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Another Look at Conditionally Gaussian Markov Random
Fields, Michael Lavine, Duke University, 1998

Fast Sampling of Gaussian Markov Random Fields,
Havard Rue, Journal of the Royal Statistical Society. Series B
(Statistical Methodology), Vol. 63, No. 2 (2001), pp. 325-338

Efficient Inference for Conditionally Gaussian Markov
Random Fields, Simon Maskell, Matthew Orton, Neil
Gordon, Technical Report, University of Cambridge, 2002.
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MRF: Definition

Use a local definition to define a global distribution

xi |x∂i ∼ p(xi |x∂i )

yi |xi ∼ p(yi |xi )

(∂i just means the collection of neighbors of i)

Easy to interpret, expecially spacial structures.

By Markov property, this can be factored into a joint model.
X ∼ MVN(0,Σ) =

∏N
i=1 p(xi |x∂i )
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MRF Nearest 4 Neighboorhood

x∂i

x∂i xi x∂i

x∂i

(IxJ)

Because of Markov Property, conditional on row i , rows i − 1
and i + 1 are independent.

Columns work the same way.
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Conditionally Gaussian MRF

xi |x∂i ∼ N(x̄∂i , σ
2/N∂i )

X ∼ MVM(0,Σ)

Σ−1 = σ−2[TI ⊗ IJ + II ⊗ TJ ]

yi |xi ∼ N(xi , τ
2)

p(Y |X ) ∼ N(0,Σ−1 = σ−2(TI ⊗ IJ + II ⊗ TJ) + τ−2II ⊗ IJ)

Tk =
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Matrix

PMRF = σ−2
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Sparse Percision / Dense Covariance

(8x8) latice grid, (64x64) Percision/Covariance matrix w/ nugget.

Dimensions: 64 x 64
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Naive Gibbs

Easy, use the local definition of the MRF

Horrid mixing, (remember motivation for FFBS).

Useless to compare run time because the other methods are
direct samples.
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Directly From Joint

Directly from X |Y ∼ MVN(Ȳ , (PMRF + τ−2IIJ)−1)

(PMRF + τ−2IIJ)−1 is dense, but PMRF + τ−2IIJ is sparse.

If you use dense inversion algorithm, O(I 3J3).

Best to use Cholesky decomp on a sparse matrix.
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Sparse Cholesky

X ∼ MVN(0,Σ)

X = Az where Σ = AAt , A not unique.

AΣ = chol(Σ) = chol(P−1)

AP = (chol(P)t)−1

While AΣ 6= AP , it is the case that Σ = AΣAt
Σ − APAt

P

This way you don’t have to invert P, then do cholesky on a
dense Σ, then matrix multiplication.

Instead, cholesky on sparse P, then solve the sparse system
A−1

P x = z .

(note that in R, chol(Σ) = At)
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Rue - Sparse Matrix

Rue noted the importance of ordering the percision matrix
into a band matrix, but this is only important for a non
regular lattice structure.

Ordering the percision matrix was O(IJ3), and sampling is
O(IJ2).

In the case of a regular latice, it sounds like sampling should
be O(IJ2), and no ordering calculations need be made.
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Lavine - Multivariate DLM

IDEA: Convert the MRF (IxJ) lattice grid into a Multivariate DLM
of I time steps and J dimentions.

yi |xi ∼ N(xi , τ
2IJ) (τ−2II ⊗ IJ , observations)

0|xi ∼ N(Hxi , σ
2IJ−1) (σ−2II ⊗ TJ , pseudo obs)

xi |xi − 1 ∼ N(xi−1, σ
2IJ) (σ−2TI ⊗ IJ , system)

p(x1) ∝ 1

p(x1|Y1) = MVN((σ−2TJ + τ−2IJ)−1X , (σ−2TJ + τ−2IJ)−1)

where H ′H = TJ .
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Lavine - Multivariate DLM

Then use DLM theory to do updating, FFBS etc.

Problem, is the inversion of a dense (JxJ) covariance matrix
for each row. Even with useing Cholesky/SVD instead of
direct matrix inversion, this is still O(J3) per row, making the
algorithm O(IJ3) or quadratic with the number of cells for
square lattice structures.
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Maskell, Orton, Gordon - Univariate DLM

Process each row as follows...
1 ↓ Predict: generate a prior for p(x1:J

i+1|y1:J
1:i )

2 → Update: Forward filter row i + 1 left to right using Kalman
Filter/DLM recursion to generate a sequence of filtering
densities p(x1:j

i+1|y1:J
1:i , y

1:j
i+1)

3 ← Smooth: Smooth backwards to obtain the full joint density
p(x1:J

i+1|y1:J
1:i+1)

↓ ↓ ↓ ↓ ↓
→ → → → →
← ← ← ← ←

(IxJ)

And then backward sample like in FFBS, useing the same intuition.
O(IJ) !!! - It’s linear with the number of pixels or cells in the MRF.
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Summary

Matrix inversion, even if you can Cholesky, is very bad and is
probably why your sampler is so slow.

Exploit structure whenever possible. Many multivariate
problems have some sort of spatial structure.

Pay attention to O(n) notation if you want to scale your
problem up very easily.

Time series models are a natural way to think about building
your model sequentially, then think of your actual model as
the final smoothed joint distribution.

Expand MOG for different neighborhood structures.

Expand inference for static parameters.

Convert strutured multivariate DLM into univariate DLM.
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