 ∼ N
(
φxt, τ

2 + σ2
)

xt|xt+1, y
t, φ, σ2, τ2 ∼ N

(
E(xt|yt)/V(xt|yt) + φ/σ2xt+1

1/V(xt|yt) + φ2/σ2
,

1

1/V(xt|yt) + φ2/σ2

)

φ|σ2, xt, yt ∼ N

(∑t
i=2 xixi−1

φ−1
0 +

∑t−1
i=1 x

2
i

,
σ2

φ−1
0 +

∑t−1
i=1 x

2
i

)

σ2|xt, yt ∼ IG

(

σ2
a +

t− 1

2
, σ2

b +
1

2

(
t∑

i=2

x2i −
(∑t

i=2 xixi−1

)2

φ−1
0 +

∑t−1
i=1 x

2
i

))

τ2|xt, yt ∼ IG

(

τ2a +
t

2
, τ2b +

1

2

t∑

i=1

(yi − xi)
2

)

St = f(xt, xt−1, yt, St−1) =

(

t,

t∑

i=1

(yi − xi)
2 ,

t−1∑

i=1

x2i ,

t∑

i=2

xi−1xi,

t∑

i=2

x2i

)

For the RMSE calculations, equations (1.3.1) and (1.3.2) are used for the

analytic case where the quantiles ξp are known (Model 1) and equations (1.3.3) and

(1.3.4) are used when the quantiles x̄p are estimated from the data (Model 2). In

these equations, t refers to a parameter at a particular time step and i refers to the

replication. When presenting the results, boxplots will use equations (1.3.1) and (1.3.3),

and equations (1.3.2) and (1.3.4) are used to show the RMSE as a function of time. The

26

RMSE boxplots are ideal for comparing algorithm performance in general, while plotting

RMSE as a function of time is ideal for showing the expected variation in estimation

performance. The RMSE for the static parameters are defined analogously.

RMSE(xT) =

√
√
√
√ 1

2NT

T∑

t=1

N∑

i=1

(

x
(i,t)
2.5% − ξ

(t)
2.5%

)2
+
(

x
(i,t)
97.5% − ξ

(t)
97.5%

)2
(1.3.1)

RMSE(xt) =

√
√
√
√ 1

2N

N∑

i=1

(

x
(i,t)
2.5% − ξ

(t)
2.5%

)2
+
(

x
(i,t)
97.5% − ξ

(t)
97.5%

)2
(1.3.2)

RMSE(xT) =

√
√
√
√ 1

2NT

T∑

t=1

N∑

i=1

(

x
(i,t)
2.5% − x̄

(t)
2.5%

)2
+
(

x
(i,t)
97.5% − x̄

(t)
97.5%

)2
(1.3.3)

RMSE(xt) =

√
√
√
√ 1

2N

N∑

i=1

(

x
(i,t)
2.5% − x̄

(t)
2.5%

)2
+
(

x
(i,t)
97.5% − x̄

(t)
97.5%

)2
(1.3.4)

1.3.1 Linear Model 1: Fixed Parameters

This simulation study quantifies the RMSE for both filtering and smoothing

95% credible intervals with a data set generated from the state space model under three

different Signal to Noise Ratios (SNR) for the fixed parameter case. The marginal

posteriors for the filtering and smoothing distributions can be found in Figures 1.7 and

1.10, the ESS values are described in Figures 1.12 and 1.8, and the RMSE results are

shown in Figures 1.12 and 1.9.

For the filtering comparisons, the Bootstrap filter proved to be surprisingly

resilient despite being the simplest of the filtering algorithms. In the low SNR case, the

ESS values of the Bootstrap and SIR filter occasionally drop to about 80% while the ESS

values of APF and PL continually stay near 100%, however there is no distinguishable

27

difference in RMSE between the algorithms. Performance begins to be distinguishable

in the medium SNR case, with PL having the most consistent RMSE performance. ESS

values of SIR and APF are essentially the same with nearly the same RMSE performance

over time. The Bootstrap filter has the best RMSE performance over most individual

states despite its poor ESS performance. The catch is that when the ESS value drops

there is usually a noticeable spike in the RMSE which makes its overall performance

more erratic. PL offers the most reliable performance by generating i.i.d. samples,

however these are not ideal for calculating quantiles where proposals with heavier tails

can offer better precision. The situation changes again with a high SNR, with APF

having the worse RMSE values. This is due to the auxiliary function using only a point

estimate for the evolution for each particle, creating a degenerate weighted samples that

underestimate the variance of the previous state.

The smoothing algorithms where all implemented with a PL filter, with results

from FFBS provided to give an estimate of the expected RMSE for i.i.d. samples.

Results show that Kernel Smoothing is extremely fast and works particularly well in the

low SNR situation because it is able to sample new particle locations in the smoothing

step. While the same optimal backward propagation distribution is used from FFBS,

Kernel Smoothing is still using kernel density estimation to estimate weights instead of

assuming equal weights. Boost Smoothing works nearly as well as GDW04 smoothing for

sufficiently large K, but with a substantially reduced computation cost. This confirms

the results of Theorem A.1.3, suggesting that Boost Smoothing is approximately equal

in performance to GDW04 when the value of K is large enough that Boost Smoothing

28

is unbiased. Moreover, this minimum threshold for K seems to increase with lower SNR

models.

Observed computation time can be seen in Table 1.3. The code was developed

in R [29], and while attempts where made to optimize performance, there is a certain

divergence from what theory would suggest. Namely, that for fixed N , the computation

time for Boost Smoothing should decrease as K decreases. Results do not show this for

small K, suggesting that the overhead of using an interpretive programming language

becomes more significant as K decreases. Additionally, the code was run under a shared

departmental cluster running the ROCKS operating system, so results may vary.

1.3.2 Linear Model 2: Static Parameters

This example is for comparing the numerical precision of the different algo-

rithms when incorporating static parameter estimation. Since these models are not

analytic, the results of a Gibbs sampler using FFBS is used to calculate the x̄p values in

the RMSE calculations. Because it is impractical to repeat this MCMC for each of the

filtering distributions, the x̄
(i,t)
p values in equation (1.3.3) are calculated for each algo-

rithms separately. Since the Liu & West algorithm utilizes a discount factor(δ = .99),

the results will not be consistent with Storvik or PL unless δ → 1. PL is used for

filtering when comparing the RMSE results for smoothing under different values of K.

Of the filtering algorithms, only Storvik does not maintain high ESS values

throughout, and this is particularly a problem at the start of the time series when

the static parameter posteriors are rapidly changing. The drop in ESS is caused by

29

t

x t

−4
−2

0
2
4

20 40 60 80 100

(a) Low SNR: Filtering 95% CI x

t

x t

−4
−2

0
2
4

20 40 60 80 100

(b) Medium SNR: Filtering 95% CI x

t

x t

−4
−2

0
2

20 40 60 80 100

(c) High SNR: Filtering 95% CI x

Figure 1.7: Linear Model 1: Filtering Posteriors. Note that in the low SNR case, very
little inference can be performed on the hidden states.

30

t

E
S

S
(x

t)

0

2000

4000

6000

8000

20 40 60 80 100

alg

Boot

SIR

APF

PL

(a) Low SNR: Filtering ESS(xt)

t

E
S

S
(x

t)

0

2000

4000

6000

8000

20 40 60 80 100

alg

Boot

SIR

APF

PL

(b) Medium SNR: Filtering ESS(xt)

t

E
S

S
(x

t)

0

2000

4000

6000

8000

20 40 60 80 100

alg

Boot

SIR

APF

PL

(c) High SNR: Filtering ESS(xt)

Figure 1.8: Linear Model 1: Filtering ESS(xt). Results show that in the low SNR case
(a), all algorithms show adequate ESS performance with APF and PL consistently at
100% and so showing the usefulness of the auxiliary function. In the medium SNR case
(b), the point estimate for the auxiliary function used in the APF is insufficient to match
the performance of PL. Both APF and SIR use the optimal proposal distribution, which
explain the improvement over the Bootstrap filter using the system equation. In the
high SNR case (c), what is most prominently demonstrated is the importance of using
the optimal proposal distribution, and the adverse effect of using a poor point estimate
for the auxiliary function.

31

t

R
M

S
E

(x
t)

0.00

0.02

0.04

0.06

0.08

20 40 60 80 100

alg

Boot

SIR

APF

PL

(a) Low SNR: Filtering RMSE(xt)

t

R
M

S
E

(x
t)

0.00

0.05

0.10

0.15

0.20

0.25

20 40 60 80 100

alg

Boot

SIR

APF

PL

(b) Medium SNR: Filtering RMSE(xt)

t

R
M

S
E

(x
t)

0.00

0.02

0.04

0.06

0.08

20 40 60 80 100

alg

Boot

SIR

APF

PL

(c) High SNR: Filtering RMSE(xt)

Figure 1.9: Linear Model 1: Filtering RMSE(xt). Figure (a) shows that in a low SNR,
all filters perform about the same. Figure (b) shows the Bootstrap filter suffering a
large spike in RMSE that would have been reduced had the filter been using a better
propagation distribution as in SIR. Figure (c) shows how using a point estimate for
the system equation in the auxiliary function can produce very erratic estimates in the
APF.

32

t

x t

−4
−2

0
2
4

20 40 60 80 100

(a) Low SNR: Smoothing 95% CI x

t

x t

−4
−2

0
2
4

20 40 60 80 100

(b) Medium SNR: Smoothing 95% CI x

t

x t

−4
−2

0
2

20 40 60 80 100

(c) High SNR: Smoothing 95% CI x

Figure 1.10: Linear Model 1: Smoothing Posteriors. Again, even with smoothing, very
little inference can be done in the low SNR case.

33

t

R
M

S
E

(x
t)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

20 40 60 80 100

Kernel

K+Bind

K=8

K=32

K=128

K=512

K=2048

K=8192

FFBS
(a) Low SNR: Smoothing RMSE(xt)

t

R
M

S
E

(x
t)

0.0

0.1

0.2

0.3

0.4

20 40 60 80 100

Kernel

K+Bind

K=8

K=32

K=128

K=512

K=2048

K=8192

FFBS
(b) Medium SNR: Smoothing RMSE(xt)

t

R
M

S
E

(x
t)

0.000

0.005

0.010

0.015

20 40 60 80 100

Kernel

K+Bind

K=8

K=32

K=128

K=512

K=2048

K=8192

FFBS
(c) High SNR: Smoothing RMSE(xt)

Figure 1.11: Linear Model 1: Smoothing RMSE(xt). Kernel Smoothing (NlogN) shows
very consistent rate of RMSE, which is due to bias induced by the kernel bandwidth,
and is exceptionally fast. Boost Smoothing performs as well as GDW04 (K = N) for
sufficiently large K, showing that there is not always a trade off between speed and
precision.

34

L
ow

S
N
R

E
S

S
(x

T
)

0

2000

4000

6000

8000

B
oo

t

S
IR

A
P

F

P
L

(a) Filtering ESS(xT)
R

M
S

E
(x

T
)

0.00
0.02
0.04
0.06
0.08
0.10

B
oo

t

S
IR

A
P

F

P
L

(b) Filtering RMSE(xT)

R
M

S
E

(x
T
)

0.0
0.1
0.2
0.3
0.4
0.5
0.6

K
er

ne
l

K
+

B
in

d
K

=
8

K
=

32
K

=
12

8
K

=
51

2
K

=
20

48
K

=
81

92
F

F
B

S

(c) Smoothing RMSE(xT)

M
ed

iu
m

S
N
R

E
S

S
(x

T
)

0

2000

4000

6000

8000

B
oo

t

S
IR

A
P

F

P
L

(d) Filtering ESS(xT)

R
M

S
E

(x
T
)

0.00
0.01
0.02
0.03
0.04
0.05
0.06

B
oo

t

S
IR

A
P

F

P
L

(e) Filtering RMSE(xT)
R

M
S

E
(x

T
)

0.00
0.02
0.04
0.06
0.08
0.10

K
er

ne
l

K
+

B
in

d
K

=
8

K
=

32
K

=
12

8
K

=
51

2
K

=
20

48
K

=
81

92
F

F
B

S

(f) Smoothing RMSE(xT)

H
ig
h
S
N
R

E
S

S
(x

T
)

0

2000

4000

6000

8000

B
oo

t

S
IR

A
P

F

P
L

(g) Filtering ESS(xT)

R
M

S
E

(x
T
)

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

B
oo

t

S
IR

A
P

F

P
L

(h) Filtering RMSE(xT)

R
M

S
E

(x
T
)

0.000

0.005

0.010

0.015
K

er
ne

l
K

+
B

in
d

K
=

8
K

=
32

K
=

12
8

K
=

51
2

K
=

20
48

K
=

81
92

F
F

B
S

(i) Smoothing RMSE(xT)

Figure 1.12: Linear Model 1: Boxplots For ESS, Filtering, And Smoothing. Note that
the Bootstrap filter performs nearly as well as the other filtering algorithms (b), (e), (h),
and for Boost Smoothing how the RMSE performance stops improving for sufficiently
large K, (c), (f), (i).

35

Algorithm Run Time (Seconds)

Bootstrap Filter (Boot) 1.3

Sequential Importance Resampling (SIR) 2.4

Auxiliary Particle Filter (APF) 3.0

Particle Learning (PL) 1.5

Kernel Smoothing (Kernel) 4.9

+ Marginal Binding (K+Bind) 6.6

Boost Smoothing K=8 167.1

Boost Smoothing K=32 137.7

Boost Smoothing K=128 153.2

Boost Smoothing K=512 270.4

Boost Smoothing K=2048 777.2

GDW04 N=8192 2949.8

Table 1.3: Linear Model 1: Average Run Time. The filtering algorithms are exception-
ally fast compared to the smoothing algorithms. Of the Smoothing algorithms, Kernel
Smoothing is significantly faster then the other smoothing methods. As expected, the
run time of Boost Smoothing is heavily dependent on K, and is significantly faster then
GDW04. The reason Boost Smoothing with K = 8 is slower then with K = 32 or 128
is due to the importance of vectorizing operations when using an interpretive language
like R.

36

replenishing the static parameters before the propagation step without the ability to

sample directly from p(θ|xt, yt+1). The filtering RMSE plots of the states show periods of

increased MC error in the low and medium SNR cases and relatively flat and consistent

performance for the high SNR case with PL offering the best implementation. The

upward slope of the RMSE in the high SNR case can be attributable to the progressive

degradation of the sufficient statistics for the static parameters. This would noticeable in

the other models for either a much larger time series or fewer particles. The advantages

of Particle Learning become more apparent when looking at the RMSE plots for the

static parameters, especially in the low SNR model.

Smoothing RMSE plots show that SMC can have difficulty estimating the ear-

lier states in the series, particularly in the low SNR example. This numerical instability

is not present in the medium and high SNR examples, and seems to be related to the

much wider credible intervals for the hidden states at the start of the low SNR model.

It is curious that the smallest value of K yields the best smoothing performance in some

cases, a trend not observed in the fixed parameter setting.

The timing results in Table 1.4 are given to verify effect of algorithms with

different computation complexity. While it appears that K = 128 is the fastest choice,

this is really a side effect of programming overhead from too fine a parallelization for

these smaller values of K, and better programming techniques would fix this issue.

These results show that for K = 512, Boost Smoothing is over 10 times faster than

GDW04 Smoothing, and in the medium and high SNR cases, even smaller choices of K

would be appropriate yielding even faster performance.

37

t

x t

−40
−30
−20
−10

0
10

20 40 60 80 100

(a) Low SNR: Filtering 95% CI x

t

x t

−4
−2

0
2
4

20 40 60 80 100

(b) Medium SNR: Filtering 95% CI x

t

x t

−4
−2

0
2

20 40 60 80 100

(c) High SNR: Filtering 95% CI x

Figure 1.13: Linear Model 2: Filtering Posteriors. While the width of the interval bands
are relatively consistent throughout the series for the Medium and High SNR cases, the
low SNR case has an extremely wide interval in the beginning of the series. The presence
of these wide intervals then become the dominate source of RMSE in the later RMSE
boxplots.

38

t

E
S

S
(x

t)

0

2000

4000

6000

8000

20 40 60 80 100

alg

L & W

Storvik

PL

(a) Low SNR: Filtering ESS(xt)

t

E
S

S
(x

t)

0

2000

4000

6000

8000

20 40 60 80 100

alg

L & W

Storvik

PL

(b) Medium SNR: Filtering ESS(xt)

t

E
S

S
(x

t)

0

2000

4000

6000

8000

20 40 60 80 100

alg

L & W

Storvik

PL

(c) High SNR: Filtering ESS(xt)

Figure 1.14: Linear Model 2: Filtering ESS(xt). Here, only Storvik has a difficult time
maintaining high effective sample size.

39

t

R
M

S
E

(x
t)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

20 40 60 80 100

alg

L & W

Storvik

PL

(a) Low SNR: Filtering RMSE(xt)

t

R
M

S
E

(x
t)

0.00
0.02
0.04
0.06
0.08
0.10
0.12

20 40 60 80 100

alg

L & W

Storvik

PL

(b) Medium SNR: Filtering RMSE(xt)

t

R
M

S
E

(x
t)

0.000
0.002
0.004
0.006
0.008
0.010
0.012

20 40 60 80 100

alg

L & W

Storvik

PL

(c) High SNR: Filtering RMSE(xt)

Figure 1.15: Linear Model 2: Filtering RMSE(xt). In general, RMSE is large at the
beginning of the series when the interval bands are widest. However, performance is not
always the same from one time step to the next. The High SNR case shows the effects
of the slight degradation of the sufficient statistics.

40

t

φ

−2
−1

0
1
2

20 40 60 80 100

(a) Low SNR: Filtering 95% CI φ

t

φ

−2
−1

0
1
2

20 40 60 80 100

(b) Medium SNR: Filtering 95% CI φ

t

φ

−2
−1

0
1
2

20 40 60 80 100

(c) High SNR: Filtering 95% CI φ

Figure 1.16: Linear Model 2: φ Posteriors. For values of φ ∈ (−1, 1), the time series is
stationary and for the Low SNR case, this is all the filtering posteriors for φ can infer.
In the Medium and High SNR cases, the model is quickly able to accurately estimate
the simulated value of φ.

41

t

R
M

S
E

(φ
t)

0.00

0.02

0.04

0.06

20 40 60 80 100

alg

L & W

Storvik

PL

(a) Low SNR: RMSE(φt)

t

R
M

S
E

(φ
t)

0.00
0.01
0.02
0.03
0.04
0.05
0.06

20 40 60 80 100

alg

L & W

Storvik

PL

(b) Medium SNR: RMSE(φt)

t

R
M

S
E

(φ
t)

0.00

0.01

0.02

0.03

0.04

20 40 60 80 100

alg

L & W

Storvik

PL

(c) High SNR: RMSE(φt)

Figure 1.17: Linear Model 2: φ RMSE. As seen in Figure 1.16, the rate of parameter
learning drops noticeably after t = 20 and so the RMSE tends to level out, with Storvik
matching the performance of PL. In the Low SNR case, all that was learned is that this
is a stationary model such that φ ∈ (−1, 1), and so the different algorithms perform
similarly.

42

t

σ2

0.5
1.0
1.5
2.0
2.5
3.0

20 40 60 80 100

(a) Low SNR: Filtering 95% CI σ2

t

σ2

0.5
1.0
1.5
2.0
2.5
3.0

20 40 60 80 100

(b) Medium SNR: Filtering 95% CI σ2

t

σ2

0.5
1.0
1.5
2.0
2.5
3.0

20 40 60 80 100

(c) High SNR: Filtering 95% CI σ2

Figure 1.18: Linear Model 2: σ2 Posteriors. Here, all models are slowly estimating σ2

at a rate associated with how informative the observations are. Since φ in the Low SNR
case is so difficult to estimate, precise identifying σ2 is a difficult task.

43

t

R
M

S
E

(σ
t2)

0.00

0.02

0.04

0.06

0.08

0.10

20 40 60 80 100

alg

L & W

Storvik

PL

(a) Low SNR: RMSE(σ2
t)

t

R
M

S
E

(σ
t2)

0.00
0.02
0.04
0.06
0.08
0.10
0.12

20 40 60 80 100

alg

L & W

Storvik

PL

(b) Medium SNR: RMSE(σ2
t)

t

R
M

S
E

(σ
t2)

0.00

0.01

0.02

0.03

0.04

0.05

20 40 60 80 100

alg

L & W

Storvik

PL

(c) High SNR: RMSE(σ2
t)

Figure 1.19: Linear Model 2: σ2 RMSE. Once the static parameter posteriors stop
changing dramatically after each observation, Storvik and PL perform nearly the same.
The Liu & West implementation has different performance characteristics because it
does not rely on a sufficient statistics structure. The slight upward trend in RMSE
values for the low SNR case can be attributed to the degradation of the sufficient
statistics or issues related to the choice of discount factor.

44

t

τ2

50
100
150
200
250
300

20 40 60 80 100

(a) Low SNR: Filtering 95% CI τ 2

t

τ2

0.5
1.0
1.5
2.0
2.5
3.0

20 40 60 80 100

(b) Medium SNR: Filtering 95% CI τ 2

t

τ2

0.005
0.010
0.015
0.020
0.025
0.030

20 40 60 80 100

(c) High SNR: Filtering 95% CI τ 2

Figure 1.20: Linear Model 2: τ2 Posteriors. Here is the only static parameter for the
Low SNR case that shows noticeable narrowing of the interval bands, suggesting that the
other static parameters are not going to show much improvement until a more precise
estimate for observation error is obtained. This is in contrast to the High SNR case,
where the interval bands are already so narrow that the other static parameters need to
be better estimated before any significant improvements in estimating the observation
error are possible.

45

t

R
M

S
E

(τ
t2)

0
5

10
15
20
25
30

20 40 60 80 100

alg

L & W

Storvik

PL

(a) Low SNR: RMSE(τ 2
t)

t

R
M

S
E

(τ
t2)

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

20 40 60 80 100

alg

L & W

Storvik

PL

(b) Medium SNR: RMSE(τ 2
t)

t

R
M

S
E

(τ
t2)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

20 40 60 80 100

alg

L & W

Storvik

PL

(c) High SNR: RMSE(τ 2
t)

Figure 1.21: Linear Model 2: τ2 RMSE. The Storvik implementation suffers from a very
large spike in RMSE at the start of the series in the Low SNR case. In the Medium SNR
case, there is a sharp increase in RMSE near step 35 for all algorithms, with the Liu &
West implementation suffering the most. Again, in the High SNR case, the slight upward
trend in RMSE values can be attributed to the degradation of the sufficient statistics or
issues related to the choice of discount factor. In all cases, Particle Learning provides
the best performance.

46

t

x t

−30
−20
−10

0

20 40 60 80 100

(a) Low SNR: Smoothing 95% CI x

t

x t

−4
−2

0
2
4

20 40 60 80 100

(b) Medium SNR: Smoothing 95% CI x

t

x t

−4
−2

0
2

20 40 60 80 100

(c) High SNR: Smoothing 95% CI x

Figure 1.22: Linear Model 2: Smoothing Posteriors. As was seen for the filtering
intervals, the widths of the interval bands are relatively consistent throughout, except
for the beginning of the Low SNR case, and has important implications for calculating
RMSE for the smoothed hidden states.

47

t

R
M

S
E

(x
t)

0

2

4

6

8

20 40 60 80 100

alg

K=8

K=32

K=128

K=512

K=2048

K=8192

(a) Low SNR: Smoothing RMSE(xt)

t

R
M

S
E

(x
t)

0.0

0.1

0.2

0.3

0.4

0.5

20 40 60 80 100

alg

K=8

K=32

K=128

K=512

K=2048

K=8192

(b) Medium SNR: Smoothing RMSE(xt)

t

R
M

S
E

(x
t)

0.000

0.005

0.010

0.015

20 40 60 80 100

alg

K=8

K=32

K=128

K=512

K=2048

K=8192

(c) High SNR: Smoothing RMSE(xt)

Figure 1.23: Linear Model 2: Smoothing RMSE(xt). Again, in the Low SNR case it
is hard to differentiate the different algorithms because of the extremely high RMSE
at the beginning of the series. For the High SNR case, the slight growth in RMSE
attributable to the degradation of the static parameters as was seen in the filtering
plots is again evident here in the smoothing plots. With respect to the value of K for
Boost Smoothing, values as low as K = 128 yield good results in all cases. Even so,
K = 8 does a remarkable job in the High SNR case for nearly all time steps.

48

L
ow

S
N
R

E
S

S
(x

T
)

0

2000

4000

6000

8000
L

&
 W

S
to

rv
ik

P
L

(a) Filtering ESS(xT)
R

M
S

E
(x

T
)

0.0

0.2

0.4

0.6

0.8

L
&

 W

S
to

rv
ik

P
L

(b) Filtering RMSE(xT)

R
M

S
E

(x
T
)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

K
=

8

K
=

32

K
=

12
8

K
=

51
2

K
=

20
48

K
=

81
92

(c) Smoothing RMSE(xT)

M
ed

iu
m

S
N
R

E
S

S
(x

T
)

0

2000

4000

6000

8000

L
&

 W

S
to

rv
ik

P
L

(d) Filtering ESS(xT)

R
M

S
E

(x
T
)

0.00
0.02
0.04
0.06
0.08

L
&

 W

S
to

rv
ik

P
L

(e) Filtering RMSE(xT)

R
M

S
E

(x
T
)

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

K
=

8

K
=

32

K
=

12
8

K
=

51
2

K
=

20
48

K
=

81
92

(f) Smoothing RMSE(xT)

H
ig
h
S
N
R

E
S

S
(x

T
)

0

2000

4000

6000

8000

L
&

 W

S
to

rv
ik

P
L

(g) Filtering ESS(xT)

R
M

S
E

(x
T
)

0.000

0.005

0.010

0.015

0.020

L
&

 W

S
to

rv
ik

P
L

(h) Filtering RMSE(xT)

R
M

S
E

(x
T
)

0.000

0.005

0.010

0.015

0.020

K
=

8

K
=

32

K
=

12
8

K
=

51
2

K
=

20
48

K
=

81
92

(i) Smoothing RMSE(xT)

Figure 1.24: Linear Model 2: Boxplots For ESS, Filtering, And Smoothing. Average
ESS values are not significantly different across different algorithms. Filtering RMSE
performance is also largely equal across the different static parameter estimation imple-
mentations, suggesting that the choice of auxiliary function and forward propagation
function are more important. Smoothing RMSE results are counter-intuitive in that
smaller values of K give better performance in the Low and High SNR cases.

49

L
ow

S
N
R

R
M

S
E

(φ
T
)

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

L
&

 W

S
to

rv
ik

P
L

(a) RMSE(φT)
R

M
S

E
(σ

2T

)

0.00
0.05
0.10
0.15
0.20
0.25

L
&

 W

S
to

rv
ik

P
L

(b) RMSE(σ2T)

R
M

S
E

(τ
2T

)

0
5

10
15
20
25
30

L
&

 W

S
to

rv
ik

P
L

(c) RMSE(τ 2T)

M
ed

iu
m

S
N
R

R
M

S
E

(φ
T
)

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035

L
&

 W

S
to

rv
ik

P
L

(d) RMSE(φT)

R
M

S
E

(σ
2T

)

0.00
0.02
0.04
0.06
0.08
0.10
0.12

L
&

 W

S
to

rv
ik

P
L

(e) RMSE(σ2T)

R
M

S
E

(τ
2T

)

0.00

0.05

0.10

0.15

L
&

 W

S
to

rv
ik

P
L

(f) RMSE(τ 2T)

H
ig
h
S
N
R

R
M

S
E

(φ
T
)

0.000
0.005
0.010
0.015
0.020

L
&

 W

S
to

rv
ik

P
L

(g) RMSE(φT)

R
M

S
E

(σ
2T

)

0.00
0.01
0.02
0.03
0.04
0.05

L
&

 W

S
to

rv
ik

P
L

(h) RMSE(σ2T)

R
M

S
E

(τ
2T

)

0.000

0.002

0.004

0.006

L
&

 W

S
to

rv
ik

P
L

(i) RMSE(τ 2T)

Figure 1.25: Linear Model 2: Boxplots For Static Parameters. In the Low SNR case,
there is not enough parameter learning to easily distinguish the performance of the
different algorithms. In the Medium and High SNR cases, the sufficient statistics imple-
mentations outperform Liu & West. Since PL gives the best results, this is the forward
filter implementation used when evaluating Boost Smoothing with different values of
K.

50

Algorithm Run Time (Seconds)

Liu & West (L & W) 7.3

Storvik 6.9

Particle Learning (PL) 4.5

Boost Smoothing K=8 554.7

Boost Smoothing K=32 268.8

Boost Smoothing K=128 229.1

Boost Smoothing K=512 370.7

Boost Smoothing K=2048 1034.8

GDW04 N=8192 3950.5

Table 1.4: Linear Model 2: Average Run Time. The forward filtering algorithms are
O(TN) and hence are exceptionally fast compared to the backward smoothing step. It
can also be seen that using K << N can produce a significant performance increase,
allowing for particle smoothing applications with many more particles. The reason that
K = 8 or 32 produced slower run times then K = 128 concerns the overhead of using
a scripting language like R for non vectorized code, where the function overhead of
processing more groups M prevents the computational savings of using a smaller K to
be realized.

51

1.4 Example: Nonlinear

This is the famous nonlinear example used to introduce the Bootstrap and SIR

filters in 1993 [16]. The first difficulty is that the observations are squared, removing

any directly observable information about the sign of the hidden state. Instead, the

sign is inferred by the periodic influence of the trigonometric component of the system

equation. If this component is removed, the posteriors become symmetric about the

origin. As it is, the posterior typically has up to 3 modes which are frequently disjoint

for all practical purposes. The state space model is presented below.

p(xt+1|xt) = N

(

xt+1

∣
∣
∣
∣

xt
2

+
25xt
1 + x2t

+ 8cos(1.2(t + 1)), σ2

)

p(yt|xt) = N

(

yt

∣
∣
∣
∣

x2t
20

, τ2
)

For MCMC algorithms, this makes finding satisfactory mixing proposal dis-

tributions extremely difficult. The Gibbs sampler will likely not mix properly between

the different modes of the posterior because of the low probability in transitioning a se-

quence of states across signs when sampling one state at a time, even if the model admits

conditional Gibbs steps for p(xt|xt−1, xt+1, θ, y
T). Joint Gibbs samplers can be used,

but without an obvious direct sampling scheme like FFBS, a Metropolis-Hastings step

would need to be used which again is not likely to mix between modes very well. The dif-

ficulty is great enough that Particle Markov Chain Monte Carlo (PMCMC) [1] has been

proposed as a way of using a SMC proposal to generate direct samples of p(xT |θ, yT)

52

at each iteration to facilitate a better mixing MCMC implementation. However, run-

ning a new SMC at each MCMC iteration adds a substantial computation cost to the

algorithm.

For an APF implementation, the first stage weights use a numerical estimate

of p(yt+1|xt), specified by using x̃
(k,i)
t+1 for k = 1 : NK , generated from the inverse CDF of

p(xt+1|x(i)t) over a grid of probability values. These samples are used to approximate the

optimal first stage weight distribution, p(yt+1|xt) =
∫
p(yt+1|xt+1)p(xt+1|xt)dxt+1, with

NK chosen large enough that the approximation error is negligible with respect to the

performance of the algorithm. While this is not a computationally elegant solution, the

approximation will show what possible advantages APF provides for nonlinear models.

The system equation is used for the forward propagation distribution in both algorithms.

vt(yt+1, x
(i)
t) =

1

Nk

Nk∑

k=1

p
(

yt+1

∣
∣
∣x̃

(k,i)
t+1

)

where x̃
(k,i)
t+1 = P−1

xt+1|x
(i)
t

(k/Nk − 1/2Nk)

For comparison, a data set of length T = 100 was generated and 95% credible

intervals where constructed to generate RMSE plots by equations (1.3.3) and (1.3.4)

using the results of 100 replications for each algorithm. As before, posteriors and RMSE

performance of the Bootstrap filter, APF, and Boost Smoothing (using SIR) with fixed

parameters are presented in Figures 1.26, 1.27, and 1.28, with computation times in

Table 1.5. For the auxiliary function, NK = 250 was chosen.

The changing width of the credible intervals in the filtering and smoothing

posteriors is primarily a reflection of the models ability to predict the sign of the hidden

53

Algorithm Run Time (Seconds)

Bootstrap Filter (Boot) 1.8

Auxiliary Particle Filter (APF) 174.6

Boost Smoothing K=8 161.5

Boost Smoothing K=32 139.4

Boost Smoothing K=128 162.3

Boost Smoothing K=512 297.5

Boost Smoothing K=2048 878.3

GDW04 N=8192 3370.4

Table 1.5: Nonlinear Model: Average Run Time. Note the substantial improvement in
the run time of Boost Smoothing over GDW04 afforded by choosing K << N .

state. Only when the intervals narrow and are not centered about the origin does the

model has significant information about the sign of the hidden state. Using future ob-

servations also allows the smoothing distribution to more accurately predict the hidden

state, producing much narrower credible intervals.

The ESS plots show only slightly improved results for APF, but with larger

RMSE spikes then the Bootstrap filter. Performance is also highly erratic for both

algorithms, having highly oscillating ESS values ranging from close to 0% to near 100%.

Here, the use of APF actually decreases RMSE performance despite using a near ideal

auxiliary function and a 100x increase in computation time. For Boost Smoothing, the

minimum reasonable value of K seems to be about 128, which affords an observed 20x

performance increase over GDW04 smoothing. Admittedly these posteriors are often

multi-modal, and symmetric 95% credible intervals may be ideal, but it can be seen

that the smoothing distribution can often resolve the sign of the hidden state.

54

t

x t

−20
−10

0
10
20

20 40 60 80 100

(a) Filtering 95% CI x

t

x t

−20
−10

0
10
20

20 40 60 80 100

(b) Smoothing 95% CI x

Figure 1.26: Nonlinear Model: Filtering And Smoothing Posteriors. In this case, some-
times the symmetric 95% credible intervals narrow significantly for the smoothing dis-
tributions. This is usually because the model is able to predict the sign of the hidden
state. For those posterior intervals that appear relatively wide and approximately cen-
tered about the origin, the model is not able to infer the sign of the hidden state.

55

t

E
S

S
(x

t)

0

2000

4000

6000

8000

20 40 60 80 100

alg

Boot

APF

(a) Filtering ESS(xt)

t

R
M

S
E

(x
t)

0
1
2
3
4
5
6

20 40 60 80 100

alg

Boot

APF

(b) Filtering RMSE(xt)

t

R
M

S
E

(x
t)

0

5

10

15

20 40 60 80 100

alg

K=8

K=32

K=128

K=512

K=2048

K=8192

(c) Smoothing RMSE(xt)

Figure 1.27: Nonlinear Model: Filtering And Smoothing, ESS(xt) And RMSE(xt).
While the two filtering algorithms perform near identically for most time steps, spikes
in RMSE occur when the new observation is particularly informative. The ESS plot
show the limited value of the auxiliary function when the optimal proposal distribution
is not available. The smoothing RMSE plot suggests that while usually K = 8 or 32
is acceptable, larger values of K will be necessary in time steps where the filtering
distribution makes for a poor importance distribution for the smoothing distribution.

56

E
S

S
(x

T
)

0
500

1000
1500
2000
2500
3000
3500

B
oo

t

A
P

F

(a) Filtering ESS(xT)

R
M

S
E

(x
T
)

0.0
0.5
1.0
1.5
2.0
2.5

B
oo

t

A
P

F

(b) Filtering RMSE(xT)
R

M
S

E
(x

T
)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

K
=

8

K
=

32

K
=

12
8

K
=

51
2

K
=

20
48

K
=

81
92

(c) Smoothing RMSE(xT)

Figure 1.28: Nonlinear Model: Boxplots For ESS, Filtering, And Smoothing. The im-
provement in ESS values of the APF is negligible compared to the Bootstrap filter.
When considering the filtering RMSE, the more widely dispersed particles of the Boot-
strap filter give better performance when estimating the 95% credible intervals. For
Boost Smoothing, it appears that a value of K between 128 and 512 gives acceptable
amounts of MC error at substantial computational savings.

57

Chapter 2

Markov Random Fields

Markov Random Fields (MRF) are models for describing spatial structures

using arbitrary conditional distributions based on a locally defined neighborhood struc-

ture. The first commonly used MRFs used Gaussian distributions for their analytic

tractability and where known as Gaussian Markov Random Fields (GMRF). These

where then used to model spatial lattice data and became known as Conditional Auto

Regressive (CAR) models because of their similarity to autoregressive time series mod-

els, where the mean of the conditional distribution is a linear combination of its neigh-

bors. [3] A graph of this dependence structure for a regular lattice model can be found

in Figure 2.1, where each node corresponds to a random variable conditional on its

neighbors, denoted by the links that connects the different nodes. In practice, MRFs

are often used as part of a hierarchical model for the spatial random effects of observa-

tions. One example is modeling noisy images by describing the distribution of a hidden

pixel conditioned on its neighbors in order to define a global distribution on images.

58

x1 x2 x3 x4 x5

x6 x7 x8 x9 x10

x11 x12 x13 x14 x15

x1,1 x1,2 x1,3 x1,4 x1,5

x2,1 x2,2 x2,3 x2,4 x2,5

x3,1 x3,2 x3,3 x3,4 x3,5

Figure 2.1: Nearest 4 Neighborhood Lattice Model Indexing, xt and xij

Irregular lattice models can arise in spatial data when looking at states, counties, or

other geographic regions. More details can be found in [2, 4, 19].

While a wide variety of MRFs with irregular neighborhood structures can be

defined, this section will concern a simple nearest 4 neighbor GMRF on a regular (I×J)

lattice. This will provide for a numeric comparison of a large variety of MCMC and SMC

methods, but this does not imply that these methods are restricted to this simple model.

The primary exception is that the Joint Gibbs sampler is typically not available for non

GMRFs, although it will work for arbitrary neighborhood structures. An alternative

is to use SMC for the proposal distribution to sample jointly from p(xT |θ, yT), and is

known as Particle Markov Chain Monte Carlo (PMCMC). [1] The model is thus defined,

where ∂ij is the set of 2-4 immediate adjacent neighbors at location ij, x̄∂ij is the mean

of these neighbors, N∂ij is the number of neighbors at location ij, and ij ∼ i′j′ denotes

59

a neighbor relation.

yij|xij , τ2 ∼ N(xij , τ
2)

xij|x∂ij , σ2 ∼ N
(
x̄∂ij , σ

2/N∂ij

)

This defines an improper multivariate prior on p(X|σ2) known as an Intrinsic Gaussian

Markov Random Field (IGMRF), with joint densities defined as follows,

Y |X, τ2 ∼ N(X, τ2IIJ)

p(X|σ2) = (2π)
−(IJ−1)

2

∣
∣
∣
∣

PMRF

σ2

∣
∣
∣
∣

∗1/2

exp

(

−1

2
X ′PMRF

σ2
X

)

= (2πσ2)
−(IJ−1)

2 exp



− 1

2σ2

∑

ij∼i′j′

(xij − xi′j′)
2





where |A|∗ is the product of non zero eigenvalues of A, known as the generalized deter-

minate, and PMRF = TI ⊗ IJ + II ⊗ TJ , where

Tn = H
′
nHn =



















1 −1 0 . . . 0

−1 2
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . 2 −1

0 . . . 0 −1 1



















n×n

Hn =















1 −1 0 . . . 0

0 1
. . .

. . .
...

. . .
. . .

. . . −1 0

0 . . . 0 1 −1















(n−1)×n

(2.0.1)

with priors p(σ2) ∼ IG(σ2
a, σ

2
b) and p(τ2) ∼ IG(τ2a , τ

2
b) yielding the following condition-

60

als.

X|σ2, τ2, Y ∼ N((PMRF /σ
2 + IIJ/τ

2)−1Y/τ2, (PMRF /σ
2 + IIJ/τ

2)−1) (2.0.2)

xij|x∂ij , σ2, τ2, yij ∼ N

(
yij/τ

2 + x̄∂ijN∂ij/σ
2

1/τ2 +N∂ij/σ2
,

1

1/τ2 +N∂ij/σ2

)

(2.0.3)

σ2|X,σ2, τ2 ∼ IG
(
σ2
a + (IJ − 1)/2, σ2

b +X ′
PMRFX/2

)
(2.0.4)

τ2|X,σ2, τ2 ∼ IG
(
τ2a + IJ/2, τ2b + (Y −X)′(Y −X)/2

)
(2.0.5)

Note that the precision matrix, PMRF , is a singular matrix with one zero

eigenvalue, which implies an improper prior. Adding a constraint that centers the prior,

such as
∑

xij = 0, will define a proper distribution. Care must be taken when using

constraints, especially in implementations where the xijs are updated individually, to

ensure that the constraint holds. However, in this model no constraint or proper prior

is need on the
∑

xij since PMRF /σ
2 + IIJ/τ

2 is of full rank.

The rest of this section discusses different strategies for performing Bayesian

inference on this model. First, existing MCMC algorithms are reviewed, followed by an

introduction to SMC algorithms for MRFs that have been converted to Sequential MRF

models by inducing an ordering on the nodes. Of utmost importance is exploitation of

the sparsity pattern of the precision matrix. The different methods are evaluated using

RMSE calculations of 95% credible intervals for the states and static parameters under

3 different signal to noise ratios. An implementation comparison is given in Table 2.1.

61

Algorithm Time Complexity Caveats / Notes

Conditional Gibbs O(NIJ) mixing is a concern

Joint Gibbs O(NIJ2 +NIJ3) O(NIJ2) for fixed σ2, τ2, but
only works for GMRF

FFBS Gibbs O(NIJ3) more complex code then
sparse matrix operations

Multivariate SMRF O(NIJ3) multivariate sampling can be
difficult if not direct

M SMRF Boost Smoothing O(KNIJ) multivariate proposals can be
difficult if optimal proposal
not available

Univariate SMRF O(NIJ) poor estimation of vertical
neighbor

U SMRF Boost Smoothing O(KNIJ2) large constant factor

Table 2.1: MRF: Method Comparison. Comparison of different MRF estimation strate-
gies of a nearest 4 neighbor GMRF on an I × J regular lattice where N = number
particles or iterations.

62

2.1 MCMC Methods For MRFs

This section explains existing algorithms, and introduces the motivating algo-

rithm behind Sequential MRF implementations. The differences lie in how the posterior

distribution associated with the MRF is sampled, the conditional distributions for the

static parameters being otherwise the same. The MCMC samplers will all take the form

seen in Algorithm 9, and for more details see [30].

for n = 1 to N do
Sample: X|σ2, τ2, Y using any of the methods described in Sections 2.1.1 - 2.1.3.
Sample: σ2|X, τ2, Y using equation (2.0.4)
Sample: τ2|X,σ2, Y using equation (2.0.5)

Algorithm 9: Generic Gibbs

2.1.1 Conditional Gibbs Sampling

A common implementation strategy utilizes the conditional distribution of

p(xij |x∂ij, yij) to specify a Gibbs sampler. The primary concern with this approach is

poor mixing because conditioning on the neighbors prevents xij from making very large

jumps at each iteration. This issue becomes particularly acute in low signal to noise

ratio situations.

for n = 1 to N do
for i = 1 to I do

for j = 1 to J do
Sample: xij |x∂ij, σ2, τ2 using equation (2.0.3)

Sample: σ2|X, τ2, Y using equation (2.0.4)
Sample: τ2|X,σ2, Y using equation (2.0.5)

Algorithm 10: Conditional Gibbs

63

x1,1 x1,2 x1,3 x1,4 x1,5

x2,1 x2,2 x2,3 x2,4 x2,5

x3,1 x3,2 x3,3 x3,4 x3,5

(a) Multivariate SMRF Model

x1 x2 x3 x4 x5

x6 x7 x8 x9 x10

x11 x12 x13 x14 x15

(b) Univariate SMRF Model

Figure 2.2: State Space Model Indexing Scheme For Sequential MRF

2.1.2 Joint Gibbs Sampling

Multivariate normal distributions can be sampled directly by first performing

Cholesky decomposition on the covariance matrix such that Σ = LL′, and then generat-

ing a sample by X = µ+Lz where zi ∼ N(0, 1). However, by performing decomposition

on the (sparse) precision matrix, and then back-solving the resulting triangular matrix,

only the inverse of a triangular matrix is needed. In this case, the method is modi-

fied such that σ−2
PMRF = Σ−1 = LL′ and L(X − µ) = z. This is a sparse matrix

explanation of the ideas originally found in [31,32].

for n = 1 to N do
Sample: X|σ2, τ2 directly using the mean and precision matrix from equation
(2.0.2)
Sample: σ2|X, τ2, Y using equation (2.0.4)
Sample: τ2|X,σ2, Y using equation (2.0.5)

Algorithm 11: Joint Gibbs

64

2.1.3 Multivariate DLM

It was noted in [21] that MRFs could be transformed into a special kind of

DLM with pseudo observations by treating each row of the MRF as the hidden state of a

multivariate time series model with rows indexed by time. The between row correlation

is accounted for with the system equation, with the pseudo observations accounting for

the within row correlation. A state space model for the method is presented below, with

Xi = [xi1, xi2, ... , xiJ]
′, pseudo observations Zi is a vector of zeros of length J − 1, and

HJ is the (J − 1)× J difference matrix previously described in equation 2.0.1.







Yi

Zi







∣
∣
∣
∣
∣
∣
∣
∣

Xi, σ
2, τ2 ∼ N2J−1













IJ

HJ






Xi,







τ2IJ 0

0 σ2
IJ−1













(Observation/Pseudo)

Xi|Xi−1, σ
2 ∼ NJ(Xi−1, σ

2
IJ) (System)

The joint posterior for p(XI |ZI , Y I) with p(X1) ∝ 1 is multivariate normal with preci-

sion matrix shown below.

PMRF /σ
2 + IIJ/τ

2 =

System
︷ ︸︸ ︷

TI ⊗ IJ/σ
2 +

Pseudo
︷ ︸︸ ︷

II ⊗ TJ/σ
2 +

Observation
︷ ︸︸ ︷

II ⊗ IJ/τ
2

The states can then be sampled directly using FFBS.

65

for n = 1 to N do
Sample: X|σ2, τ2 with p(X1) ∝ 1 and observations Y ∗

t =
[
Y ′
t Z

′
t

]′
using FFBS,

{

Ft =

[
IJ

HJ

]

, Gt = IJ , Vt =

[
τ2IJ 0
0 σ2

IJ−1

]

,Wt = σ2
IJ

}

initiating the forward filtering with

p(X1|Y,Z, σ2, τ2) = N
(
m1 = (σ−2

TJ + τ−2
IJ)

−1X1/τ
2, C1 = (σ−2

TJ + τ−2
IJ)

−1
)

Sample: σ2|X, τ2, Y using equation (2.0.4)
Sample: τ2|X,σ2, Y using equation (2.0.5)

Algorithm 12: DLM Gibbs

2.2 SMC Methods For Sequential MRFs (SMRF)

These methods rely on a sequential interpretation of MRFs by defining a state

space model such that the joint distribution is equivalent to the posterior distribution

of the MRF. This class of state space models will be called Sequential Markov Random

Fields (SMRF).

2.2.1 Multivariate SMRF

The multivariate SMRF model uses the same state space model as the Mul-

tivariate DLM from Section 2.1.3. A Particle Learning implementation is described

66

next.







Yt+1

Zt+1







∣
∣
∣
∣
∣
∣
∣
∣

Xt, σ
2, τ2 ∼ N













IJ

HJ






Xt, σ

2







IJ H
′
J

HJ TJ−1






+







τ2IJ 0

0 σ2
IJ−1













Xt+1

∣
∣
∣
∣
∣
∣
∣
∣

Xt,







Yt+1

Zt+1






, σ2, τ2 ∼ N

((
Y ′
t+1

τ2
+

X ′
t

σ2

)(
I

τ2
+

TJ−1 + IJ−1

σ2

)−1

,

(
IJ

τ2
+

TJ−1 + IJ−1

σ2

)−1
)

σ2|Xt+1 ∼ IG






σ2
a|t+1 = σ2

a|t +
J

2
, σ2

b|t+1 = σ2
b+1 +







Xt

Xt+1







′ 





IJ −IJ

−IJ TJ + I













Xt

Xt+1













τ2|Xt+1, Y t+1 ∼ IG

(

τ2a|t+1 = τ2a|t +
J

2
, τ2b|t+1 = τ2b|t +

(Yt+1 −Xt+1)
′(Yt+1 −Xt+1)

2

)

St = {τ2a|t, τ2b|t, σ2
a|t, σ

2
b|t}

In this case the static parameters have been derived sequentially and the prior is specified

by S0. The prior p(X1|σ2)p(σ2) is improper since p(
∑

X1j) ∝ 1, but becomes proper

after conditioning on the first row. This is the joint distribution of an univariate AR(1)

model similar to the one in Section 1.3 but with fixed φ = 1. A Particle Learning imple-

mentation yielding p(σ2, τ2|y1,1:J) is used with FFBS to generate p(x1,1:J |σ2, τ2, y1,1:J)

to provide equally weighted samples for the first row, p(X1, σ
2, τ2|Y1).

While the filter smoothing approximation of p(XI , σ2, τ2|Y I) is the most con-

venient, this method degenerates too rapidly to be used on larger MRFs. By considering

67

this model as a multivariate state space model, Boost Smoothing can be be implemented

with the following weights, using the system equation without the pseudo observations.

w(k) ∝ p(σ2(l), τ2(l)|Xi(k), Y i)p(X
(l)
i+1|X

(k)
i , σ2(l), τ2(l))

∝ p(σ2(l)|S(k)
i)p(τ2(l)|S(k)

t)

J∏

j=1

p(xi+1,j|xi,j, σ2)

where (k) indexes the previously sampled particles from p(xi+1:I , σ
2, τ2|yI), (l) index

particles in the filtering distribution p(xi|yi), i indexes either the rows of the MRF or

the time component of the state space model, and j indexes either the columns of the

MRF or indexes dimensions in a multivariate state space model.

The downside to this approach is that multivariate samples from the filtering

distribution may not carry high weight under the smoothing distribution, necessitating

a larger value of K for higher dimensions. The advantage is that the computational

complexity is linear with the number of nodes in the MRF, O(KNIJ), making this

algorithm computationally cheap compared to the multivariate SMRF forward filtering

calculations.

2.2.2 Univariate SMRF

The intuition behind this scheme is to build the MRF node by node instead of

row by row, and thus the MRF can be interpreted as a univariate time series model with

no need to invert matrices. The main computational burden with this approach in the

forward filtering pass is maintaining the J th lag smoothing distribution for calculating

68

the contribution from the vertical neighbor. The system equation is derived below by

factorizing the prior p(xT |σ2) as a product of improper bivariate densities representing

each link in the conditional dependence graph.

In general, the prior is defined as

p(xT , σ2) = p(σ2)
∏

t∼t′

f(xt, xt′ |σ2) = p(σ2)
T∏

t=2

f(xt, x∂t<t|σ2)

with x∂t<t denoting the neighbors of xt whose index is less than t.

For the neighborhood structure considered here, let

f(xt, x∂t<t|σ2) = (2πσ2)−1/2f(xt, xt−1|σ2)f(xt, xt−J |σ2)

where

f(xt, xt′ |σ2) =







exp
(
−(xt − xt′)

2/2σ2
)

if t ∼ t′

1 otherwise

The posterior is factored into the product of per node and per neighbor components,

p(xT |σ2) = (2πσ2)
−(IJ−1)

2 exp

(

− 1

2σ2

∑

t∼t′

(xt − xt′)
2

)

=

T∏

t=2

(2πσ2)−1/2
∏

t∼t′

f(xt, xt′ |σ2)

While this does properly factor the MRF prior, it does not mean that the

system equation f(xt, x∂t<t|σ2) is proper and should not be viewed as f(xt|x∂t<t, σ
2).

The more common state space model form is p(xT |σ2) =
∏T

t=1 p(xt|xt−1, σ2), but this

69

looses the sparsity advantages of the conditional independence structure. A Particle

Learning implementation is described below.

vt(yt, x∂t<t, σ
2, τ2, yt)

=







√

2π(2τ2 + σ2)

× exp

(

−1
2

(

x2
t−1

σ2 +
x2
t−J

σ2 +
y2t
τ2 −

(

xt−1

σ2 +
xt−J

σ2 +
yt
τ2

)2

2/σ2+1/τ2

))

if t ∼ t− 1 &

t ∼ t− J

N(yt|xt−1, σ
2 + τ2) if t ∼ t− 1

N(yt|xt−J , σ
2 + τ2) if t ∼ t− J

qt(xt|x∂t<t, σ
2, τ2, yt) =







N
(

xt

∣
∣
∣
(xt−1+xt−J)σ

−2+ytτ−2

2σ−2+τ−2 , 1
2σ−2+τ−2

)

if t ∼ t− 1 &

t ∼ t− J

N
(

xt

∣
∣
∣
xt−1/σ2+yt/τ2

σ−2+τ−2 , 1
σ−2+τ−2

)

if t ∼ t− 1

N
(

xt

∣
∣
∣
xt−J/σ

2+yt/τ2

σ−2+τ−2 , 1
σ−2+τ−2

)

if t ∼ t− J

τ2|xt, σ2, τ2 ∼ IG

(

τ2a +
t

2
, τ2b +

1

2

t∑

k=1

(yk − xk)
2

)

σ2|xt, σ2, τ2 ∼ IG

(

σ2
a +

t

2
, σ2

b +
1

2

∑

k∼k′

(xk − xk′)
2

)

This model can be extended for a general neighborhood structure by modifying the

system equation to incorporate all previous neighbors. The ordering of the nodes is im-

70

portant to reduce the bandwidth of the MRF conditional dependence adjacency matrix,

which will limit the maximum lag of the smoothing distribution needed to calculate the

dependence from the vertical neighbor.

Smoothing is more complicated for this SMRF model due to the conditional

dependence structure arising from transforming a two dimensional structure to a one

dimensional structure. The main point to understand is that since the forward filtering

step essentially grows the MRF one node at a time, the underlying structure of the

MRF prior changes at each time step. This is different then when considering the full

MRF prior and only adding data yt one at a time in the filtering step. Hence, the

smoothing weights will depend on every neighborhood link that depends on xt yet is

not represented in p(xt−1|θ) = p(σ2)
∏t−1

k=2 f(xk, x∂k<k|σ2).

The derivation for the general case requires some new notation. Let ∂+
t be the

set of indices in t+1 : T that have a link to a node in xt such that ∂+
t = {∂t∩ t+1 : T}.

Then, for any backward smoothing step, t < T , the resampling weights are derived as

71

follows.

p(xT , θ|yT) = p(xt|xt+1:T , θ, y
T)p(xt+1:T , θ|yT)

= p(xt|x∂+
t
, θ, yt)p(xt+1:T , θ, y

T)

=
p(xt, x∂+

t
, θ|yt)

p(x∂+
t
, θ|yt) p(xt+1:T , θ, y

T)

=
p(x∂+

t
|xt, θ)p(θ|xt, yt)p(xt|yt)

p(x∂+
t
, θ|yt) p(xt+1:T , θ, y

T)

p(xt|xt+1:T , θ, y
t) ∝

reweight
︷ ︸︸ ︷

p(x∂+
t
|xt, θ)p(θ|xt, yt)

ff samples
︷ ︸︸ ︷

p(xt|yt)
previously sampled
︷ ︸︸ ︷

p(xt+1:T , θ, y
T)

For the nearest 4 neighborhood structure, θ = {σ2, τ2} and p(θ|xt, yt) can be

calculated using sufficient statistics p(σ2, τ2|St). The weights are then as follows.

w(i) ∝ p(x
(k)

∂+
t

|xt(i), σ2(k))p(σ2(k), τ2(k)|xt(i), yt)

where (i) indexes ṗ(xt|yt), (k) indexes ṗ(xt+1:T , σ
2, τ2|yT) and

p(x∂+
t
|xt, σ2) ∝ f(xt, xt+1|σ2)

t∏

k=t−J+1

f(xk+J , xk|σ2)

While the computational complexity of the forward filtering univariate SMRF

model is only O(NIJ), the backward Boost Smoothing would be O(KNIJD) where D

is the average number of neighborhood links in the smoothing weights per step. In the

case of a nearest 4 neighbor GMRF, D = J +1 and so the computational complexity is

O(KNIJ2). This scales better with regard to the number of nodes then the algorithms

72

previously discussed except for the conditional Gibbs implementation.

Furthermore, note that if a one row smoothing step is done in the forward

filter pass after finishing each row, the forward filtering distributions will have the same

structure as the multivariate SMRF model distributions. Then the Boost Smoothing

for the multivariate SMRF model can be applied. This sort of scheme is similar to that

of [25], except that here SMC is used instead of relying on the analytical tractability of

multivariate normal distributions.

2.3 MRF Results

These MRF results are for 6×6 and 10×10 GMRFs with unknown observation

error τ2 and spatial smoothing parameter σ2 with a nearest 4 neighborhood regular

lattice structure. The hidden states for each sized MRF where generated randomly

using σ2 = 1 and
∑

xij = 0, with new observations generated for each SNR. Two sets

of priors where used for the static parameters and are listed in Table 2.2.

Empirical comparisons are made using the Root Mean Squared Error (RMSE)

over 30 replications for 95% credible intervals of the available marginal distributions.

The RMSE calculations are shown below, with i indexing replications, t indexing nodes,

and {x̄(t), σ̄2, τ̄2} are calculated using the averaged results of the Joint Gibbs implemen-

73

tation.

RMSE(xT) =

√
√
√
√ 1

2TN

N∑

i=1

T∑

t=1

(

x
(i,t)
2.5% − x̄

(t)
2.5%

)2
+
(

x
(i,t)
97.5% − x̄

(t)
97.5%

)2
(2.3.1)

RMSE(xt) =

√
√
√
√ 1

2N

N∑

i=1

(

x
(i,t)
2.5% − x̄

(t)
2.5%

)2
+
(

x
(i,t)
97.5% − x̄

(t)
97.5%

)2
(2.3.2)

RMSE(σ2) =

√
√
√
√ 1

2N

N∑

i=1

(

σ
2(i)
2.5% − σ̄2

2.5%

)2
+
(

σ
2(i)
97.5% − σ̄2

97.5%

)2
(2.3.3)

RMSE(τ2) =

√
√
√
√ 1

2N

N∑

i=1

(

τ
2(i)
2.5% − τ̄22.5%

)2
+
(

τ
2(i)
97.5% − τ̄297.5%

)2
(2.3.4)

The algorithms demonstrated include the Univariate SMRF model using both

50,000 and 1,000,000 particles, the Multivariate SMRF model using 50,000 particles,

and the Joint and Conditional Gibbs samplers with 50,000 iterations. Figures 2.5, 2.11

and 2.19 show the joint posterior for the static parameters. The observations for the

6 × 6 and 10 × 10 MRFs are listed in Figures 2.3 and 2.17 respectively. These where

generated from a common hidden state as seen in Figures 2.4 and 2.18. Boxplots of

the averaged state and the static parameter RMSE can be seen as well. For the hidden

states, the results are further split up across nodes to see the performance of the SMRF

models with respect to time. Figures 2.10, 2.16, and 2.24 show the autocorrelation

plots of σ2 for the Joint and Conditional Gibbs samplers. The autocorrelation for τ2

was insignificant in comparison and is thus omitted.

The two things that are important when interpreting these results is the trade

off between speed and accuracy. With speed comes the opportunity for an increase in

74

either particles or iterations, and thus increasing accuracy. With accuracy, fewer parti-

cles or iterations may be required for a given level of precision, and thus an increase in

speed. These trade offs are also non linear. For example, the univariate SMRF model

is so fast that the main limiting factor is the available RAM, and not the CPU speed.

When using an equal number of particles or iterations, the most precise implementation

is typically the Joint Gibbs sampler. The trade off between speed and accuracy also

changes with the size of the problem. This is where the theoretical results of compu-

tational complexity are most important, because extrapolating trends from 6 × 6 and

10× 10 MRFs may not be relevant for very large MRFs.

It is worth noting that the observed computation times from Table 2.3 are not

especially reliable. The algorithms where implemented in R [29] with parallel program-

ming and are not meant to be examples of what optimized code can do. Additionally, it

worth remembering that for specific problems, the constant factor that is typically omit-

ted in computational complexity can be very important. For example, the Joint Gibbs

sampler is order O(NIJ3), but this is with respect to the number of basic floating point

operations needed to perform Cholesky decomposition. Univariate SMRF smoothing is

order O(NIJ2), but this is with respect to the number of neighborhood density terms

needed to calculate the weights of the importance distribution, an operation usually

requiring the use of logarithms.

Also note, that the SMRF models here are presented in the most unfavorable

light. In more complicated non Gaussian MRFs, Joint and Conditional Gibbs sam-

pling may not not be feasible, requiring instead a Metropolis-Hastings step. This would

75

likely increase the autocorrelation of the Markov chain, making MCMC algorithms mix

more slowly then is presented here. Another problem with MCMC algorithms is their

difficulty with practically disjoint posterior modes, where mixing between modes is prac-

tically impossible, allowing the algorithm to miss important parts of the distribution.

SMC based algorithms operate differently, processing the data sequential in contrast

to the batch processing of MCMC. The Gordon example from Part I is an example

where MCMC performs particularly poorly. By missing entire modes of the distribu-

tion, RMSE calculations can become totally inaccurate and misleading. Additionally,

if Univariate SMRF models can perform comparably to Joint Gibbs for a MRF, then it

should compete just as favorably with PMCMC, but with a substantial computational

advantage.

It is also important to anticipate how the mixing of MCMC algorithms will

scale with respect to larger data sets and more informative prior information. Remem-

ber, that in this setting there are IJ +2 parameters for IJ data points. Results suggest

that informative priors on the static parameters (relative to amount of data) increases

the amount of independence between the hidden states and static parameters, which

greatly improves mixing. Excessively vague priors become too dependent on the hidden

states, and thus the Markov chain will take very small steps when sampling the hidden

states and static parameters separately.

The two Boost Smoothing implementations give light on the difficulty of mul-

tivariate importance sampling. Univariate SMRF smoothing shows the effectiveness of

Boost Smoothing in bending the RMSE curve for the hidden states from curving upward

76

SNR 6 × 6 6 × 6 10×10

p(σ2) All (σ2 = 1) IG(10, 10) IG(2, 2) IG(10, 10)

p(τ2) Low (τ2 = 100) IG(10, 1000) IG(2, 200) IG(10, 1000)

Medium (τ2 = 1) IG(10, 10) IG(2, 2) IG(10, 10)

High (τ2 = 0.01) IG(10, 0.1) IG(10, 0.2) IG(10, 0.1)

Table 2.2: MRF: Prior Specifications

Algorithm 6 × 6 10 × 10 Samples Multi-threaded

Univariate SMRF (U1) 5s 0.7m 50,000 No

U SMRF K=250 (UB) 500s 45m 50,000 Yes

Univariate SMRF (U2) 165s 16m 1,000,000 No

Multivariate SMRF (M) 490s 19m 50,000 Yes

M SMRF K=1000 (MB) 1550s 29m 50,000 Yes

Conditional Gibbs (CG) 455s 22m 50,000 Yes

Joint Gibbs (JG) 310s 6.5m 50,000 Yes

Table 2.3: MRF: Average Run Time (8 processor cores). Note that the Univariate
SMRF model is extremely fast, and an efficient multi threaded implementation would
have taken about 2 minutes. While in this instance the Joint Gibbs sampler is faster
then the Univariate SMRF with Boost Smoothing, the direct sampling of the hidden
states will eventually become computational more expensive the the SMRF model for
larger MRFs.

with filter smoothing to being relatively flat. For Multivariate SMRF, even with a large

value of K = 1000, smoothing performs worse then the filter smoothing version. This

suggests that multivariate samples, in contrast to univariate samples, from the filtering

density make for a poor proposal for the smoothing distribution. This is a trend that

is expected to get worse as dimensions increase, suggesting that this algorithm will not

scale appropriately for larger MRFs.

77

J

I
value

−20

−15

−10

−5

0

5

10

(a) Low SNR: Data Y

J

I

value

−2

−1

0

1

(b) Medium SNR: Data Y

J

I

value

−1.0

−0.5

0.0

0.5

1.0

(c) High SNR: Data Y

Figure 2.3: 6 × 6 Observations. Three sets of observations for the 6 × 6 MRF where
generated using τ2 = {.01, 1, 100} with a common hidden state X and are show above.

J

I

value

−1.5

−1.0

−0.5

0.0

0.5

1.0

Figure 2.4: 6× 6 Hidden States, used to generate observations for all three SNRs.

σ2

τ2

101.8

102

102.2

102.4

10−0.410−0.2100100.2100.4100.6100.8

(a) Low SNR: p(σ2, τ 2|Y)

σ2

τ2

10−0.4

10−0.2

100

100.2

100.4

10−0.410−0.2 100 100.2 100.4

(b) Medium SNR: p(σ2, τ 2|Y)

σ2

τ2

10−2.4

10−2.2

10−2

10−1.8

10−1.6

10−1.4

10−0.4 10−0.2 100 100.2

(c) High SNR: p(σ2, τ 2|Y)

Figure 2.5: 6× 6 Informative Priors: Posteriors. Contour plots of σ2 and τ2.

78

t

R
M

S
E

(x
t)

0.02

0.04

0.06

0.08

0.10

0.12

5 10 15 20 25 30 35

alg

U1

UB

U2

M

MB

JG

CG

(a) Low SNR

t

R
M

S
E

(x
t)

0.01

0.02

0.03

0.04

0.05

0.06

0.07

5 10 15 20 25 30 35

alg

U1

UB

U2

M

MB

JG

CG

(b) Medium SNR

t

R
M

S
E

(x
t)

0.001

0.002

0.003

0.004

5 10 15 20 25 30 35

alg

U1

UB

U2

M

MB

JG

CG

(c) High SNR

Figure 2.6: 6× 6 Informative Priors: Hidden States RMSE(xt). This figure shows that
the RMSE for Boost Smoothing remains flat while SMRF models using filter smoothing
show an increase in RMSE backward in time. The erratic results of the Multivariate
SMRF model show the difficulties of SMC smoothing in high dimensions.

79

R
M

S
E

(x
T
)

0.05

0.10

0.15

0.20

U
1

U
B

U
2

M M
B

JG C
G

(a) Low SNR
R

M
S

E
(x

T
)

0.005

0.010

0.015

0.020

0.025

0.030

U
1

U
B

U
2

M M
B

JG C
G

(b) Medium SNR

R
M

S
E

(x
T
)

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

U
1

U
B

U
2

M M
B

JG C
G

(c) High SNR

Figure 2.7: 6 × 6 Informative Priors: Boxplots For Hidden States. Note that in all
SNRs, the Univariate SMRF model with 1 million particles provides the best perfor-
mance. Conditional Gibbs sampling does particularly poorly in the low SNR case, while
Multivariate SMRF with Boost Smoothing gives the worse performance for the medium
SNR. For the high SNR case, Univariate SMRF gives the best and worse performance
dependent upon the number of particles.

R
M

S
E

(σ
2)

0.05

0.10

0.15

U
1

U
B

U
2

M M
B

JG C
G

(a) Low SNR

R
M

S
E

(σ
2)

0.02

0.04

0.06

0.08

0.10

U
1

U
B

U
2

M M
B

JG C
G

(b) Medium SNR

R
M

S
E

(σ
2)

0.001

0.002

0.003

0.004

0.005

0.006

U
1

U
B

U
2

M M
B

JG C
G

(c) High SNR

Figure 2.8: 6× 6 Informative Priors: Boxplots For σ2. All algorithms perform compa-
rably when evaluating RMSE of the spatial smoothing parameter σ2, except that Mul-
tivariate SMRF with Boost Smoothing performs noticeably worse in all cases. While
the Univariate Boost Smoothing implementation actually improves RMSE results with
K = 250, the Multivariate Boost Smoothing with K = 1000 performs worse then
filter smoothing and thus is demonstrating the difficulty of SMC smoothing in high
dimensions.

80

R
M

S
E

(τ
2)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

U
1

U
B

U
2

M M
B

JG C
G

(a) Low SNR

R
M

S
E

(τ
2)

0.005

0.010

0.015

0.020

0.025

0.030
U

1
U

B
U

2
M M

B
JG C

G

(b) Medium SNR

R
M

S
E

(τ
2)

0.0005

0.0010

0.0015

U
1

U
B

U
2

M M
B

JG C
G

(c) High SNR

Figure 2.9: 6× 6 Informative Priors: Boxplots For τ2. Again, as in the caption for the
previous figure, the Univariate SMRF with 1 million particles gives the best performance
in all cases and the use of Boost Smoothing for the Multivariate SMRF model actually
increases RMSE.

81

Joint Gibbs Conditional Gibbs

L
ow

S
N
R

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

M
ed

iu
m

S
N
R

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

H
ig
h
S
N
R

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Figure 2.10: 6 × 6 Informative Priors: Joint And Conditional Gibbs ACF Plots For
σ2. Joint and Conditional Gibbs samplers provide adequate mixing rates for the spatial
smoothing parameter σ2 for this relatively small MRF.

82

σ2

τ2

101.6

101.8

102

102.2

10−0.5 100 100.5 101 101.5 102

(a) Low SNR: p(σ2, τ 2|Y)

σ2

τ2

10−0.6

10−0.4

10−0.2

100

100.2

100.4

100.6

10−0.5 100 100.5

(b) Medium SNR: p(σ2, τ 2|Y)

σ2

τ2

10−2.5

10−2

10−1.5

10−1

10−0.610−0.410−0.2 100 100.2

(c) High SNR: p(σ2, τ 2|Y)

Figure 2.11: 6× 6 Vague Priors: Posteriors. Contour plots of σ2 and τ2.

83

t

R
M

S
E

(x
t)

0.05

0.10

0.15

0.20

5 10 15 20 25 30 35

alg

U1

UB

U2

M

MB

JG

CG

(a) Low SNR

t

R
M

S
E

(x
t)

0.05

0.10

0.15

5 10 15 20 25 30 35

alg

U1

UB

U2

M

MB

JG

CG

(b) Medium SNR

t

R
M

S
E

(x
t)

0.002

0.004

0.006

0.008

0.010

0.012

0.014

5 10 15 20 25 30 35

alg

U1

UB

U2

M

MB

JG

CG

(c) High SNR

Figure 2.12: 6× 6 Vague Priors: Hidden States RMSE(xt). This figure shows that the
RMSE for Boost Smoothing remains flat while SMRF models using filter smoothing
show an increase in RMSE backward in time. The erratic results of the Multivariate
SMRF model show the difficulties of SMC smoothing in high dimensions.

84

R
M

S
E

(x
T
)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

U
1

U
B

U
2

M M
B

JG C
G

(a) Low SNR
R

M
S

E
(x

T
)

0.01

0.02

0.03

0.04

0.05

0.06

U
1

U
B

U
2

M M
B

JG C
G

(b) Medium SNR

R
M

S
E

(x
T
)

0.002

0.003

0.004

0.005

0.006

U
1

U
B

U
2

M M
B

JG C
G

(c) High SNR

Figure 2.13: 6×6 Vague Priors: Boxplots For Hidden States. As in the informative prior
case, note that in all SNRs, the Univariate SMRF model with 1 million particles provides
the best performance. Conditional Gibbs sampling does particularly poorly in the low
SNR case. Multivariate SMRF with Boost Smoothing gives the worse performance for
the medium SNR, suggesting the need for an even larger value of K then 1000. For
the high SNR case, Univariate SMRF gives the best and worse performance dependent
upon the number of particles.

R
M

S
E

(σ
2)

0.5

1.0

1.5

2.0

U
1

U
B

U
2

M M
B

JG C
G

(a) Low SNR

R
M

S
E

(σ
2)

0.1

0.2

0.3

U
1

U
B

U
2

M M
B

JG C
G

(b) Medium SNR

R
M

S
E

(σ
2)

0.002

0.004

0.006

0.008

0.010

0.012
U

1
U

B
U

2
M M

B
JG C

G

(c) High SNR

Figure 2.14: 6 × 6 Vague Priors: Boxplots For σ2. Similarly to the case with informa-
tive priors, all algorithms perform comparably when evaluating RMSE of the spatial
smoothing parameter σ2, except that Multivariate SMRF with Boost Smoothing per-
forms poorly in all SNR cases. Since the Univariate Boost Smoothing implementation
actually improves RMSE results with K = 250, the Multivariate Boost Smoothing with
K = 1000 is demonstrating the difficulty of SMC smoothing in high dimensions.

85

R
M

S
E

(τ
2)

0.2

0.4

0.6

0.8

1.0

U
1

U
B

U
2

M M
B

JG C
G

(a) Low SNR

R
M

S
E

(τ
2)

0.02

0.04

0.06

0.08

0.10

U
1

U
B

U
2

M M
B

JG C
G

(b) Medium SNR

R
M

S
E

(τ
2)

0.002

0.004

0.006

0.008

0.010

0.012

0.014

U
1

U
B

U
2

M M
B

JG C
G

(c) High SNR

Figure 2.15: 6 × 6 Vague Priors: Boxplots For τ2. As has already been seen, the
Univariate SMRF with 1 million particles gives the best performance in all cases and
the use of Boost Smoothing for the Multivariate SMRF model actually increases RMSE
in some cases. These results also show an overall increase in average RMSE compared
to using more informative priors.

86

Joint Gibbs Conditional Gibbs

L
ow

S
N
R

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

M
ed

iu
m

S
N
R

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

H
ig
h
S
N
R

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Figure 2.16: 6× 6 Vague Priors: Joint And Conditional Gibbs ACF Plots For σ2. Joint
and Conditional Gibbs samplers provide worse mixing rates with vague priors then was
seen with informative priors for the spatial smoothing parameter σ2 for this relatively
small MRF.

87

J

I

value

−10

0

10

20

(a) Low SNR: Data Y

J

I

value

−2

−1

0

1

2

3

(b) Medium SNR: Data Y

J

I

value

−2

−1

0

1

(c) High SNR: Data Y

Figure 2.17: 10 × 10 Observations. Three sets of observations for the 10 × 10 MRF
where generated using τ2 = {.01, 1, 100} and a common hidden state X and are show
above.

J

I

value

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Figure 2.18: 10× 10 Hidden States, used to generate observations for all three SNRs.

2.4 Univariate SMRF Improvements

Univariate SMRF appears to be competitive with the Joint Gibbs sampler,

and results suggest it might scale better for larger MRFs. Additionally, a number of

modifications can be made to the backward pass of the Univariate SMRF model to make

it computationally more efficient. Proposed modifications are as follows.

• Since forward filtering is so much faster then Boost Smoothing, reduce the MC

error associated with the forward filter step by running with more particles.

88

σ2

τ2

101.8

101.9

102

102.1

102.2

10−0.410−0.2100 100.2100.4100.6

(a) Low SNR: p(σ2, τ 2|Y)

σ2

τ2

10−0.3

10−0.2

10−0.1

100

100.1

100.2

100.3

10−0.410−0.2 100 100.2 100.4

(b) Medium SNR: p(σ2, τ 2|Y)

σ2

τ2

10−2.4

10−2.2

10−2

10−1.8

10−1.6

10−1.4

10−0.1 100 100.1 100.2 100.3

(c) High SNR: p(σ2, τ 2|Y)

Figure 2.19: 10× 10 Informative Priors: Posteriors. Contour plots of σ2 and τ2.

• Since filter smoothing works very well for a few time steps, only perform Boost

Smoothing periodically or adaptively as needed.

• Results from the nonlinear model of Section 1.4 suggest that larger values of K

are only needed at certain time steps, hinting at the usefulness of adaptive ways

of choosing K.

Another approach is to use the results of the Univariate SMRF model as a

massively parallel burn in procedure for a multiple chain MCMC algorithm, using ideas

from population simulation methods. To mitigate accumulation of MC error in the SMC

smoothing process, each particle trajectory can be treated as 1 of N MCMC chains. By

performing a series of Gibbs or Metropolis-Hastings MCMC update steps on each chain

in parallel, the quality of the SMC particles can be improved and verified that they are

at a limiting distribution by using MCMC convergence diagnostics for multiple chain

MCMC. Since the particles should already be very near to the posterior distribution,

the convergence of this MCMC should be a fraction of the auto correlation of a single

89

t

R
M

S
E

(x
t)

0.05

0.10

0.15

20 40 60 80 100

alg

U1

UB

U2

M

MB

JG

CG

(a) Low SNR

t

R
M

S
E

(x
t)

0.01

0.02

0.03

0.04

0.05

0.06

0.07

20 40 60 80 100

alg

U1

UB

U2

M

MB

JG

CG

(b) Medium SNR

t

R
M

S
E

(x
t)

0.002

0.004

0.006

0.008

20 40 60 80 100

alg

U1

UB

U2

M

MB

JG

CG

(c) High SNR

Figure 2.20: 10× 10 Informative Priors: Hidden States RMSE(xt). The larger Univari-
ate SMRF model (U2) initially estimates the last state with more precision then the
Joint Gibbs sampler. This eventually changes as only the Boost algorithms and Gibbs
samplers and algorithms have a flat RMSE plot while filter smoothing does not.

90

R
M

S
E

(x
T
)

0.02

0.04

0.06

0.08

0.10

0.12

U
1

U
B

U
2

M M
B

JG C
G

(a) Low SNR
R

M
S

E
(x

T
)

0.01

0.02

0.03

0.04

U
1

U
B

U
2

M M
B

JG C
G

(b) Medium SNR

R
M

S
E

(x
T
)

0.001

0.002

0.003

0.004

0.005

0.006

U
1

U
B

U
2

M M
B

JG C
G

(c) High SNR

Figure 2.21: 10 × 10 Informative Priors: Boxplots For Hidden States. Here the Joint
Gibbs Sampler performs slightly better then the larger Univariate SMRF model. Also
of note is the size of the improvement Boost Smoothing offers over filter smoothing
for the smaller sized Univariate SMRF model (U1). Secondly, it seems that both the
Joint and Conditional Gibbs samplers perform about equally for the medium and low
SNRs, suggesting that the added expense of direct sampling is not always worth the
computation cost.

R
M

S
E

(σ
2)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

U
1

U
B

U
2

M M
B

JG C
G

(a) Low SNR

R
M

S
E

(σ
2)

0.05

0.10

0.15

0.20

U
1

U
B

U
2

M M
B

JG C
G

(b) Medium SNR

R
M

S
E

(σ
2)

0.002

0.004

0.006

0.008

U
1

U
B

U
2

M M
B

JG C
G

(c) High SNR

Figure 2.22: 10×10 Informative Priors: Boxplots For σ2. Here most algorithms perform
about the same except again for the Multivariate SMRF model with Boost Smoothing,
due to the need of an even larger value of K for smoothing in high dimensions.

91

R
M

S
E

(τ
2)

0.1

0.2

0.3

0.4

U
1

U
B

U
2

M M
B

JG C
G

(a) Low SNR
R

M
S

E
(τ

2)

0.01

0.02

0.03

0.04

U
1

U
B

U
2

M M
B

JG C
G

(b) Medium SNR

R
M

S
E

(τ
2)

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

U
1

U
B

U
2

M M
B

JG C
G

(c) High SNR

Figure 2.23: 10 × 10 Informative Priors: Boxplots For τ2. In this case the larger
Univariate SMRF model (U2) does a better job estimate the intervals for τ2 then the
Joint Gibbs sampler.

MCMC chain, not not the relatively slow convergence of MCMC burn in step. Hence,

these SMC smoothing algorithms can be view as an advanced burn in procedure for

exceedingly multiple chain MCMC, with much better posterior exploration of disjoint

modes. Another form of this approach is motivated by the field of Genetic algorithm.

Crossover steps can be used to share information between chains to allow for mixing

between disjoint state spaces. This will also allow for more precise estimation of the

relative density associated with each disjoint mode. Perhaps, with so many samples,

this would be a better way to replenish the particles then using MCMC or PMCMC

steps. A recent review of population simulation methods can be found in [17].

92

Joint Gibbs Conditional Gibbs

L
ow

S
N
R

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

M
ed

iu
m

S
N
R

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

H
ig
h
S
N
R

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Figure 2.24: 10 × 10 Informative Priors: Joint And Conditional Gibbs ACF Plots For
σ2. The auto correlation increases with the size of the MRF and becomes more of a
problem in low SNR case. Conditional Gibbs shows slower mixing then Joint Gibbs, but
when considering the differences in computational complexity, the natural preference for
the Joint Gibbs sampler should not be automatic.

93

Chapter 3

Future Work

Of lessons learned about the computation of multivariate statistical models,

the first is to avoid multivariate sampling or density estimates by converting to a uni-

variate state space model. This was the problem with Kernel Smoothing, in that high

dimensional KDE is not practical. The second lesson, highly related to the first for this

class of MRFs, is the avoidance of any sort of matrix operation, and specifically matrix

inversion or decomposition.

The computational complexity of the Univariate SMRF model is O(NIJ2),

and this suggests that this algorithm is ideally suited for situations where J << I.

This can happen in time series where high dimensional states are on the order of 10

while the number of time steps can be 1,000 or more. The filtering distributions of a

multivariate time series model can be recovered from the univariate transformed model

by using either Boost Smoothing or filter smoothing to obtain equivalent fixed lag

smoothing distribution. The conditional dependence structure may no longer be sparse,

94

but it may still outperform competing algorithms that find sampling in high dimensions

difficult, similarly to the difficulties experienced with the Multivariate SMRF model.

The factorizing of the posterior seen in the Univariate MRF is not specific to MRFs,

and this idea can be applied to other posterior likelihoods with a suitable factorization.

Lastly, the whole field of Population SMC is infused with a predilection that

SMC Smoothing is computationally inefficient. These results show that SMC can be

competitive with MCMC methods on a much larger class of problems in Bayesian in-

ference then previously thought.

95

Appendix A

Proofs

A.1 Proof Of Convergence For Boost Smoothing

This proof builds upon the results of GDW04 [15], by showing how the results
of M smoothers with K particles can be averaged to provide an estimate whose rate of
convergence is equivalent to one smoother with N = MK particles with a substantial
improvement in computational complexity. Currently, this proof does not incorporate
static parameter estimation.

The formal measure-theoretic notation used in GDW04 is now described. Let
(Ω, F, P) be a probability space defined on two vector real-valued stochastic processes
X = {Xt, t ∈ N∗} and Y = {Yt, t ∈ N∗} of dimensions nx and ny respectively. Assuming
Lebesgue measures, let the unobserved hidden states X follow a Markov process with
transition kernel f(dxt|xt−1) = f(xt|xt−1)dxt and initial distribution X1 ∼ f(dx1),
with observed states Y following g(dyt|xt) = g(yt|xt)dyt. For measure µ, function ϕ,
and Markov kernel K, the following notation is defined.

(µ,ϕ) ,

∫

ϕdµ µK(A) ,

∫

µ(dx)K(A|x) Kϕ(x) ,

∫

K(dz|x)ϕ(z)

The posterior distributions are defined using the following measures.

πt|t−1(dxt) , P (dxt|Y1:t−1 = y1:t=1)

πt|t(dxt) , P (dxt|Y1:t = y1:t)

πt1:t2|t3(dxt1:t2) , P (dxt1:t2 |Y1:t3 = y1:t3)

The normalized weighted measure of the particle filtering densities and the unweighted
measure generated from N joint samples are defined next.

πN
t|t(dxt) ,

N∑

i=1

w
(i)
t δ

x
(i)
t
(dxt) πN

1:T |T (dx1:T) ,
N∑

i=1

δ
x
(i)
1:T

(dx1:T)

96

The fixed lag smoothing measure πt:T |T for t ∈ 1 : T and the joint smoothing measure
π1:T |T representing the truth are defined by choosing a measure ρt(dxt−1:t) that is ab-
solutely continuous with respect to πt−1|t−1(dxt−1:t) and admits ht as a strictly positive
Radon-Nykodym derivative as defined below.

π1:T |T , πt−1|t−1(dxt−1)q(dxt|yt, xt−1:t)

ht(yt, xt−1, xt) ∝
πt−1|t−1(dxt−1:t)

ρt(dxt−1:t
)

Sufficient conditions for convergence are then satisfied by assuming that ϕ is a function
in the space of bounded, Borel-measurable functions such that ϕ ∈ B(Rn),

||ϕ|| , sup
x∈Rn

ϕ(x)

Assumption A.1.1. [15]. πt−1:t|t is absolutely continuous with respect to ρt. More-
over, g(yt|xt)ht(yt, xt−1, xt) is positive and bounded in argument (xt−1, xt) ∈ (Rnx)2

Theorem A.1.1. [10]. Under Assumption A.1.1, for all t > 0, there exists ct|t inde-
pendent of N such that for any φ ∈ B(Rnx),

E[((πN
t|t, φ) − (πt|t, φ))

2] ≤ ct|t
||φ||2
N

,

where the expectation is over all realizations of the random particle method.

Now, define f̄(x) , ||f(x|.)|| and consider the next assumption.

Assumption A.1.2. [15]. For any t ∈ (1, ..., T), we have

(

πt|T ,

(
f̄

πt|t−1

)2
)

< ∞.

Theorem A.1.2. [15]. Under Assumptions A.1.1 and A.1.2, for all t ∈ (1, ..., T),
there exists ct|T independent of N such that for any φ ∈ B(RnxT)

E[((πN
1:T |T , φ) − (π1:T |T , φ))

2] ≤ c1|T
||φ||2
N

where c1|T can be computed using the backward recursion,

ct|T =



(ct+1|T)
1/2 + 2(ct|t)

1/2

(

πt+1|T ,

(
f̄

πt+1|t

)2
)1/2





2

,

and ct|t is given by Theorem A.1.1.

97

Now using Theorem A.1.2, the Theorem A.1.3 can be stated which requires

samples from each ofM groups ofK particles where π
K,(i)
t|t is obtained using the GDW04

algorithm for i ∈ 1 : M .

πK,M
1:T |T (dx1:T) ,

1

M

M∑

i=1

π
K,(i)
1:T |T (dx1:T)

Theorem A.1.3. Under Assumptions A.1.1 and A.1.2, for all t ∈ (1, ..., T), there exists
ct|T independent of K and M such that for any φ ∈ B(RnxT)

E[((πK,M
1:T |T , φ)− (π1:T |T , φ))

2] ≤ c1|T
||φ||2
KM

+ E2[((πK
1:T |T , φ)− (π1:T |T , φ))

2]

with a worse case bound when V [(πK
1:T |T , φ)− (π1:T |T , φ)] = 0 as shown below.

E[((πK,M
1:T |T , φ)− (π1:T |T , φ))

2] ≤ c1|T
||φ||2
KM

+ c1|T
||φ||2
K

Proof. Let

Xi =
(

π
K,(i)
1:T |T

, φ
)

−
(
π1:T |T , φ

)

such that E(X2
i) = V (Xi) + E2(X2

i) ≤ c1|T
||φ||2

K . Then for M and K large, Xi ∼ i.i.d.,

E[((πK,M
1:T |T , φ)− (π1:T |T , φ))

2] = E





(

1

M

M∑

i=1

(

π
K,(i)
1:T |T , φ

)

− (π1:T |T , φ)

)2




= V

(

1

M

M∑

i=1

Xi

)

+ E2

(

1

M

M∑

i=1

Xi

)

≤ 1

M
E(X2

i) + E2(X2
i)

≤ c1|T
||φ||2
MK

+ E2(X2
i)

= c1|T
||φ||2
KM

+ E2[((πK
1:T |T , φ)− (π1:T |T , φ))

2]

Which completes the proof for Theorem A.1.3

98

A.2 Proof Of Convergence For Marginal Kernel Smooth-

ing

Assume that the forward filtering densities ṗ(xt|yt) = {w(i)
t , x

(i)
t }Ni=1 for t = 1 :

T are known. Then starting with p(xT |yT) and proceeding recursively for t = T − 1 : 1
while assuming the Markov property, the recursive structure is as follows.

p(xt:t+1|yT) = p(xt|xt+1, y
T)

∫

p(xt+1:t+2|yT)dxt+2 = p(xt|xt+1, y
t)p(xt+1|yT)

Since p(xt|xt+1, y
t) in general cannot be sampled directly, a convenient impor-

tance or backward propagation distribution q(xt|xt+1, y
t) is chosen such that,

p(xt:t+1|yT) = lim
N→∞

ṗ(xt:t+1|yT) = lim
N→∞

N∑

i=1

w
(i)
t|T δx(i)

t
(xt)δx(i)

t+1

(xt+1)

where x
(i)
t+1 ∼ ṗ(xt+1|yT) and x

(i)
t ∼ q(xt|x(i)t+1, y

t),
∑N

i=1 w
(i)
t|T = 1, and

w
(i)
t|T ∝

p(x
(i)
t |x(i)t+1, y

t)

q(x
(i)
t |x(i)t+1, y

t)
=

p(x
(i)
t , x

(i)
t+1|yt)

p(x
(i)
t+1|yt)q(x

(i)
t |x(i)t+1, y

t)
=

p(x
(i)
t+1|x

(i)
t)p(x

(i)
t |yt)

p(x
(i)
t+1|yt)q(x

(i)
t |x(i)t+1, y

t)

The densities p(xt|yt) and p(xt+1|yt) are estimated using weighted samples
from the forward filtering pass and kernel density estimation to allow for density esti-
mation at new particle locations.

p(x
(i)
t |yt) = lim

h→0
Nh→∞

N∑

j=1

w
(j)
t Kh(x

(j)
t − x

(i)
t)

p(x
(i)
t+1|yt) = lim

h→0
Nh→∞

N∑

j=1

w
(j)
t Kh(x

(j)
t+1 − x

(i)
t+1) = lim

N→∞

N∑

j=1

w
(j)
t p(x

(i)
t+1|x

(j)
t)

While the choice of kernel is arbitrary, an ideal choice for estimating p(x
(i)
t+1|yt)

is to use the system equation such that Kh(x
(j)
t+1 − x

(i)
t+1) = p(x

(i)
t+1|x

(j)
t). This greatly

reduces MC error in the weights by ensuring that tail densities are more precisely
estimated in the denominator.

To show the convergence of this kernel density estimate, let {w(i), x(i)}Ni=1 be
the weighted sample defined by the discrete distribution and the kernel density estimate
respectively as follows.

ṗ(x) =

N∑

i=1

w(i)δx(i)(x) p̂h(x) =

N∑

i=1

w(i)Kh(x− x(i))

99

By holding the bandwidth h constant, take the limit as N → ∞ to show that

lim
N→∞

p̂h(x
∗) = lim

N→∞

N∑

i=1

w(i)Kh(x
∗ − x(i)) =

∫

Kh(x
∗ − x)p(x)dx

and hence for constant h the KDE is a convolution of the kernel and the target density
function. Next, taking the limit of this convolution as h → 0, observe that

lim
h→0

p̂h(x
∗) = lim

h→0

∫

Kh(x− x∗)p(x)dx =

∫

δ(x− x∗)p(x)dx = p(x)

This completes the proof of convergence for Marginal Kernel Smoothing.

A.3 Proof For Binding Separate Marginal Distributions

Using concomitants of order statistics it can be shown that samples from

the joint probability {x(i)t:t+1}Ni=1 ∼ p(xt:t+1|yT) can be replenished with a new sample

{x̃(i)t }Ni=1 ∼ p(xt|Y T) by sorting both samples by xt or x̃t respectively. First, decom-

pose p(xt:t+1|yT) into a mixture of bivariate order statistics p(x
[i]
t+1, x

(i)
t |yT), where x

(i)
t

is the ith order statistic of a sample of size N , x
[i]
t+1 is its concomitant, P−1

t (p) is the

inverse CDF of p(xt), and ξp = limN→∞ x
(pN)
t = P−1(p) for p ∈ (0, 1) is the limiting

value of the central order statistic. Only central order statistics are considered since the
accumulated probability mass of the non-central order statistics is 0 in the limit.

p(xt, xt+1|yT) = lim
N→∞

1

N

∑

i∈central

p(x
(i)
t , x

[i]
t+1|yT)

= lim
N→∞

1

N

∑

i∈central

p(x
(i)
t |yT)p(x[i]t+1|x

(i)
t , yT)

= lim
N→∞

1

N

∑

i∈central

δξi/N (xt)p(x
[i]
t+1|ξi/N , yT)

= lim
N→∞

1

N

∑

i∈central

p(x̃
(i)
t |yT)p(x[i]t+1|ξi/N , yT)

Hence, as N → ∞, {x(i)t:t+1}Ni=1 ∼ {x̃(i)t , x
[i]
t+1}Ni=1.

For the purposes of Kernel Smoothing, this allows the binding together of one
step filter smoothing distributions ṗ(xt:t+1|yT) for t = 1 : T − 1 to form ṗ(xT |yT). Also,
while the proof here implies that xt is univariate, marginal binding does generalize to
multivariate distributions by replenishing each dimension of xt one at a time.

100

Bibliography

[1] Christophe Andrieu, Arnaud Doucet, and Roman Holenstein. Particle Markov
Chain Monte Carlo Methods. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 72(3):269–342, 2010.

[2] S. Banerjee, B. P. Carlin, and A. E. Gelfand. Hierarchical Modeling and Analysis
for Spatial Data. Chapman & Hall, London, 2004.

[3] Julian Besag. Spatial Interaction and the Statistical Analysis of Lattice Systems.
Journal of the Royal Statistical Society. Series B (Methodological), 36(2):192–236,
1974.

[4] Julian Besag and Charles Kooperberg. On Conditional and Intrinsic Autoregres-
sions, 1995.

[5] Mark Briers, Arnaud Doucet, and Simon Maskell. Smoothing Algorithms for State-
Space Models. Technical report, in Submission IEEE Transactions on Signal Pro-
cessing, 2004.

[6] O. Cappe, S.J. Godsill, and E. Moulines. An Overview of Existing Methods and
Recent Advances in Sequential Monte Carlo. Proceedings of the IEEE, 95(5):899
–924, May 2007.

[7] C. K. Carter and R. Kohn. On Gibbs Sampling for State Space Models. Biometrika,
1994.

[8] Carlos M. Carvalho, Michael Johannes, and Hedibert F. Lopes. Particle Learning
and Smoothing. Statistical Science, 25(1):88–106, 2010.

[9] M. Carvalho, Hedibert F. Lopes, Nicholas G. Polson, and Matthew A. Taddy.
Particle Learning for General Mixtures. Bayesian Analysis, 5(4):709–740, 2010.

[10] Dan Crisan and Arnaud Doucet. Convergence of Sequential Monte Carlo Methods.
Technical report, Sequential Monte Carlo Methods in Practice, 2000.

[11] R. Douc, E. Moulines, and J. Olsson. On the Auxiliary Particle Filter. unknown,
2007.

101

[12] Arnaud Doucet, Simon Godsill, and Christophe Andrieu. On Sequential Monte
Carlo Sampling Methods for Bayesian Filtering. Statistics and Computing,
10(3):197–208, 2000.

[13] Paul Fearnhead, David Wyncoll, and Jonathan Tawn. A Sequential Smoothing
Algorithm with Linear Computational Cost. Biometrika, 97(2):447–464, 2010.

[14] Sylvia Fruhwirth-Schnatter. Data Augmentation and Dynamic Linear Models.
Journal of Time Series Analysis, 1994.

[15] Simon J. Godsill, Arnaud Doucet, and Mike West. Monte Carlo Smoothing for Non-
linear Time Series. Journal of the American Statistical Association, 99(465):156–
168, 2004.

[16] N.J. Gordon, D.J. Salmond, and A.F.M. Smith. Novel Approach to Nonlinear/Non-
Gaussian Bayesian State Estimation. Radar and Signal Processing, IEE Proceedings
F, 140(2):107 –113, apr 1993.

[17] Ajay Jasra, David A. Stephens, and Christopher C. Holmes. On Population-Based
Simulation for Static Inference. Statistics and Computing, 17:263–279, September
2007.

[18] Michael Johannes and Nicholas Polson. Particle Filtering and Parameter Learning.
2007.

[19] Mark S. Kaiser and Noel Cressie. The Construction of Multivariate Distributions
from Markov Random Fields. J. Multivar. Anal., 73(2):199–220, 2000.

[20] Genshiro Kitagawa. Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear
State Space Models. Journal of Computational and Graphical Statistics, 5(1):1–25,
1996.

[21] Michael Lavine. Another Look at Conditionally Gaussian Markov Random Fields.
In Bayesian Statistics 6: Proceedings of the Sixth Valencia International Meeting,
pages 371–387. Clarendon Press, Oxford, 1999.

[22] Jane Liu and Mike West. Combined parameter and state estimation in simulation-
based filtering. In Arnaud Doucet, Nando De Freitas, and Neil Gordon, editors,
Sequential Monte Carlo Methods in Practice, 2001.

[23] Jun S. Liu and Rong Chen. Blind Deconvolution via Sequential Imputations. Jour-
nal of the American Statistical Association, 90(430):567–576, 1995.

[24] Hedibert F. Lopes, Carlos M. Carvalho, Michael S. Johannes, and Nicholas G.
Polson. Particle Learning for Sequential Bayesian Computation, with Discussion.
In Bayesian Statistics 9: Proceedings of the Ninth Valencia International Meeting.
Oxford University Press (in preparation), Oxford, 2011.

102

[25] Simon Maskell, Matthew Orton, and Neil Gordon. Efficient Inference for Condi-
tionally Gaussian Markov Random Fields.

[26] Giovanni Petris, Sonia Petrone, and Patrizia Campagnoli. Dynamic Linear Models
with R. useR! Springer-Verlag, New York, 2009.

[27] Michael K. Pitt and Neil Shephard. Filtering via Simulation: Auxiliary Particle
Filters. Journal of the American Statistical Association, 94(446):590–599, 1999.

[28] Raquel Prado and Mike West. Time Series: Modeling, Computation, and Inference.
Chapman & Hall/CRC Texts in Statistical Science, 2010.

[29] R Development Core Team. R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria, 2011. ISBN
3-900051-07-0.

[30] Christian P. Robert and George Casella. Monte Carlo Statistical Methods (Springer
Texts in Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[31] H. Rue and L. Held. Gaussian Markov Random Fields: Theory and Applications,
volume 104 of Monographs on Statistics and Applied Probability. Chapman & Hall,
London, 2005.

[32] Havard Rue. Fast Sampling of Gaussian Markov Random Fields. Journal of the
Royal Statistical Society. Series B (Statistical Methodology), 63(2):325–338, 2001.

[33] Geir Storvik. Particle Filters for State Space Models With the Presence of Static
Parameters, 2002.

[34] Mike West and Jeff Harrison. Bayesian Forecasting and Dynamic Models (2nd ed.).
Springer-Verlag New York, Inc., New York, NY, USA, 1997.

103

