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Abstract 

Effectively managing shared memory in a multi-threaded 

environment is critical in order to achieve high 

performance in multi-core hardware platforms.  Software 

Transactional Memory (STM) is a scheme for managing 

shared memory in a concurrent programming environment.  

STM views shared memory in a way similar to that of a 

database; read and write operations are handled through 

transactions, with changes to the shared memory becoming 

permanent through commit operations.  Furthermore, its 

benefits are not attained until larger data structures are 

used.  Currently there are varying methods for collision 

detection, data validation, and contention management, 

each of which has different situations in which they become 

the preferred method.  This paper discusses problems 

surrounding contention management, related work 

addressing these problems, a new dynamic contention 

manager algorithm yielding an Adaptive STM (ASTM) 

library, experimental results comparing static versus 

dynamic contention management, and an analysis of the 

result. 

Keywords: Software Transactional Memory, Contention 

Management, Multithreaded Software Performance, 

Reinforcement Learning. 

1.  Introduction 
      In the last decade, physical limitations, the two most 

prominent being heat and space limitations, have caused 
hardware designers to push for multi-core implementations 
in order to achieve increases in performance. As a result, 

software that runs efficiently on these new multi-core 
platforms has become increasingly important, and the major 

factor that determines the efficiency of multi-threaded 
software is how that software manages shared memory. 

      The historical method for protecting shared memory is 
to simply only allow one process access, read or write, at a 
time.  This is guaranteed through the proper use of a 

locking mechanism that ensures mutual exclusion, a mutex.  
However, implementing a mutex in such a way that it 

indeed guarantees mutual exclusion, does not cause 

deadlocks, livelocks or starvation, is easy to debug, and 

does not cause priority inversion is quite difficult.  
Furthermore, even if all of these features are implemented 
properly, mutexes still limit scalability of an application due 
to its forced serialism. 

      The ultimate goal of STM is similar to that of mutexes, 
specifically the safe management of shared memory in 
order to prevent data corruption.  However, the main 
difference between STM and mutexes is that STM is lock 
free.  STM views shared memory in a way similar to that of 
a database; read and write operations are handled through 
transactions, with changes to the shared memory becoming 
permanent through commit operations.  STM also shifts the 
responsibility of not adversely affecting other operations 
from the writer, which is the case with mutexes, to the 
reader, “who, after completing an entire transaction, verifies 
that other threads have not concurrently made changes to 
memory that it accessed in the past” [2].  This stage is 
called data validation, and if successful, allows the changes 
to be made permanent through a commit operation.  The 
various techniques for data validation and collision 
detection are discussed later. 

1.1 Advantages and Disadvantages of STM 

      As previously stated, STM is lock free, which removes 
most of the negative aspects of mutexes.  However, STM is 

also much more efficient at allowing parallel operations on 
non-primitive data structures.  Assume the shared data 

structure is a 10,000 node tree.  Typically, multiple 
processes accessing the tree are not modifying the same part 
of the tree concurrently.  As a result, there is no reason to 

lock the entire data structure when only a small number of 
nodes within the tree are being accessed at any one time.  

When using mutexes, the entire data structure is locked, 
which serializes what otherwise could be a fully parallel 

series of read and/or write operations.  Under STM, 
because only individual nodes are checked out, the same 
series of read and/or write operations would be fully 

parallel (i.e. no process is forced to wait on any other 
process).  



      The first disadvantage of STM pertains to the overhead 

required to perform transactions on the shared memory.  

When primitive data types are used, the overhead required 

by STM for collision detection and data validation, causes 

it to degrade in performance below that attained by 
implementing mutexes.  The second disadvantage, or rather 

challenge, is the complexity of both implementation and 

Application Programming Interface (API) use.  It is for this 

reason that there is a large drive to develop a standard 

implementation of an STM library with an easy to use API.  

If one was developed, it would allow STM to overcome all 

of the limitations and drawbacks of mutexes.  

1.2 Problem Addressed 

 Contentions arise when two competing transactions 

attempt to access the same block of memory.  In these 

situations, at least one of the processes must be aborted.  

Deciding which process to abort is called contention 
management.  "Contention management [in STM] may be 
summed up as the question: what do we do when two 
transactions have conflicting needs to access a single block 
of memory?" [3]. There are many different accepted 
contention management schemes.  These range from 
Aggressive, which simply causes the conflicting process to 
abort its transaction, to Exponential Back Off, where the 
conflicting process temporarily aborts its transaction and re-
attempts its commit transaction after exponentially 
increasing wait periods.  Each of the contention 
management schemes is optimal for a corresponding 
application.  Optimal in this context refers to the highest 
possible successful transaction rate.  The problem arises 
because the act of choosing which contention manager to 
use is highly dependant on the type of data structure being 
accessed, for example primitive versus non-primitive, as 
well as the rate of transaction requests.  It is for this reason 
that there is no contention management scheme that is 
optimal in all situations.  It is the goal of this paper to 
develop a dynamic contention manager that adapts to the 
shared memory application in order to maintain an optimal 

rate of successful transactions by automatically applying the 
proper contention management scheme for the particular 

application. 

2.  Related Work 

2.1 Non-Blocking Synchronization Algorithms 

 There are three standard non-blocking synchronization 

algorithms:  wait-freedom, lock-freedom, and obstruction-
freedom [4].  Each of these algorithms keeps processes 
from waiting, i.e. spinning, in order to gain access to a 

block of shared memory.  As opposed to waiting, a process 
will either abort its own transaction, or abort the other 

transaction with which it is in contention.  In contrast, 
algorithms that utilize a blocking scheme use mutexes to 

guard critical sections, thereby serializing access to these 
objects. 

 Wait-freedom has the strongest property of the three 

algorithms in that it guarantees that all processes will gain 

access to the concurrent object in a finite number of their 

individual time steps.  As a result, deadlocks and starvation 

are not possible under wait-freedom algorithms. 

 Lock-freedom is slightly weaker in that it guarantees 

that within a group of processes contending for a shared 

object, at least one of these processes will make progress in 

a finite number of time steps.  It is evident that lock-

freedom rules out deadlock, but starvation is still possible. 

 Obstruction-freedom is the weakest of the three 

algorithms in that it guarantees that a process will make 

progress in a finite number of time steps in the absence of 

contention.  This algorithm makes deadlocks not possible, 

however livelocks may occur if each process continually 

preempts or aborts the other contending processes, which 

results in no process making progress.  It is for this reason 
that design and selection of contention management 
schemes is critical in order to ensure livelocks do not occur. 

2.2 Hash Table STM Design 
 One of the original designs for STM made use of a 
hash table to store records relating to each of the active 
transactions.  Figure 1 shows the schematic design of the 
STM system proposed by Harris and Fraser [4].  This 
design consists of three main components:  the Application 
Heap, which consists of the blocks of shared memory that 
holds the actual data, the hash table of ownership records, 
and the transaction descriptors, which consists of a 
transaction entry for each of the shared memory locations to 
be accessed by the transaction. 

 

Figure 1. Heap Structure showing an active transaction 

 Each of the shared memory locations in the heap 

hashes to one on the ownership records.  As a result, when a 
transaction owns an ownership record, it semantically owns 
all of the shared memory locations that hash to that 

ownership record (orec).  During read or write operations, a 
process creates a transaction entry that corresponds to the 
shared memory location to be accessed.  However, a 

process does not try to take ownership of the orec at this 
time; ownership occurs during the atomic Compare And 

Swap (CAS) operation.  It is evident that this early design 



has several drawbacks.  Ownership, and subsequently 

access, of shared memory blocks is limited to the blocks 

accessible by each of the orecs.  As a result, blocks of 

memory not required for a transaction are now 

unnecessarily locked during a commit transaction simply 
because they hash to the same value as the block of memory 

that is actually needed.  Second, the size of the STM is 

static and cannot be resized during runtime without 

considerable overhead, which is due to suspending all 

transactions in order to allow the hash table to empty upon 

completion of all transactions and then recreating the hash 

table based on the new required data size. 

2.3 Object Based STM Design 
 In order to overcome the limitations of STM systems 

that are similar to the hash table design, as well as keeping 

with the current OOP / OOD standard, the most widely 

accepted implementation for an STM library is the object 
based STM system for dynamic data structures [1].  This 
obstruction-free STM system is commonly referred to as 
DSTM, dynamic software transactional memory, which 
manages a collection of transactional objects (TM objects).  
These TM objects are accessed by transaction, which are 
temporary threads that either commit or abort. 
 

 
Figure 2.  Transactional Memory Object Structure 

 

 Figure 2 shows the structure of a dynamic TM Object, 
which acts as a wrapper for each concurrent object in the 
data structure; these objects are simply normal Java objects, 

which greatly increase the flexibility of the design [4].  TM 
objects can be created at any time, and furthermore, the 
creation and initialization are not part of any transaction.  

The extra layer of abstraction introduced by the Locator 

object is required in order to essentially shift the three 
references, transaction status, old, and new data objects, in 
a single CAS operation.  This can now be done by creating 

a new Locator object, which contains copies of the data 
objects, for the transaction, and then performing a CAS 
operation on the TM object’s start reference from the old 

locator object to the new one. 

 Figure 3 shows an example implementation of DSTM 

using a linked list of objects to hold integers [1].  The 
IntSet class uses two types of objects: nodes, which are TM 

objects; and List objects, that are standard Java linked 
objects containing an integer and a reference to the next 

object in the linked list.  It is of note, however, that the 

reference to the next object is of type Node, which is a TM 

object.  This is required for the list elements to be 

meaningful across transactions.   

 The interesting work is done in the insert method.  
The method takes the integer value to be inserted into the 

linked list, and returns true if the insertion was successful.  

The method repeatedly tries to perform an insertion 

transaction until it succeeds.  During the transaction, the list 

is traversed while opening each node for reading until the 

proper position in the list is found.  At that point, the node 

is opened for writing and the new TM node is inserted into 

the list.  If the transaction is denied, by throwing a Denied 

exception, the transaction calls commitTransaction in order 

to terminate the transaction; this is done even though it is 

known that the commit action will fail. 

 

Figure 3.  Integer Set Example of DSTM 



2.4 Contention Managers 
  “A contention manager is a collection of heuristics 

that aim to maximize system throughput at some reasonable 

level of fairness, by balancing the quality of decisions 

against the complexity and overhead incurred” [5].  Simply 
stated, contention managers tell a transaction what to do 

when they encounter a conflicting transaction.  There are 

several different schemes to perform contention 

management, and since the overall implementation is 

obstruction free, it is the responsibility of the contention 

manager to ensure that livelocks do not occur. 

 The simplest contention manager is the Aggressive 

contention manager.  Whenever this manager detects a 

contention, it simply aborts the opposing transaction.   

 The most common contention manager is the Backoff 

manager.  When a contention occurs, it follows an 

exponential back off pattern to spin for a randomized 
amount of time with mean 2

n + k
 ns, where n is the number 

of times the conflict has occurred and k is a provided 
constant.  There is also an absolute limit, m, to the number 
of rounds a transaction may spin.  From empirical testing, it 
has been found that values of k = 4 and m = 22 result in the 
best performance [4]. 

 Another contention manager is the Karma manager.  
This manager decides who gets aborted by how much work 
each of the transactions has done so far.  Although it is 
difficult to quantify the relative work of a transaction, the 
number of objects that it has opened so far is a rough 
indicator.  The rationale behind this idea is that, in general, 
it makes more sense to abort a transaction that has just 
begun processing its changes, as opposed to one that is just 
about to complete its transaction.  In essence, this is a 
priority manager where the number of objects opened thus 
far by the transaction is its priority.  This priority is not 
reset when a transaction aborts, which allows shorter 
transactions to eventually overcome longer ones [4]. 

 The Eruption manager is based on the idea that the 
more transactions blocked by a particular enemy 
transaction, the higher priority that enemy transaction 

should have.  As a result, this manager is a variant of the 
Karma manager, whereas the priority of a transaction is 
based on the number of objects it has opened.  However, in 

the Eruption manager, a blocked transaction adds its 

priority to that of the blocking transaction.  Therefore, 
intuitively the more transactions that are being blocked, the 
faster the blocking transaction will finish [4]. 

 The final base contention manager is the Greedy 

manager, which makes use of two additional fields in each 
transaction: a timestamp, where an older timestamp 

indicates a higher priority; and a Boolean to indicate 
whether the transaction is currently waiting on another 

transaction.  Whenever a contention arises, if the opposing 
transaction has a lower priority, or it is currently waiting on 
another transaction, then the opposing transaction is 

aborted.  Otherwise the current transaction will wait on the 

opposing one.  These rules hold as long as the transaction 

wait times are bounded [5]. 

 There are several other hybrid contention managers, 

but the ones presented here constitute the core of contention 

manager schemes.  For example, one of these hybrid 
managers, the Polka manager, combines the positive aspects 

of Backoff and Karma [4]. 

2.5 Reinforcement Learning 
 There are many different types of machine learning 

algorithms; however it is reinforcement learning that is 

most applicable to this application.  Reinforcement learning 

can be described as learning how to map situations to 

actions so as to maximize a numerical reward signal [13].  

This method of machine learning is essentially 

characterized by trial and error.  The machine is not told 

explicitly which actions to take in each situation, but rather 

determines the best course of action by interacting with the 
environment according to the current policy, and evaluating 
the reward received based upon other potential rewards.  
“Reinforcement learning is a computational approach to 
understanding and automating goal-directed learning and 
decision-making. It is distinguished from other 
computational approaches by its emphasis on learning by 
the individual from direct interaction with its environment, 
without relying on exemplary supervision or complete 
models of the environment” [13]. 

3.  Adaptive Contention Management 
 The new dynamic contention manager algorithm 
described in this paper, Adaptive Contention Management 
(ACM), uses a reinforcement learning algorithm to select 
the proper contention manager in order to maximize the 
reward.  In context of this paper, reward is the average 
number of successful transactions that have been completed 
since the last evaluation period.  For the purposes of this 
discussion, better performance of the system will result in a 
higher reward.  The ACM tracks the average historical 
performance observed for each contention manger.  This 

stored historical performance is updated during each 
evaluation period.  The pseudo code describing the 
algorithm is shown in figure 4. 

The algorithm starts by putting the current thread to 
sleep for a constant amount of time.  (Note - the 
AdaptiveCM class implements Runnable.  See Section 4 for 

design details).  During experimentation, it was found that a 
sleep time of one second worked well to balance the 
difference between making the time too long, which would 

slow down the responsiveness of the manager, versus 

making the time too short, which would decrease 
performance due to excessive polling. 

Polling is accomplished by requesting the transaction 

counters from the base class of all testing threads within the 
library.  Three separate counters are maintained by the 
dstm2.Thread class for each of the three types of 



transactions: insert, remove, and contains.  Each of the 

derived test threads updates these counters asynchronously 

whenever the proper type of transaction is successful.  This 

was done to increase performance and limit unnecessary 

serialization of the testing threads.   

 

Figure 4. ACM Psuedo code  

 In order to further limit the impact the adaptive 
algorithm has on the base library, evaluation periods were 
limited such that they would not occur during each polling 

period.  The value for this evaluation interval is primarily 
based on how dynamic the data structures being accessed 
are.  The more often the data structures are changing size, 

the lower this evaluation interval should be set.  For this 
experiment, since the data structures were relatively 
constant in size, the evaluation interval was set to five.  

Overall, this caused the adaptive manager to only evaluate 
performance once every five seconds.   

 The first step of evaluation is to calculate the current 
performance, which is an average of the number of 

successful transactions for the elapsed amount of time.  
This performance is then stored for future comparisons.  
Initially the historical performance for each contention 

manager is set to MAX_INTEGER.  This forces the 
adaptive contention manager to try each available 

contention manager at least once, resulting in the required 
trial and error behavior of a reinforcement learning 

algorithm.  If a contention manager is found that has better 

historical performance than is currently being seen, the new 

manager is now used and all listeners are notified of the 

change.  If a better contention manager is not found, a 

random percentage value is generated and compared to the 

threshold value.  If exceeded, a random contention manager 
is chosen and set, and all listeners are notified of the 

change.  This random element was introduced to keep the 

adaptive contention manager from getting locked into a 

single contention manager at steady state while 

environmental conditions have changed, which would now 

cause a different contention manager to be able to 

outperform the manager that is currently set.  The threshold 

for this random switch should be proportional to the 

volatility of the current environment.  During these 

experiments, the threshold was set to 25%; however, due to 

the non-volatile nature of the test environment, the random 

behavior was not found to affect overall performance. 

 The last steps of the core algorithm simply post the 
current performance to all listeners and clear the transaction 
counters in preparation for the next iteration.  All listener 
notification for inter-thread communication is done via a 
mailbox class that is only blocking to registered listeners.  
All inter-thread communications are non-blocking to the 
adaptive contention manager. 

4.  Experimental Results 

4.1 Impact of Polling Modifications 

 The initial task of the experiment was to determine the 
impact, if any, that the modifications to the base DSTM2 
library had on the overall performance.  To test this, the 
original, unmodified library was run on each of the data 
structures, or benchmarks, which included the linked list, 
list release, and red-black tree. In an effort to simulate an 
industry-like environment, each trial run was set to a 10% 
update ratio.  This means that 10% of the transactions were 
insert or remove calls, where the remaining 90% were 
contains type calls.  The trials were then run ten times to 
obtain an average performance as seen on a varying number 

of threads.  Again, this was done to simulate a real 
environment.  The trials were repeated using one, ten, 
thirty, and fifty threads.  The number of threads chosen was 

based on related experiments [1] that showed relative 
maxima in performance when thirty threads are used.  
Lastly, each trial run was repeated for each of the five core 

types of contention managers; these included Backoff, 
Aggressive, Eruption, Greedy and Karma.  Once this 

baseline data was obtained, the same experiments were run 
with the AdaptiveCM, but with its adaptive algorithm 

turned off.  For each trial, it was set statically to one of the 
five contention managers, and then each of the experiments 
from the baseline testing was repeated.  The following 

composite graph shows the comparison of baseline data to 
static ACM performance using a linked list for all 

contention managers.  Similar results were also found on 
the other data structures, list release and red-black tree.   

while ( !finished ) 

{ 

 sleep( SLEEP_PERIOD); 

 

 poll_For_Successful_Transactions(); 

 

 if ( intervalsSinceLastEval > INTERVALS_BTW_EVAL ) 

 { 

  currentPerformance = calculateCurrentPerformance(); 

 

  historicalPerformance[currentCM] = currentPerformance; 

 

  found =  findBetterCmThan(currentPerformance); 

   

  if ( found ) 

  { 

   switch_to_better_CM() 

 

   notifyListeners(); 

  } 

else 

{ 

   randomNumber = generateRandomPercentage(); 

  

   if ( randomNumber > CHANCE_TO_SWICH ) 

   { 

    switchToRandomCM(); 

   

    notifyListeners(); 

   }  

} 

 } 

 

 notifyListenersOfCurrentPerformance(); 

  

 clearTransactionCounters(); 

} 

 



Impact of Static ACM using a Linked List
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Figure 5. Baseline vs. Static ACM 

      In general, it can be seen that the modifications to the 

DSTM2 library had no significant effect on overall 

performance.  However, for clarity, figure 6 has been 

included to show the above graph filtered to just show the 

Backoff CM (Contention Manager) data.  It clearly shows 
the negligible impact of the polling modifications. 
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Figure 6. Baseline vs. Static ACM using Backoff CM 

4.2 ASTM Performance 
 In order to evaluate the performance of the Adaptive 

STM (ASTM) library, it was tested under various 
conditions until reaching steady state, which was reached 
after no more shifts in contention manager selection were 

observed.  Since the ASTM is by nature switching the 
contention manager that is currently in use, tracking which 
contention manager is in use over time was not important.  

Of critical importance, however, is the performance over 
time while the ASTM is attempting to reach steady state.  In 

order to determine this, the ASTM was run adaptively on 
each of the benchmark data structures, and using the same 

thread values, from the previous section.  It was also 
repeated ten times per trial in order to get an average 
performance for each of the test conditions.  The following 

graph shows the ASTM’s performance over time.  The 
upper and lower bounds displayed on the graphs was found 

by using the maximum and minimum performance obtained 
by best and worst contention managers respectively as seen 

in the previous section.  Due to similar results being 

obtained for each of the data structure, redundant graphs, 

which included the trials using various number of threads 

on each of the data structures, have been removed.  The 

vertical line on the right side of each graph indicates the 
point in time when steady state was reached.  Steady state 

refers to the point when the ACM stopped changing the 

contention manager currently in use. 

 

ASTM Performance on Linked List
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Figure 7. - ASTM Performance using 10 threads 
(Steady State CM = Eruption) 
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Figure 8. - ASTM Performance using 50 threads 
(Steady State CM = Aggressive) 

 As seen in the previous graphs, ASTM’s performance 

quickly adapts to near that of the upper bound.  The best 

performance was seen when using a linked list.  In these cases, the 

ASTM adapted to within 4% of the upper bound.  The average 

steady state performance of the ASTM, as seen across all threads 

counts and data structures, was found to be within 12% of the 

upper bound.  

5.0 CONCLUSION 
      Despite the slight overhead that polling imposes, using 

an adaptive approach to contention management will 
guarantee in all cases that the contention manager that 

yields the highest possible performance will be used.  In an 
ideal case, the ASTM library would not be needed.  



However, since the ideal contention manager cannot be 

statically chosen correctly, the ASTM yields a higher 

average performance over time.  Furthermore, in a real 

production type environment, not only would the size of 

data structure be changing often, but also the type of data 
structure as well.  This volatile environment makes it 

impossible to correctly choose the ideal contention 

manager.  ASTM, however, is not burdened by these 

limitations since it is adaptive. 

      ASTM also yields a more consistent performance.  Each 

baseline experiment was run ten times, which resulted in 

roughly a 54% variance.  When compared to the ASTM’s 

average variance of 7%, it is apparent that the ASTM yields 

not only a higher average performance, but a much more 

stable one as well.  This variance is further compounded by 

differences in performance from one machine to another. 

6.0 FUTURE WORK 

      The work presented in this paper shows that a dynamic 
approach to contention management outperforms that of 
static implementations.  However, there are several areas in 
which this algorithm may be improved. 

      Making the learning algorithm more predictive is one 
way in which the ASTM library could be improved.  The 
current implementation only monitors the performance of 
the system as the reward for reinforcement learning.  
Perhaps there are other benchmarks that could be used in 
order to predict which contention manager will be the ideal 
one.  This would greatly reduce the time required for the 
adaptive contention manager to reach steady state.   

      There is currently ongoing work to both improve the 
core contention managers and to create new contention 
managers that outperform those currently known.  If these 
new contention managers far outperformed the common 
contention managers, the ASTM would greatly benefit by 
being able to utilize these contention managers, even if they 
are highly specialized and optimized for a narrow range of 

applications, when appropriate.   

      Shifting some of the transactional load to hardware is 
another way that STM in general may be improved.  The 
high overhead of STM, due to the additional layers of 

object abstraction on top of the base memory required for 
transaction processing, could be mitigated, or at least 
greatly reduced, by developing STM friendly memory in 

hardware.  Memory architectures that were specifically 

designed for STM greatly reduce the need for complex 
software architectures that, in essence, force the standard 
memory architecture to accomplish something for which it 

was not designed. 
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