# KNOWLEDGE GRAPH CONSTRUCTION

Jay Pujara University of Maryland, College Park

Max Planck Institute 7/9/2015



#### Can Computers Create Knowledge?



Massive source of publicly available information



Knowledge

# Computers + Knowledge =



=

What does it mean to create knowledge? What do we mean by knowledge?

## Defining the Questions

- Extraction
- Representation
- Reasoning and Inference

## Defining the Questions

- Extraction
- Representation
- Reasoning and Inference

#### A Revised Knowledge-Creation Diagram



#### Knowledge Graphs in the wild



#### Motivating Problem: Real Challenges



#### NELL: The Never-Ending Language Learner

• Large-scale IE project (Carlson et al., AAAII0)

| NELL @cmunell                                                       | 9h                                                    |
|---------------------------------------------------------------------|-------------------------------------------------------|
| True or False? "aston martin v12" is a kind of #Vehicle (bit.ly/I0X |                                                       |
| Expand                                                              | ♣ Reply 13 Retweet ★ Favorite *** More                |
| NELL @cmunell                                                       | 11h                                                   |
| True or False? "alive-yo<br>#ConsumerElectronicD                    | utube-video-converter" is a<br>evice (bit.ly/1bAsJOz) |
| Expand                                                              | 🛧 Reply 🚦 Retweet 🖈 Favorite 🚥 More                   |
| NELL @cmunell                                                       | 12h                                                   |
| True or False? "chicken                                             | bananas" is a type of #Meat (bit.ly/1iqJWR1)          |
| Expand                                                              | 🛧 Reply 🚦 Retweet 🖈 Favorite 🚥 More                   |
| NELL @cmunell                                                       | 14h                                                   |
| True or False? "stepher                                             | ns-woodrat" is a #Mammal (bit.ly/1dReAPY)             |
| Expand                                                              | Reply 13 Retweet * Favorite *** More                  |

- Lifelong learning: aims to "read the web"
- Ontology of known labels and relations
- Knowledge base contains millions of facts

#### person

- monarch
- astronaut
- personbylocation
  - personnorthamerica
    - personcanada
    - personus
    - politicianus
    - personmexico
  - personeurope
  - personaustralia
- personafrica
- personsouthamerica
- personasia
- personantarctica
   visualartist
- visuala
   model
- scientist
- Journali
- journalist
   female
- Terria
- actor
   professor
- director
- architect
- politician
- politicianus
- musician
- athlete
- chef
- male
- writer
- ceo
- judge
- mlauthor
   coach
- Coaci
- celebrity
- comedian
- criminal

# Examples of NELL errors

#### Entity co-reference errors

Kyrgyzstan has many variants:

- Kyrgystan
- Kyrgistan
- Kyrghyzstan
- Kyrgzstan
- Kyrgyz Republic

Saudi Cultural Days in the Kyrgyz Republic has concluded its activities in the capital Bishkek in the weekend in a special ceremony held on this occasion. The event was attended by Deputy Minister of Culture and Tourism of the Kyrgyz Republic Koulev Mirza; Kyrgyzstan's Ambassador to Saudi Arabia Jusupbek Sharipov; the Saudi Embassy Acting Chargé d'affaires to Kyrgyzstan, Mari bin Barakah Al-Derbas and members of the embassy staff, in the presence of a heavy turnout of Kyrgyz citizens.

The Days of Culture of Saudi Arabia in Kyrgyzstan will be held from 6 to 9 May.

Refugees are often from areas where conflict is historically embedded and marked in ideology and injustice. The Tsarnaev family emigrated from the Chechen diaspora in Kyrgzstan, a region Stalin deported the Chechens to in 1943. After the fall of the Berlin Wall in 1991, Chechens engaged in a battle for independence from Russia that led to the Tsarnaevs' petition for refugee status in the early

Home > Holiday Destinations > Kyrghyzstan > Bishkek > Climate Profile

💋 Fast Forecast

**Holiday Weather** 

#### Missing and spurious labels

**Erik Kleyheeg** has just returned from Lesvos with some new bird images. Included here are: <u>Common</u> <u>Scops-Owl</u>, <u>Wood Warbler</u>, <u>Spanish Sparrow</u>, <u>Red-</u> <u>throated Pipit</u>, <u>Eurasian Chiff-chaff</u>, and <u>Cretzschmar's</u> <u>Bunting</u>.

**Anssi Kullberg** has sent along some great trip reports to unusual places, including Kyrgyzstan, Pakistan,

Kyrgyzstan is labeled a bird and a country

Куrgyzstan (/kɜrgɪ'stɑːn/ kur-gi-sтани;<sup>[5]</sup> Куrgyz: Кыргызстан (IPA: [qшrвшs'stɑn]); Russian: Киргизия), officially the Kyrgyz Republic (Kyrgyz: Кыргыз Республикасы; Russian: Кыргызская Республика), is a country located in Central Asia.<sup>[6]</sup> Landlocked and mountainous, Kyrgyzstan is bordered by Kazakhstan to the north, Uzbekistan to the west, Tajikistan to the southwest and China to the east. Its capital and largest city is Bishkek.

#### Missing and spurious relations

Guidance

#### Kazakhstan / Kyrgyzstan – Consular Fees

Organisation: Page history: Foreign & Commonwealth Office Published 4 April 2013 Kyrgyzstan's location is ambiguous – Kazakhstan, Russia and US are included in possible locations

#### Kyrgyzstan U.S. Air Base Future Unclear

A Central Asian country of incredible natural beauty and proud nomadic traditions, most of Kyrgyzstan was formally annexed to Russia in 1876. The Kyrgyz staged a major revolt against the Tsarist Empire in 1916 in which almost one-sixth of the Kyrgyz population was killed. Kyrgyzstan became a Soviet republic in 1936 and

### Violations of ontological knowledge

- Equivalence of co-referent entities (sameAs)
  - SameEntity(Kyrgyzstan, Kyrgyz Republic)
- Mutual exclusion (disjointWith) of labels
  - MUT(bird, country)
- Selectional preferences (domain/range) of relations
  - RNG(countryLocation, continent)

Enforcing these constraints requires **jointly** considering multiple extractions *across* documents

#### Examples where joint models have succeeded

#### Information extraction

- ER+Segmentation: Poon & Domingos, AAAI07
- SRL: Srikumar & Roth, EMNLP11
- Within-doc extraction: Singh et al., AKBC13
- Social and communication networks
  - Fusion: Eldardiry & Neville, MLG10
  - EMailActs: Carvalho & Cohen, SIGIR05
  - GraphID: Namata et al., KDD11

# GRAPH IDENTIFICATION



Available but inappropriate for analysis

Appropriate for further analysis

#### **Motivation: Different Networks**



<u>Communication Network</u> Nodes: Email Address Edges: Communication Node Attributes: Words Organizational Network Nodes: Person Edges: Manages Node Labels: Title





•What's involved?



•What's involved? •Entity Resolution (ER): Map input graph nodes to output graph nodes



#### •What's involved?

Entity Resolution (ER): Map input graph nodes to output graph nodes
Link Prediction (LP): Predict existence of edges in output graph



#### •What's involved?

- •Entity Resolution (ER): Map input graph nodes to output graph nodes
- Link Prediction (LP): Predict existence of edges in output graph
- •Node Labeling (NL): Infer the labels of nodes in the output graph



- Most work looks at these tasks in <u>isolation</u>
- In graph identification they are:
  - Evidence-Dependent Inference depend on observed input graph
     e.g., ER depends on input graph
  - Intra-Dependent Inference within tasks are dependent
    - e.g., NL prediction depend on other NL predictions
  - Inter-Dependent Inference <u>across</u> tasks are dependent
    - e.g., LP depend on ER and NL predictions

# KNOWLEDGE GRAPH IDENTIFICATION

Pujara, Miao, Getoor, Cohen, ISWC 2013 (best student paper)

### Motivating Problem (revised)



#### **Knowledge Graph Identification**



#### **Solution:** Knowledge Graph Identification (KGI)

- Performs graph identification:
  - entity resolution
  - node labeling
  - link prediction
- Enforces ontological constraints
- Incorporates multiple uncertain sources

#### Illustration of KGI: Extractions

Uncertain Extractions: .5: Lbl(Kyrgyzstan, bird) .7: Lbl(Kyrgyzstan, country) .9: Lbl(Kyrgyz Republic, country) .8: Rel(Kyrgyz Republic, Bishkek, hasCapital)

## Illustration of KGI: Ontology + ER



# Illustration of KGI: Ontology + ER



#### Illustration of KGI



### Modeling Knowledge Graph Identification

#### Viewing KGI as a probabilistic graphical model



#### Background: Probabilistic Soft Logic (PSL)

(Broecheler et al., UAII0; Kimming et al., NIPS-ProbProgI2)

- Templating language for hinge-loss MRFs, very scalable!
- Model specified as a collection of logical formulas

SAMEENT
$$(E_1, E_2) \ \tilde{\wedge} LBL(E_1, L) \Rightarrow LBL(E_2, L)$$

Uses soft-logic formulation

- Truth values of atoms relaxed to [0,1] interval
- Truth values of formulas derived from Lukasiewicz t-norm

 $p\tilde{\wedge}q = \max(0, p+q-1)$  $p\tilde{\vee}q = \min(1, p+q)$  $\tilde{\neg}p = 1-p$  $p\tilde{\Rightarrow}q = \min(1, q-p+1)$ 

### Soft Logic Tutorial: Rules to Groundings

- Given a database of evidence, we can convert rule templates to instances (grounding)
- Rules are grounded by substituting literals into formulas

SAMEENT $(E_1, E_2) \ \tilde{\wedge} \ \operatorname{LBL}(E_1, L) \Rightarrow \operatorname{LBL}(E_2, L)$ 

- SAMEENT(Kyrgyzstan, Kyrygyz Republic)
- $\tilde{\wedge}$  LBL(Kyrgyzstan, country)
  - $\Rightarrow$  Lbl(Kyrygyz Republic, country)
- The soft logic interpretation assigns a "satisfaction" value to each ground rule
#### Soft Logic Tutorial: Groundings to Satisfaction

SAMEENT(Kyrgyzstan, Kyrygyz Republic) : 0.9  $\tilde{\wedge}$ LBL(Kyrgyzstan, country) : 0.8

$$p\tilde{\vee}q = \max(0, p+q-1)$$

SAMEENT(Kyrgyzstan, Kyrygyz Republic)  $\tilde{\wedge}$ LBL(Kyrgyzstan, country) = max(0, 0.9 + 0.8 - 1) Soft Logic Tutorial: Groundings to Satisfaction (SAMEENT(Kyrgyzstan, Kyrygyz Republic)  $\tilde{\wedge}$  LBL(Kyrgyzstan, country)) : 0.7  $\Rightarrow$  LBL(Kyrygyz Republic, country) : 0.6

$$p \tilde{\Rightarrow} q = \min(1, q - p + 1)$$

SAMEENT(Kyrgyzstan, Kyrygyz Republic)  $\tilde{\wedge}$  LBL(Kyrgyzstan, country)  $\Rightarrow$  LBL(Kyrygyz Republic, country)  $= \min(1, 0.6 - 0.7 + 1) = 0.9$ 

#### Soft Logic Tutorial: Inferring Satisfaction

(SAMEENT(Kyrgyzstan, Kyrygyz Republic)) $\tilde{\wedge} LBL(Kyrgyzstan, country)) : 0.7$  $\Rightarrow LBL(Kyrygyz Republic, country) :?$ 



#### Soft Logic Tutorial: Distance to Satisfaction



#### Background: PSL Rules to Distributions

- Rules are grounded by substituting literals into formulas
- $\mathbf{w_{EL}} : SAMEENT(Kyrgyzstan, Kyrygyz Republic) \tilde{\wedge} \\ LBL(Kyrgyzstan, country) \Rightarrow LBL(Kyrygyz Republic, country)$ 
  - Each ground rule has a weighted *distance to satisfaction* derived from the formula's truth value

$$P(G | E) = \frac{1}{Z} \exp\left[-\sum_{r \in R} w_r \varphi_r(G)\right]$$

 The PSL program can be interpreted as a joint probability distribution over all variables in knowledge graph, conditioned on the extractions

#### Background: Finding the best knowledge graph

- MPE inference solves  $\max_{G} P(G)$  to find the best KG
- In PSL, inference solved by convex optimization
- Efficient: running time empirically scales with O(|R|) (Bach et al., NIPS12)

(Pujara et al., ISWCI3)

#### PSL Rules for KGI Model

#### **PSL Rules: Uncertain Extractions**



#### **PSL Rules: Entity Resolution**

 $\mathbf{w_{EL}} : \mathrm{SAMEENT}(E_1, E_2) \tilde{\wedge} \mathrm{LBL}(E_1, L) \Rightarrow \mathrm{LBL}(E_2, L)$  $\mathbf{w_{ER}} : \mathrm{SAMEENT}(E_1, E_2) \tilde{\wedge} \mathrm{REL}(E_1, E, R) \Rightarrow \mathrm{REL}(E_2, E, R)$  $\mathbf{w_{ER}} : \mathrm{SAMEENT}(E_1, E_2) \tilde{\wedge} \mathrm{REL}(E, E_1, R) \Rightarrow \mathrm{REL}(E, E_2, R)$ 

SameEnt predicate captures confidence that entities are co-referent

- Rules require co-referent entities to have the same labels and relations
- Creates an equivalence class of co-referent entities

## PSL Rules: Ontology

**Inverse:** 

 $\mathbf{w}_{\mathbf{O}}$ : INV(R, S)  $\tilde{\wedge}$  REL $(E_1, E_2, R)$   $\Rightarrow$  REL $(E_2, E_1, S)$ 

**Selectional Preference:** 

 $\mathbf{w_{O}}: \operatorname{DOM}(R, L) \qquad \tilde{\wedge} \operatorname{Rel}(E_{1}, E_{2}, R) \implies \operatorname{LBL}(E_{1}, L)$  $\mathbf{w_{O}}: \operatorname{RNG}(R, L) \qquad \tilde{\wedge} \operatorname{Rel}(E_{1}, E_{2}, R) \implies \operatorname{LBL}(E_{2}, L)$ 

Subsumption:

 $\mathbf{w_{O}}: \operatorname{SUB}(L, P) \qquad \tilde{\wedge} \operatorname{LBL}(E, L) \qquad \Rightarrow \operatorname{LBL}(E, P)$  $\mathbf{w_{O}}: \operatorname{RSUB}(R, S) \qquad \tilde{\wedge} \operatorname{REL}(E_{1}, E_{2}, R) \qquad \Rightarrow \operatorname{REL}(E_{1}, E_{2}, S)$ 

Mutual Exclusion:

 $\mathbf{w}_{\mathbf{O}}: \operatorname{MUT}(L_{1}, L_{2}) \quad \tilde{\wedge} \operatorname{LBL}(E, L_{1}) \quad \Rightarrow \quad \tilde{\neg} \operatorname{LBL}(E, L_{2})$  $\mathbf{w}_{\mathbf{O}}: \operatorname{RMUT}(R, S) \quad \tilde{\wedge} \operatorname{REL}(E_{1}, E_{2}, R) \quad \Rightarrow \quad \tilde{\neg} \operatorname{REL}(E_{1}, E_{2}, S)$ 

Adapted from Jiang et al., ICDM 2012



φ

φ



(Pujara et al., ISWCI3)

#### Evaluation

#### **Two Evaluation Datasets**

|                                | LinkedBrainz                                                                    | NELL                                                       |  |
|--------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------|--|
| Description                    | Community-supplied data about<br>musical artists, labels, and<br>creative works | Real-world IE system extracting general facts from the WWW |  |
| Noise                          | Realistic synthetic noise                                                       | Imperfect extractors and ambiguous web pages               |  |
| Candidate Facts                | 810K                                                                            | I.3M                                                       |  |
| Unique Labels<br>and Relations | 27                                                                              | 456                                                        |  |
| Ontological<br>Constraints     | 49                                                                              | 67.9K                                                      |  |



- Open source communitydriven structured database of music metadata
- Uses proprietary schema to represent data



- Built on popular ontologies such as FOAF and FRBR
- Widely used for music data (e.g. BBC Music Site)



LinkedBrainz project provides an RDF mapping from MusicBrainz data to Music Ontology using the D2RQ tool

#### LinkedBrainz dataset for KGI



| Mapping to FRBR/FOAF ontology |                    |  |  |
|-------------------------------|--------------------|--|--|
| DOM                           | rdfs:domain        |  |  |
| RNG                           | rdfs:range         |  |  |
| INV                           | owl:inverseOf      |  |  |
| SUB                           | rdfs:subClassOf    |  |  |
| RSUB                          | rdfs:subPropertyOf |  |  |
| MUT                           | owl:disjointWith   |  |  |

#### LinkedBrainz experiments

Comparisons:

**PSL-KGI** 

BaselineUse noisy truth values as fact scoresPSL-ERONIVOnly apply rules for Entity Resolution

**PSL-OntOnly** Only apply rules for **Ont**ological reasoning

Apply Knowledge Graph Identification model

|             | AUC   | Precision | Recall | FI at .5 | Max FI |
|-------------|-------|-----------|--------|----------|--------|
| Baseline    | 0.672 | 0.946     | 0.477  | 0.634    | 0.788  |
| PSL-EROnly  | 0.797 | 0.953     | 0.558  | 0.703    | 0.831  |
| PSL-OntOnly | 0.753 | 0.964     | 0.605  | 0.743    | 0.832  |
| PSL-KGI     | 0.901 | 0.970     | 0.714  | 0.823    | 0.919  |

#### NELL Evaluation: two settings

Target Set: restrict to a subset of KG (Jiang, ICDM12)



- Closed-world model
- Uses a target set: subset of KG
- Derived from 2-hop neighborhood
- Excludes trivially satisfied variables

Complete: Infer full knowledge graph



- Open-world model
- All possible entities, relations, labels
- Inference assigns truth value to each variable

#### NELL experiments:

Target Set

Task: Compute truth values of a target set derived from the evaluation data

#### **Comparisons:**

**Baseline** Average confidences of extractors for each fact in the NELL candidates

**NELL** Evaluate NELL's promotions (on the full knowledge graph)

**MLN** Method of (Jiang, ICDM12) – estimates marginal probabilities with MC-SAT

PSL-KGI Apply full Knowledge Graph Identification model

**Running Time:** Inference completes in 10 seconds, values for 25K facts

|                 | AUC  | FI   |
|-----------------|------|------|
| Baseline        | .873 | .828 |
| NELL            | .765 | .673 |
| MLN (Jiang, 12) | .899 | .836 |
| PSL-KGI         | .904 | .853 |

# NELL experiments: Complete knowledge graph

Task: Compute a full knowledge graph from uncertain extractions

#### **Comparisons:**

- **NELL**'s strategy: ensure ontological consistency with existing KB
- **PSL-KGI** Apply full Knowledge Graph Identification model

**Running Time:** Inference completes in 130 minutes, producing 4.3M facts

|         | AUC   | Precision | Recall | FI    |
|---------|-------|-----------|--------|-------|
| NELL    | 0.765 | 0.801     | 0.477  | 0.634 |
| PSL-KGI | 0.892 | 0.826     | 0.871  | 0.848 |

# KNOWLEDGE GRAPH ENTITY RESOLUTION

#### Problem: Merge domain KG to global KG



#### Approach: Factored Entity Resolution model

- Goal: Build a generic entity resolution model for KGs
- Build on vast amount of work on Entity Resolution
- PSL provides an easy, flexible, sophisticated models

|                 | Local              | Collective             |
|-----------------|--------------------|------------------------|
| General         | String similarity  | Sparsity;Transitivity  |
| New Entity      | New Entity prior   | New Entity penalty     |
| Knowledge Graph | Type compatibility | Relation compatibility |
| Domain-Specific | (Album length)     | (Artist's country)     |

### **Preliminary Results**

- Task: ER from MusicBrainz to Google KG
- Data:
  - IIK MusicBrainz entities (5/5-6/29/14)
  - 330K Freebase entities
  - I5.7M relations
  - IIK human labels

| Methods     | FI    | AUPRC |
|-------------|-------|-------|
| General     | 0.734 | 0.416 |
| +Collective | 0.805 | 0.569 |
| +NewEntity  | 0.840 | 0.724 |

# FASTER KNOWLEDGE GRAPH CONSTRUCTION

### Partitioning

#### Problem: Knowledge Graphs are HUGE



#### Solution: Partition the Knowledge Graph



#### Partitioning: advantages and drawbacks

#### Advantages

- Smaller problems
- Parallel Inference
- Speed / Quality Tradeoff

#### Drawbacks

- Partitioning large graph time-consuming
- Key dependencies may be lost
- New facts require re-partitioning

# Key idea: Ontology-aware partitioning



 Induce a partitioning of the knowledge graph based on the ontology partition

#### **Considerations: Ontology-aware Partitions**

#### Advantages:

- Ontology is a smaller graph
- Ontology coupled with dependencies
- New facts can reuse partitions

#### Disadvantages:

- Insensitive to data distribution
- All dependencies treated equally

## Refinement: include data frequency

Annotate each ontological element with its frequency



Partition ontology with constraint of equal vertex weights

# Refinement: weight edges by type

• Weight edges by their ontological importance



#### Experiments: Partitioning Approaches

Comparisons (6 partitions):

| NELL             | Default promotion strategy, no KGI            |
|------------------|-----------------------------------------------|
| KGI              | No partitioning, full knowledge graph model   |
| baseline         | KGI, Randomly assign extractions to partition |
| Ontology         | KGI, Edge min-cut of ontology graph           |
| O+Vertex         | KGI, Weight ontology vertices by frequency    |
| <b>O+V+E</b> dge | KGI, Weight ontology edges by inv. frequency  |

|          | AUPRC | Running Time (min) | <b>Opt.Terms</b> |
|----------|-------|--------------------|------------------|
| NELL     | 0.765 | -                  |                  |
| KGI      | 0.794 | 97                 | 10.9M            |
| baseline | 0.780 | 31                 | 3.0M             |
| Ontology | 0.788 | 42                 | 4.2M             |
| O+Vertex | 0.791 | 31                 | 3.7M             |
| O+V+Edge | 0.790 | 31                 | 3.7M             |

# **Evolving Models**

#### Problem: Incremental Updates to KG



How do we add new extractions to the Knowledge Graph?
#### Naïve Approach: Full KGI over extractions



#### Improving the naïve approach

- Intuition: Much of previous KG does not change
- Online collective inference:
  - Selectively update the MAP state
  - Bound the *regret* of partial updates
  - Efficiently determine which variables to infer

## Key Idea: fix some variables, infer others



## Approximation: KGI over subset of graph



## Theory: Regret of approximating update

$$\mathfrak{R}_{n}(\mathbf{x}, \mathbf{y}_{\mathcal{S}}; \dot{\mathbf{w}}) \leq O\left(\sqrt{\frac{B\|\mathbf{w}\|_{2}}{n \cdot w_{p}}} \|\mathbf{y}_{\mathcal{S}} - \hat{\mathbf{y}}_{\mathcal{S}}\|_{1}\right)$$

#### Practice: Regret and Approximation Algo



#### Conclusion

- Knowledge Graph Identification is a powerful technique for producing knowledge graphs from noisy IE system output
- Using PSL we are able to enforce global ontological constraints and capture uncertainty in our model
- Unlike previous work, our approach infers complete knowledge graphs for datasets with millions of extractions

Code available on GitHub:

https://github.com/linqs/KnowledgeGraphIdentification

# Key Collaborators







