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» We propose a user targeting simulator for
online display advertising.

» Based on the response of 37 million visiting
users (targeted and non-targeted) and their
demographic features, we simulate different
user targeting policies.

» We provide evidence that the standard
conversion optimization policy shows similar
effectiveness to that of a random targeting,
and significantly inferior to other causally
optimized targeting policies.

Introduction

» The use of randomized experiments is
becoming the standard practice to accurately
measure the ad casual effect on user
conversions [2].

« Targeted and non-targeted users convert in
the advertiser’s website potentially

» Converting users regardless of the ad
exposure have motivated the causal analysis
of campaign effect

« User targeting development has focused largely
on optimizing user conversions by serving ads
to the users who are more likely to convert [3].

* Often the evaluation of these algorithms is 5
based on the prediction power of
conversions, which are likely to be not caused
by the campaign [2].

Our Contribution

» We propose a targeting simulator that
leverages the data of randomized experiments
by considering all the visiting users to the
publisher websites [1].

» We fit the user conversion response of the
campaign/placebo ad exposures (targeted
users), and the response of those who are not
targeted.

» Based on the data of a randomized experiment
for 37 million users, 8 million targeted users,
and user demographic features, we simulate the
standard conversion optimization policy and
three targeting algorithms based on the ad
average causal effect.

» We consider the user features: age, gender .@-
and income; segmented by value ranges S
» The campaign running time is two weeks. @

« Study group: the total and targeted population sizes
are 18.74 and 4.01 million.

» Control group: the total and targeted population
sizes are 18.70 and 4.09 million.

» Missing values are considered as a feature value:
81.4% of users have one or more missing values.

* We use the first half of the campaign as training, and
the second half for testing.

Randomized Experimental Design Validation
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» We randomly assign the online visiting users
to the control or the study treatment arms.

« In practice, a placebo campaign, which
replicates the focal campaign targeting, is
run to display the placebo ads.

User Targeting Simulation

Input: Targeting function Fiarg(X;), User Counts NP5 =
{NY|X;:vde {0,1},vy € {0,1},VX;}.

Output: Aggregated User Counts After Targeting N'ZY =
{NY"EY  vd € {0,1},vy € {0,1}}
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» Campaign budget is consumed by
the user targeting including the
probability of user segments

* The visiting population segment
constraints is enforced

15: end while
» The while loop re-distributes the

remaining budget
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» Aggregate the user counts over Xi

» This simulation is run for both
treatment arms independently

» The ad effect is measured based on
a t-test

» We test the targeting policies with training data:

1. Random, F(Xi) =1,

2. Conversion optimization

3. Maximization/minimization of ATE, {ATE(Xi),
-ATE(Xi)}.

4. ATE maximization, where the segments with
negative ATE are set to the minimum positive ATE
(ATE+(Xi)),

5. ATE minimization of ATE (—~ATE—(Xi)).

Table 1: Simulator Validation. Targeting functions
are trained and tested with the same data. ATE
intervals are shown for 0.10 significance level.
Frarg(X:) ATE Tt || Frarg(X,) ATE Tift

(1e6) | (%) (1e6) | (%)
T[Random) |3.76£0.83 | 7.37 || 011]X; 2902100 | 5.46
ATE(X;) 5.6349.62 | 11.77 ||-ATE(X;) -1.74410.3 | -2.94
ATE* (X;) 8619,28 -ATE™ (X5)

—G% -9.78

» Maximizing ATE shows the best
performance, and minimizing ATE the
worst perfromance.

+ Both effects are far from the random

targeting

Table 2: Targeting Policy Testing Results. ATE in-
tervals are shown for 0.10 significance level.

All Users No Missing Features
Frarg(Xi) ATE(le-5) | Lift(%) | ATE(le-5) | lift(%)
1 (Random) L.35x1.71 11.01 2.21=4.26 11.06
O11/(1 —611)|X; 1.384.77 10.91 1‘98:3.85 12.25
ATE(X;) 1.454.73 12.00 2.45: 16.25
ATE*(X;) 1.69£1.76 13.72 | 2.92 .55 19.92
LftT (Xi)

1.78:@,4.47 B‘U(ﬁ 20.87

» The user conversion optimization
performance is similar to a random
targeting

» Optimizing the lift shows the best
causal attribution performance

\|* The effect results estimated for
users with no missing features
depict the same directional results

Conclusion and Discussion

« We have found evidence that the standard practice
of optimizing the conversion probability does not
optimize the causal effect of the ad.

» We have shown that the user targeting makes a
difference in the ad evaluation even when a placebo
ad is displayed.

« This finding contradicts the standard evaluation
practice of measuring the effect with a non-optimized
campaign, which is assumed to hold for future
optimized exposures.
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