
Adaptive Software Transactional Memory:

A Dynamic Approach to Contention Management

Joel C. Frank, M.S.
Robert Chun, Ph.D.

Computer Science Department
San Jose State University

San Jose, California 95192
Robert.Chun@sjsu.edu

Abstract

Effectively managing shared memory in a multi-threaded

environment is critical in order to achieve high

performance in multi-core hardware platforms. Software

Transactional Memory (STM) is a scheme for managing

shared memory in a concurrent programming environment.

STM views shared memory in a way similar to that of a

database; read and write operations are handled through

transactions, with changes to the shared memory becoming

permanent through commit operations. Furthermore, its

benefits are not attained until larger data structures are

used. Currently there are varying methods for collision

detection, data validation, and contention management,

each of which has different situations in which they become

the preferred method. This paper discusses problems

surrounding contention management, related work

addressing these problems, a new dynamic contention

manager algorithm yielding an Adaptive STM (ASTM)

library, experimental results comparing static versus

dynamic contention management, and an analysis of the

result.

Keywords: Software Transactional Memory, Contention

Management, Multithreaded Software Performance,

Reinforcement Learning.

1. Introduction
 In the last decade, physical limitations, the two most

prominent being heat and space limitations, have caused
hardware designers to push for multi-core implementations
in order to achieve increases in performance. As a result,

software that runs efficiently on these new multi-core
platforms has become increasingly important, and the major

factor that determines the efficiency of multi-threaded
software is how that software manages shared memory.

 The historical method for protecting shared memory is
to simply only allow one process access, read or write, at a
time. This is guaranteed through the proper use of a

locking mechanism that ensures mutual exclusion, a mutex.
However, implementing a mutex in such a way that it

indeed guarantees mutual exclusion, does not cause

deadlocks, livelocks or starvation, is easy to debug, and

does not cause priority inversion is quite difficult.
Furthermore, even if all of these features are implemented
properly, mutexes still limit scalability of an application due
to its forced serialism.

 The ultimate goal of STM is similar to that of mutexes,
specifically the safe management of shared memory in
order to prevent data corruption. However, the main
difference between STM and mutexes is that STM is lock
free. STM views shared memory in a way similar to that of
a database; read and write operations are handled through
transactions, with changes to the shared memory becoming
permanent through commit operations. STM also shifts the
responsibility of not adversely affecting other operations
from the writer, which is the case with mutexes, to the
reader, “who, after completing an entire transaction, verifies
that other threads have not concurrently made changes to
memory that it accessed in the past” [2]. This stage is
called data validation, and if successful, allows the changes
to be made permanent through a commit operation. The
various techniques for data validation and collision
detection are discussed later.

1.1 Advantages and Disadvantages of STM

 As previously stated, STM is lock free, which removes
most of the negative aspects of mutexes. However, STM is

also much more efficient at allowing parallel operations on
non-primitive data structures. Assume the shared data

structure is a 10,000 node tree. Typically, multiple
processes accessing the tree are not modifying the same part
of the tree concurrently. As a result, there is no reason to

lock the entire data structure when only a small number of
nodes within the tree are being accessed at any one time.

When using mutexes, the entire data structure is locked,
which serializes what otherwise could be a fully parallel

series of read and/or write operations. Under STM,
because only individual nodes are checked out, the same
series of read and/or write operations would be fully

parallel (i.e. no process is forced to wait on any other
process).

 The first disadvantage of STM pertains to the overhead

required to perform transactions on the shared memory.

When primitive data types are used, the overhead required

by STM for collision detection and data validation, causes

it to degrade in performance below that attained by
implementing mutexes. The second disadvantage, or rather

challenge, is the complexity of both implementation and

Application Programming Interface (API) use. It is for this

reason that there is a large drive to develop a standard

implementation of an STM library with an easy to use API.

If one was developed, it would allow STM to overcome all

of the limitations and drawbacks of mutexes.

1.2 Problem Addressed

 Contentions arise when two competing transactions

attempt to access the same block of memory. In these

situations, at least one of the processes must be aborted.

Deciding which process to abort is called contention
management. "Contention management [in STM] may be
summed up as the question: what do we do when two
transactions have conflicting needs to access a single block
of memory?" [3]. There are many different accepted
contention management schemes. These range from
Aggressive, which simply causes the conflicting process to
abort its transaction, to Exponential Back Off, where the
conflicting process temporarily aborts its transaction and re-
attempts its commit transaction after exponentially
increasing wait periods. Each of the contention
management schemes is optimal for a corresponding
application. Optimal in this context refers to the highest
possible successful transaction rate. The problem arises
because the act of choosing which contention manager to
use is highly dependant on the type of data structure being
accessed, for example primitive versus non-primitive, as
well as the rate of transaction requests. It is for this reason
that there is no contention management scheme that is
optimal in all situations. It is the goal of this paper to
develop a dynamic contention manager that adapts to the
shared memory application in order to maintain an optimal

rate of successful transactions by automatically applying the
proper contention management scheme for the particular

application.

2. Related Work

2.1 Non-Blocking Synchronization Algorithms

 There are three standard non-blocking synchronization

algorithms: wait-freedom, lock-freedom, and obstruction-
freedom [4]. Each of these algorithms keeps processes
from waiting, i.e. spinning, in order to gain access to a

block of shared memory. As opposed to waiting, a process
will either abort its own transaction, or abort the other

transaction with which it is in contention. In contrast,
algorithms that utilize a blocking scheme use mutexes to

guard critical sections, thereby serializing access to these
objects.

 Wait-freedom has the strongest property of the three

algorithms in that it guarantees that all processes will gain

access to the concurrent object in a finite number of their

individual time steps. As a result, deadlocks and starvation

are not possible under wait-freedom algorithms.

 Lock-freedom is slightly weaker in that it guarantees

that within a group of processes contending for a shared

object, at least one of these processes will make progress in

a finite number of time steps. It is evident that lock-

freedom rules out deadlock, but starvation is still possible.

 Obstruction-freedom is the weakest of the three

algorithms in that it guarantees that a process will make

progress in a finite number of time steps in the absence of

contention. This algorithm makes deadlocks not possible,

however livelocks may occur if each process continually

preempts or aborts the other contending processes, which

results in no process making progress. It is for this reason
that design and selection of contention management
schemes is critical in order to ensure livelocks do not occur.

2.2 Hash Table STM Design
 One of the original designs for STM made use of a
hash table to store records relating to each of the active
transactions. Figure 1 shows the schematic design of the
STM system proposed by Harris and Fraser [4]. This
design consists of three main components: the Application
Heap, which consists of the blocks of shared memory that
holds the actual data, the hash table of ownership records,
and the transaction descriptors, which consists of a
transaction entry for each of the shared memory locations to
be accessed by the transaction.

Figure 1. Heap Structure showing an active transaction

 Each of the shared memory locations in the heap

hashes to one on the ownership records. As a result, when a
transaction owns an ownership record, it semantically owns
all of the shared memory locations that hash to that

ownership record (orec). During read or write operations, a
process creates a transaction entry that corresponds to the
shared memory location to be accessed. However, a

process does not try to take ownership of the orec at this
time; ownership occurs during the atomic Compare And

Swap (CAS) operation. It is evident that this early design

has several drawbacks. Ownership, and subsequently

access, of shared memory blocks is limited to the blocks

accessible by each of the orecs. As a result, blocks of

memory not required for a transaction are now

unnecessarily locked during a commit transaction simply
because they hash to the same value as the block of memory

that is actually needed. Second, the size of the STM is

static and cannot be resized during runtime without

considerable overhead, which is due to suspending all

transactions in order to allow the hash table to empty upon

completion of all transactions and then recreating the hash

table based on the new required data size.

2.3 Object Based STM Design
 In order to overcome the limitations of STM systems

that are similar to the hash table design, as well as keeping

with the current OOP / OOD standard, the most widely

accepted implementation for an STM library is the object
based STM system for dynamic data structures [1]. This
obstruction-free STM system is commonly referred to as
DSTM, dynamic software transactional memory, which
manages a collection of transactional objects (TM objects).
These TM objects are accessed by transaction, which are
temporary threads that either commit or abort.

Figure 2. Transactional Memory Object Structure

 Figure 2 shows the structure of a dynamic TM Object,
which acts as a wrapper for each concurrent object in the
data structure; these objects are simply normal Java objects,

which greatly increase the flexibility of the design [4]. TM
objects can be created at any time, and furthermore, the
creation and initialization are not part of any transaction.

The extra layer of abstraction introduced by the Locator

object is required in order to essentially shift the three
references, transaction status, old, and new data objects, in
a single CAS operation. This can now be done by creating

a new Locator object, which contains copies of the data
objects, for the transaction, and then performing a CAS
operation on the TM object’s start reference from the old

locator object to the new one.

 Figure 3 shows an example implementation of DSTM

using a linked list of objects to hold integers [1]. The
IntSet class uses two types of objects: nodes, which are TM

objects; and List objects, that are standard Java linked
objects containing an integer and a reference to the next

object in the linked list. It is of note, however, that the

reference to the next object is of type Node, which is a TM

object. This is required for the list elements to be

meaningful across transactions.

 The interesting work is done in the insert method.
The method takes the integer value to be inserted into the

linked list, and returns true if the insertion was successful.

The method repeatedly tries to perform an insertion

transaction until it succeeds. During the transaction, the list

is traversed while opening each node for reading until the

proper position in the list is found. At that point, the node

is opened for writing and the new TM node is inserted into

the list. If the transaction is denied, by throwing a Denied

exception, the transaction calls commitTransaction in order

to terminate the transaction; this is done even though it is

known that the commit action will fail.

Figure 3. Integer Set Example of DSTM

2.4 Contention Managers
 “A contention manager is a collection of heuristics

that aim to maximize system throughput at some reasonable

level of fairness, by balancing the quality of decisions

against the complexity and overhead incurred” [5]. Simply
stated, contention managers tell a transaction what to do

when they encounter a conflicting transaction. There are

several different schemes to perform contention

management, and since the overall implementation is

obstruction free, it is the responsibility of the contention

manager to ensure that livelocks do not occur.

 The simplest contention manager is the Aggressive

contention manager. Whenever this manager detects a

contention, it simply aborts the opposing transaction.

 The most common contention manager is the Backoff

manager. When a contention occurs, it follows an

exponential back off pattern to spin for a randomized
amount of time with mean 2

n + k
 ns, where n is the number

of times the conflict has occurred and k is a provided
constant. There is also an absolute limit, m, to the number
of rounds a transaction may spin. From empirical testing, it
has been found that values of k = 4 and m = 22 result in the
best performance [4].

 Another contention manager is the Karma manager.
This manager decides who gets aborted by how much work
each of the transactions has done so far. Although it is
difficult to quantify the relative work of a transaction, the
number of objects that it has opened so far is a rough
indicator. The rationale behind this idea is that, in general,
it makes more sense to abort a transaction that has just
begun processing its changes, as opposed to one that is just
about to complete its transaction. In essence, this is a
priority manager where the number of objects opened thus
far by the transaction is its priority. This priority is not
reset when a transaction aborts, which allows shorter
transactions to eventually overcome longer ones [4].

 The Eruption manager is based on the idea that the
more transactions blocked by a particular enemy
transaction, the higher priority that enemy transaction

should have. As a result, this manager is a variant of the
Karma manager, whereas the priority of a transaction is
based on the number of objects it has opened. However, in

the Eruption manager, a blocked transaction adds its

priority to that of the blocking transaction. Therefore,
intuitively the more transactions that are being blocked, the
faster the blocking transaction will finish [4].

 The final base contention manager is the Greedy

manager, which makes use of two additional fields in each
transaction: a timestamp, where an older timestamp

indicates a higher priority; and a Boolean to indicate
whether the transaction is currently waiting on another

transaction. Whenever a contention arises, if the opposing
transaction has a lower priority, or it is currently waiting on
another transaction, then the opposing transaction is

aborted. Otherwise the current transaction will wait on the

opposing one. These rules hold as long as the transaction

wait times are bounded [5].

 There are several other hybrid contention managers,

but the ones presented here constitute the core of contention

manager schemes. For example, one of these hybrid
managers, the Polka manager, combines the positive aspects

of Backoff and Karma [4].

2.5 Reinforcement Learning
 There are many different types of machine learning

algorithms; however it is reinforcement learning that is

most applicable to this application. Reinforcement learning

can be described as learning how to map situations to

actions so as to maximize a numerical reward signal [13].

This method of machine learning is essentially

characterized by trial and error. The machine is not told

explicitly which actions to take in each situation, but rather

determines the best course of action by interacting with the
environment according to the current policy, and evaluating
the reward received based upon other potential rewards.
“Reinforcement learning is a computational approach to
understanding and automating goal-directed learning and
decision-making. It is distinguished from other
computational approaches by its emphasis on learning by
the individual from direct interaction with its environment,
without relying on exemplary supervision or complete
models of the environment” [13].

3. Adaptive Contention Management
 The new dynamic contention manager algorithm
described in this paper, Adaptive Contention Management
(ACM), uses a reinforcement learning algorithm to select
the proper contention manager in order to maximize the
reward. In context of this paper, reward is the average
number of successful transactions that have been completed
since the last evaluation period. For the purposes of this
discussion, better performance of the system will result in a
higher reward. The ACM tracks the average historical
performance observed for each contention manger. This

stored historical performance is updated during each
evaluation period. The pseudo code describing the
algorithm is shown in figure 4.

The algorithm starts by putting the current thread to
sleep for a constant amount of time. (Note - the
AdaptiveCM class implements Runnable. See Section 4 for

design details). During experimentation, it was found that a
sleep time of one second worked well to balance the
difference between making the time too long, which would

slow down the responsiveness of the manager, versus

making the time too short, which would decrease
performance due to excessive polling.

Polling is accomplished by requesting the transaction

counters from the base class of all testing threads within the
library. Three separate counters are maintained by the
dstm2.Thread class for each of the three types of

transactions: insert, remove, and contains. Each of the

derived test threads updates these counters asynchronously

whenever the proper type of transaction is successful. This

was done to increase performance and limit unnecessary

serialization of the testing threads.

Figure 4. ACM Psuedo code

 In order to further limit the impact the adaptive
algorithm has on the base library, evaluation periods were
limited such that they would not occur during each polling

period. The value for this evaluation interval is primarily
based on how dynamic the data structures being accessed
are. The more often the data structures are changing size,

the lower this evaluation interval should be set. For this
experiment, since the data structures were relatively
constant in size, the evaluation interval was set to five.

Overall, this caused the adaptive manager to only evaluate
performance once every five seconds.

 The first step of evaluation is to calculate the current
performance, which is an average of the number of

successful transactions for the elapsed amount of time.
This performance is then stored for future comparisons.
Initially the historical performance for each contention

manager is set to MAX_INTEGER. This forces the
adaptive contention manager to try each available

contention manager at least once, resulting in the required
trial and error behavior of a reinforcement learning

algorithm. If a contention manager is found that has better

historical performance than is currently being seen, the new

manager is now used and all listeners are notified of the

change. If a better contention manager is not found, a

random percentage value is generated and compared to the

threshold value. If exceeded, a random contention manager
is chosen and set, and all listeners are notified of the

change. This random element was introduced to keep the

adaptive contention manager from getting locked into a

single contention manager at steady state while

environmental conditions have changed, which would now

cause a different contention manager to be able to

outperform the manager that is currently set. The threshold

for this random switch should be proportional to the

volatility of the current environment. During these

experiments, the threshold was set to 25%; however, due to

the non-volatile nature of the test environment, the random

behavior was not found to affect overall performance.

 The last steps of the core algorithm simply post the
current performance to all listeners and clear the transaction
counters in preparation for the next iteration. All listener
notification for inter-thread communication is done via a
mailbox class that is only blocking to registered listeners.
All inter-thread communications are non-blocking to the
adaptive contention manager.

4. Experimental Results

4.1 Impact of Polling Modifications

 The initial task of the experiment was to determine the
impact, if any, that the modifications to the base DSTM2
library had on the overall performance. To test this, the
original, unmodified library was run on each of the data
structures, or benchmarks, which included the linked list,
list release, and red-black tree. In an effort to simulate an
industry-like environment, each trial run was set to a 10%
update ratio. This means that 10% of the transactions were
insert or remove calls, where the remaining 90% were
contains type calls. The trials were then run ten times to
obtain an average performance as seen on a varying number

of threads. Again, this was done to simulate a real
environment. The trials were repeated using one, ten,
thirty, and fifty threads. The number of threads chosen was

based on related experiments [1] that showed relative
maxima in performance when thirty threads are used.
Lastly, each trial run was repeated for each of the five core

types of contention managers; these included Backoff,
Aggressive, Eruption, Greedy and Karma. Once this

baseline data was obtained, the same experiments were run
with the AdaptiveCM, but with its adaptive algorithm

turned off. For each trial, it was set statically to one of the
five contention managers, and then each of the experiments
from the baseline testing was repeated. The following

composite graph shows the comparison of baseline data to
static ACM performance using a linked list for all

contention managers. Similar results were also found on
the other data structures, list release and red-black tree.

while (!finished)

{

 sleep(SLEEP_PERIOD);

 poll_For_Successful_Transactions();

 if (intervalsSinceLastEval > INTERVALS_BTW_EVAL)

 {

 currentPerformance = calculateCurrentPerformance();

 historicalPerformance[currentCM] = currentPerformance;

 found = findBetterCmThan(currentPerformance);

 if (found)

 {

 switch_to_better_CM()

 notifyListeners();

 }

else

{

 randomNumber = generateRandomPercentage();

 if (randomNumber > CHANCE_TO_SWICH)

 {

 switchToRandomCM();

 notifyListeners();

 }

}

 }

 notifyListenersOfCurrentPerformance();

 clearTransactionCounters();

}

Impact of Static ACM using a Linked List

300

400

500

600

700

800

900

1000

1100

1200

10 15 20 25 30 35 40 45 50

Number of Threads

A
v
g

.
T

ra
n

s
.

P
e
r

S
e
c

Base STM Backoff

Base STM Aggressive

Base STM Eruption

Base STM Greedy

Base STM Karma

Static ASTM Backoff

Static ASTM Aggressive

Static ASTM Eruption

Static ASTM Greedy

Static ASTM Karma

Figure 5. Baseline vs. Static ACM

 In general, it can be seen that the modifications to the

DSTM2 library had no significant effect on overall

performance. However, for clarity, figure 6 has been

included to show the above graph filtered to just show the

Backoff CM (Contention Manager) data. It clearly shows
the negligible impact of the polling modifications.

Backoff CM

300

400

500

600

700

800

900

1000

1100

1200

10 20 30 40 50

Number of Threads

A
v
g

.
T

ra
n

s
.
P

e
r

S
e

c

Base STM

Static ASTM

Figure 6. Baseline vs. Static ACM using Backoff CM

4.2 ASTM Performance
 In order to evaluate the performance of the Adaptive

STM (ASTM) library, it was tested under various
conditions until reaching steady state, which was reached
after no more shifts in contention manager selection were

observed. Since the ASTM is by nature switching the
contention manager that is currently in use, tracking which
contention manager is in use over time was not important.

Of critical importance, however, is the performance over
time while the ASTM is attempting to reach steady state. In

order to determine this, the ASTM was run adaptively on
each of the benchmark data structures, and using the same

thread values, from the previous section. It was also
repeated ten times per trial in order to get an average
performance for each of the test conditions. The following

graph shows the ASTM’s performance over time. The
upper and lower bounds displayed on the graphs was found

by using the maximum and minimum performance obtained
by best and worst contention managers respectively as seen

in the previous section. Due to similar results being

obtained for each of the data structure, redundant graphs,

which included the trials using various number of threads

on each of the data structures, have been removed. The

vertical line on the right side of each graph indicates the
point in time when steady state was reached. Steady state

refers to the point when the ACM stopped changing the

contention manager currently in use.

ASTM Performance on Linked List

400

410

420

430

440

450

460

470

480

10 15 20 25 30 35 40 45 50

Time (sec)

A
v

g
.

T
ra

n
s
.

P
e

r
S

e
c

ASTM

Upper Bound

LowerBound

Figure 7. - ASTM Performance using 10 threads
(Steady State CM = Eruption)

ASTM Performance on Linked List

400

420

440

460

480

500

520

540

560

580

600

10 15 20 25 30 35 40 45 50

Time (sec)

A
v
g

.
T

ra
n

s
.

P
e
r

S
e
c

ASTM

Upper Bound

LowerBound

Figure 8. - ASTM Performance using 50 threads
(Steady State CM = Aggressive)

 As seen in the previous graphs, ASTM’s performance

quickly adapts to near that of the upper bound. The best

performance was seen when using a linked list. In these cases, the

ASTM adapted to within 4% of the upper bound. The average

steady state performance of the ASTM, as seen across all threads

counts and data structures, was found to be within 12% of the

upper bound.

5.0 CONCLUSION
 Despite the slight overhead that polling imposes, using

an adaptive approach to contention management will
guarantee in all cases that the contention manager that

yields the highest possible performance will be used. In an
ideal case, the ASTM library would not be needed.

However, since the ideal contention manager cannot be

statically chosen correctly, the ASTM yields a higher

average performance over time. Furthermore, in a real

production type environment, not only would the size of

data structure be changing often, but also the type of data
structure as well. This volatile environment makes it

impossible to correctly choose the ideal contention

manager. ASTM, however, is not burdened by these

limitations since it is adaptive.

 ASTM also yields a more consistent performance. Each

baseline experiment was run ten times, which resulted in

roughly a 54% variance. When compared to the ASTM’s

average variance of 7%, it is apparent that the ASTM yields

not only a higher average performance, but a much more

stable one as well. This variance is further compounded by

differences in performance from one machine to another.

6.0 FUTURE WORK

 The work presented in this paper shows that a dynamic
approach to contention management outperforms that of
static implementations. However, there are several areas in
which this algorithm may be improved.

 Making the learning algorithm more predictive is one
way in which the ASTM library could be improved. The
current implementation only monitors the performance of
the system as the reward for reinforcement learning.
Perhaps there are other benchmarks that could be used in
order to predict which contention manager will be the ideal
one. This would greatly reduce the time required for the
adaptive contention manager to reach steady state.

 There is currently ongoing work to both improve the
core contention managers and to create new contention
managers that outperform those currently known. If these
new contention managers far outperformed the common
contention managers, the ASTM would greatly benefit by
being able to utilize these contention managers, even if they
are highly specialized and optimized for a narrow range of

applications, when appropriate.

 Shifting some of the transactional load to hardware is
another way that STM in general may be improved. The
high overhead of STM, due to the additional layers of

object abstraction on top of the base memory required for
transaction processing, could be mitigated, or at least
greatly reduced, by developing STM friendly memory in

hardware. Memory architectures that were specifically

designed for STM greatly reduce the need for complex
software architectures that, in essence, force the standard
memory architecture to accomplish something for which it

was not designed.

7.0 REFERENCES

[1] Maurice Herlihy, Victor Luchangco, Mark Moir, III

William N. Scherer, Software Transactional Memory for

Dynamic-Sized Data Structures. 2003.

[2] Scherer, W.N. III, Scott, M.L., Contention Management

in Dynamic Software Transaction Memory. 2004.

[3] Virendra J. Marathe, Michael L. Scott. A Qualitative

Survey of Modern Software Transactional Memory

Systems. 2004.

[4] William N. Scherer III, Michael L. Scott. Advanced

Contention Management for Dynamic Software

Transactional Memory. 2005

[5] Virendra J. Marathe, Michael F. Spear, Christopher

Heriot, Athul Acharya, David Eisenstat, William N. Scherer
III, Michael L. Scott. Lowering the Overhead of Software

Transactional Memory. Tech. Report Nr. TR 893. 2006.

[6] Rachid Guerraoui, Maurice Herlihy, Bastian Pochon.
Toward a Theory of Transactional Contention Managers.
2006.

[7] Ali-Reza Adl-Tabatabai, Christos Kozyrakis, Bratin
Eswaran Saha. Unlocking Concurrency: Multicore

Programming with Transactional Memory. ACM Queue,
4(10):24—33. 2006.

[8] Torvald Riegel, Christof Fetzer, Pascal Felber. Time-

based Transactional Memory with Scalable Time Bases.
19th ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA). 2007.

[9] Yossi Lev, Mark Moir, Dan Nussbaum. PhTM: Phased

Transactional Memory. Workshop on Transactional
Computing (TRANSACT). 2007.

[10] Robert Ennals. Efficient Software Transactional

Memory. Technical Report Nr. IRC-TR-05-051. Intel

Research Cambridge Tech Report. 2005.

[11] Richard S. Sutton and Andrew G. Barton.

Reinforcement Learning: An Introduction. The MIT Press.
1998.

[12] Kaelbling, L.P., Littman, M.L., and Moore, A.W.

Reinforcement Learning: A Survey. Vol 4, pages 237-285.
1996.

[13] Sun Microsystems. Dynamic Software Transactional

Memory Library 2.0. Retrieved from http://www.sun.com/
download/products.xml?id=453fb28e on August 2007.

