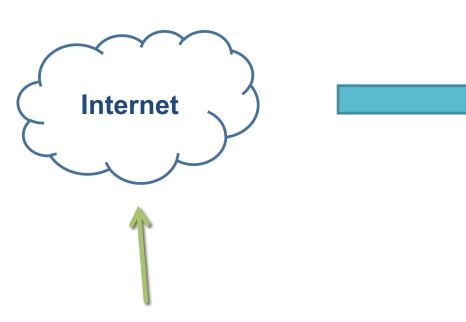
KNOWLEDGE GRAPH CONSTRUCTION

Jay Pujara

Karlsruhe Institute of Technology 7/7/2015

Can Computers Create Knowledge?



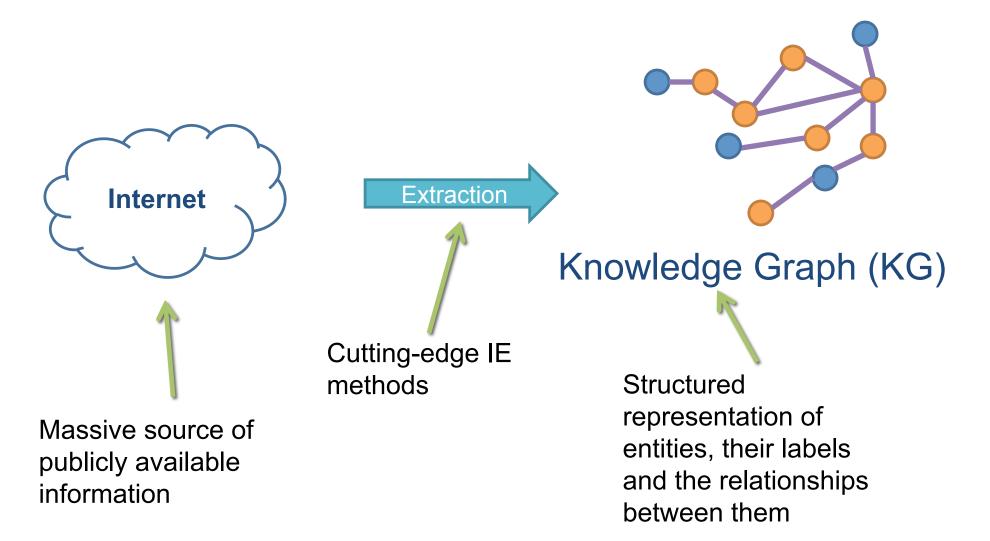
JUDGE HIMSELF. 10

Knowledge

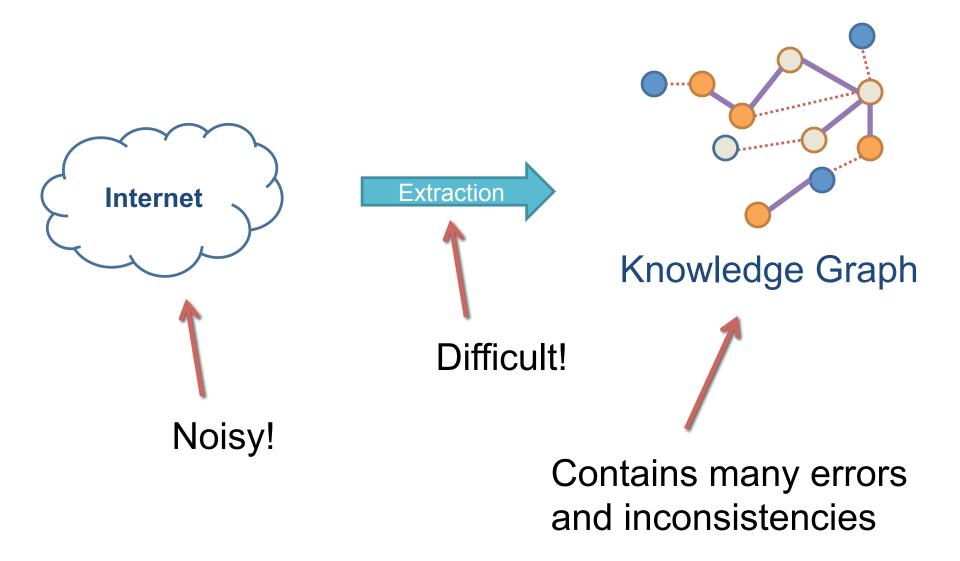
Massive source of publicly available information

4-6, 3rd in Yesterda	York Giants n NFC Eastern Division y, 4:25 PM (ET) Stadium, East Ruther	on							••••• EE ຈີ "What	13:23 [®] 31% sort of Pokémon is
C	Green Bay Packers	13 - 27		New Gia		n		NEW YORK GIANTS OFFICIAL GOOGLE+ PAGE		Pikachu"
	(5-5)	Final		-	(4-6)			Now York (tap to edit
Packers			1	2	34 07	To 1		New York (The answer is	electric.
Giants			7	•	10 7			The New York Giants are East Rutherford, New Jer		
Sun, Nov	Sun, Nov 24 vs. 🜟 Cowboys 4:25 PM (ET)				Т)	area. Wikipedia Arena/Stadium: MetLife				
								Head coach: Tom Cough	Pikachu type	
								Location: East Rutherfor	Result	
News for	Giants							Division: NFC East	electric	
f Peo	ple I know who st	tudied at University of	Marylanc	l, Coll	ege F	Park		NEL championships: 19		
Э т 🔎	People I know	who studied at Univer	sity of M	aryla	nd, C	olleg	e Par	′k ∙mumbai, College	English name	Pikachu
									Japanese name	ピカチュウ (Pikachu)
	Friends of people I know who studied at University of Maryland, College Park mum							ollege Park · mum	Pokédex number	25
type electric							electric			
Photos of people I know who studied at University of Maryland, College Park mumb Photos by people I know who studied at University of Maryland, College Park mum								?		

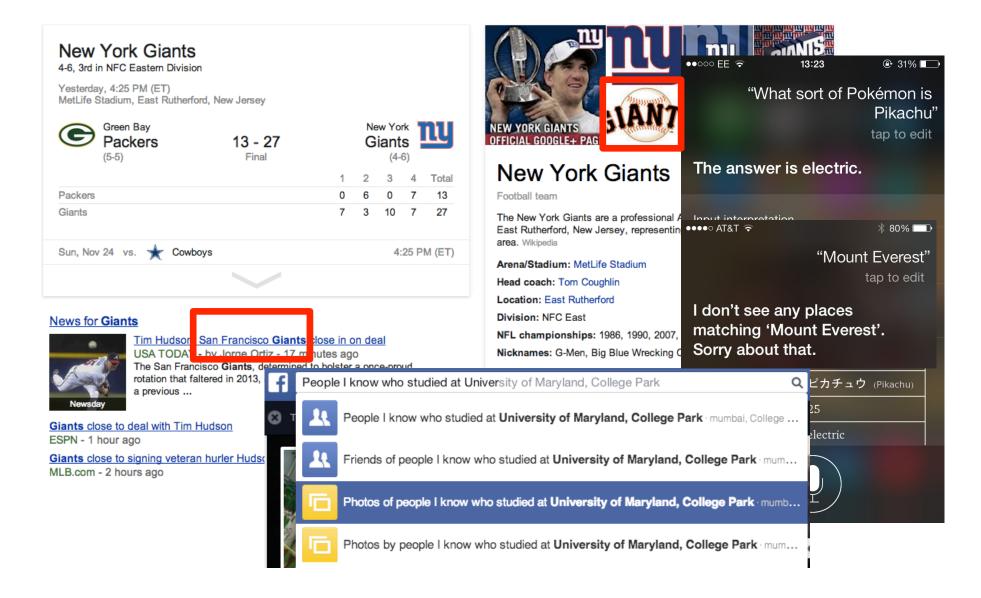
Motivating Problem: New Opportunities



Motivating Problem: Real Challenges



Knowledge Graphs in the wild



Overview

Problem: Build a Knowledge Graph from millions of noisy extractions

Method:

Use probabilistic soft logic to easily specify models and efficiently optimize them Approach: **Knowledge Graph Identification** reasons jointly over all facts in the knowledge graph

Results:

State-of-the-art performance on real-world datasets producing knowledge graphs with millions of facts

NELL: The Never-Ending Language

NELL @cmunell True or False? "kevn tv" is a #TVStation (bit.ly/18JQ8gs) Expand	1 Oct
NELL @cmunell True or False? "metro-Atlanta" is a #County (bit.ly/1hhsefl) Expand	1 Oct
NELL @cmunell True or False? "exclusive right" is an #Artery (bit.ly/1bZq2LA) Expand	1 Oct
NELL @cmunell True or False? "Fireplace" is #SomethingFoundInOrOnBuilding (bit.ly/17E1JhW) Expand Reply 13 Retweet Favorite	
NELL @cmunell True or False? "will_whalen" is an #AustralianPerson (bit.ly/1fU Expand	1 Oct JzRdT)
NELL @cmunell True or False? "iron_chair" is a #HouseholdItem (bit.ly/14ZsCN Expand	30 Sep Ik)
NELL @cmunell	30 Sep

True or False? "jerry gordon" is a #Chef (bit.ly/19Ry4QN) Expand

- Large-scale IE project (Carlson et al., 2010)
- Lifelong learning: aims to "read the web"
- Ontology of known labels and relations
- Knowledge base contains millions of facts

monarch

- monarch
- astronaut
- personbylocation
 - personnorthamerica
 - personcanada
 - personus
 - politicianus
 - personmexico
 - personeurope
 - personaustralia
- personafrica
- personsouthamerica
- personasia
- personantarctica
 visualartist
- visualai
 model
- model
- scientist
- journalist
 female
- Tema
- actor
- professor
 director
- architect
- politician
- politicianus
- musician
- athlete
- chef
- male
- writer
 ceo
- judge
- mlauthor
- coach
- celebrity
- comedian
- criminal

Examples of NELL errors

Entity co-reference errors

Kyrgyzstan has many variants:

- Kyrgystan
- Kyrgistan
- Kyrghyzstan
- Kyrgzstan
- Kyrgyz Republic

Saudi Cultural Days in the Kyrgyz Republic has concluded its activities in the capital Bishkek in the weekend in a special ceremony held on this occasion. The event was attended by Deputy Minister of Culture and Tourism of the Kyrgyz Republic Koulev Mirza; Kyrgyzstan's Ambassador to Saudi Arabia Jusupbek Sharipov; the Saudi Embassy Acting Chargé d'affaires to Kyrgyzstan, Mari bin Barakah Al-Derbas and members of the embassy staff, in the presence of a heavy turnout of Kyrgyz citizens.

The Days of Culture of Saudi Arabia in Kyrgyzstan will be held from 6 to 9 May.

Home > Holiday Destinations > Kyrghyzstan > Bishkek > Climate Profile

🥝 Fast Forecast

Holiday Weather

Refugees are often from areas where conflict is historically embedded and marked in ideology and injustice. The Tsarnaev family emigrated from the Chechen diaspora in Kyrgzstan, a region Stalin deported the Chechens to in 1943. After the fall of the Berlin Wall in 1991, Chechens engaged in a battle for independence from Russia that led to the Tsarnaevs' petition for refugee status in the early

Missing and spurious labels

Anssi Kullberg has sent along some great trip reports to unusual places, including Kyrgyzstan, Pakistan, Egypt/Jordan, and Afghanistan. I had to create a whole new country page for Afghanistan to hold that last one! Thanks so much, Anssi!

Erik Kleyheeg has just returned from Lesvos with some new bird images. Included here are: <u>Common</u> <u>Scops-Owl</u>, <u>Wood Warbler</u>, <u>Spanish Sparrow</u>, <u>Red-</u> <u>throated Pipit</u>, <u>Eurasian Chiff-chaff</u>, and <u>Cretzschmar's</u> <u>Bunting</u>. Kyrgyzstan is labeled a bird and a country

Куrgyzstan (/kɜrgɪ'stɑːn/ kur-gi-sтани;^[5] Kyrgyz: Кыргызстан (IPA: [qшrвшs'stɑn]); Russian: Киргизия), officially the Kyrgyz Republic (Kyrgyz: Кыргыз Республикасы; Russian: Кыргызская Республика), is a country located in Central Asia.^[6] Landlocked and mountainous, Kyrgyzstan is bordered by Kazakhstan to the north, Uzbekistan to the west, Tajikistan to the southwest and China to the east. Its capital and largest city is Bishkek.

Missing and spurious relations

Guidance

Kazakhstan / Kyrgyzstan – Consular Fees

Organisation:Foreign & Commonwealth OfficePage history:Published 4 April 2013

Kyrgyzstan's location is ambiguous – Kazakhstan, Russia and US are included in possible locations

Kyrgyzstan U.S. Air Base Future Unclear

A Central Asian country of incredible natural beauty and proud nomadic traditions, most of Kyrgyzstan was formally annexed to Russia in 1876. The Kyrgyz staged a major revolt against the Tsarist Empire in 1916 in which almost one-sixth of the Kyrgyz population was killed. Kyrgyzstan became a Soviet republic in 1936 and

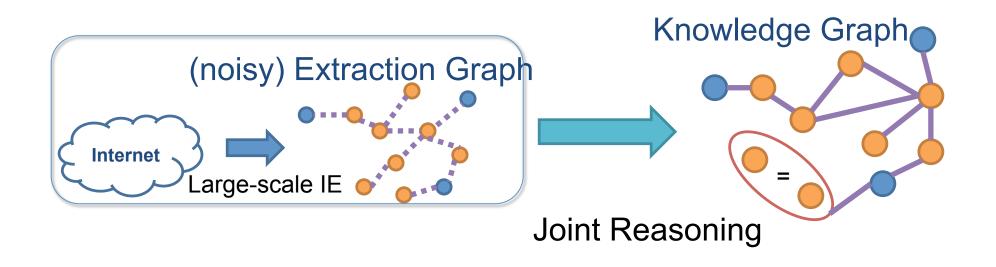
Violations of ontological knowledge

- Equivalence of co-referent entities (sameAs)
 - SameAs(Kyrgyzstan, Kyrgyz Republic)
- Mutual exclusion (disjointWith) of labels
 - MUT(bird, country)
- Selectional preferences (domain/range) of relations
 - RNG(countryLocation, continent)

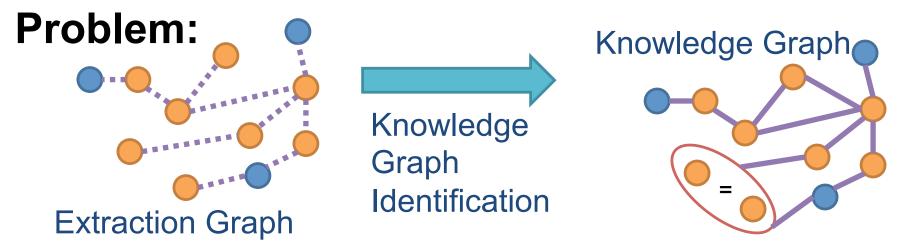
Enforcing these constraints require **jointly** considering multiple extractions

KNOWLEDGE GRAPH IDENTIFICATION

Motivating Problem (revised)



Knowledge Graph Identification



Solution: Knowledge Graph Identification (KGI)

- Performs graph identification:
 - entity resolution
 - collective classification
 - link prediction
- Enforces ontological constraints
- Incorporates *multiple uncertain sources*

Illustration of KGI: Extractions

Uncertain Extractions:

- .5: Lbl(Kyrgyzstan, bird)
- .7: Lbl(Kyrgyzstan, country)
- .9: Lbl(Kyrgyz Republic, country)
- .8: Rel(Kyrgyz Republic, Bishkek, hasCapital)

Illustration of KGI: Extraction Graph

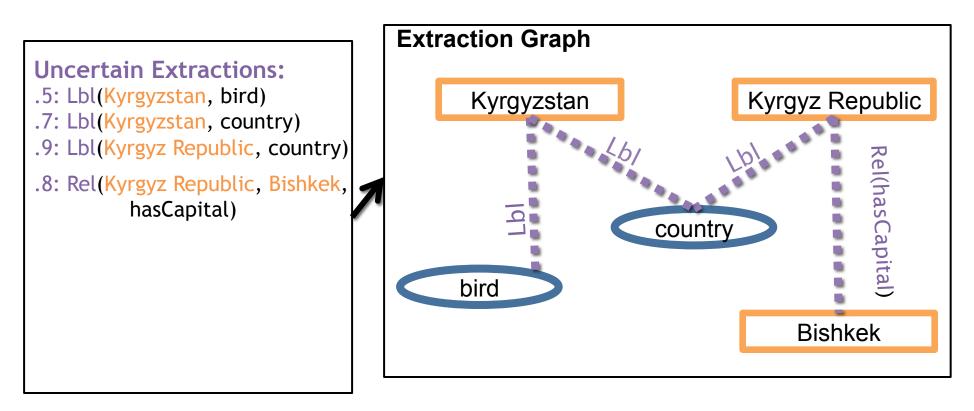


Illustration of KGI: Ontology + ER

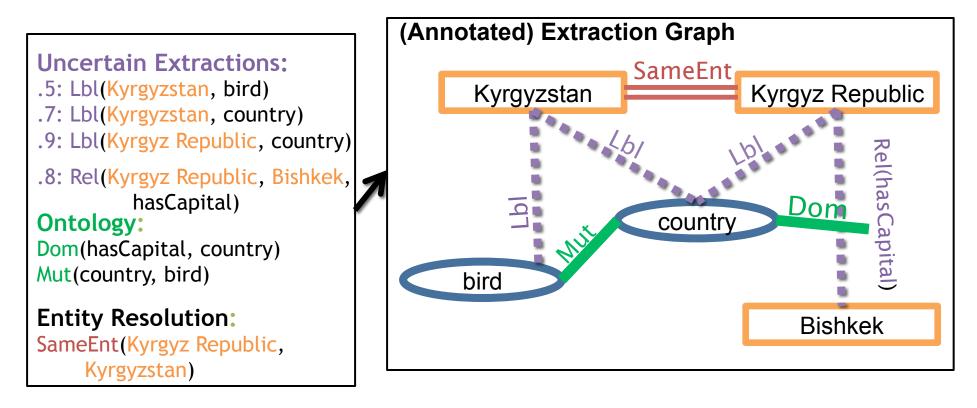
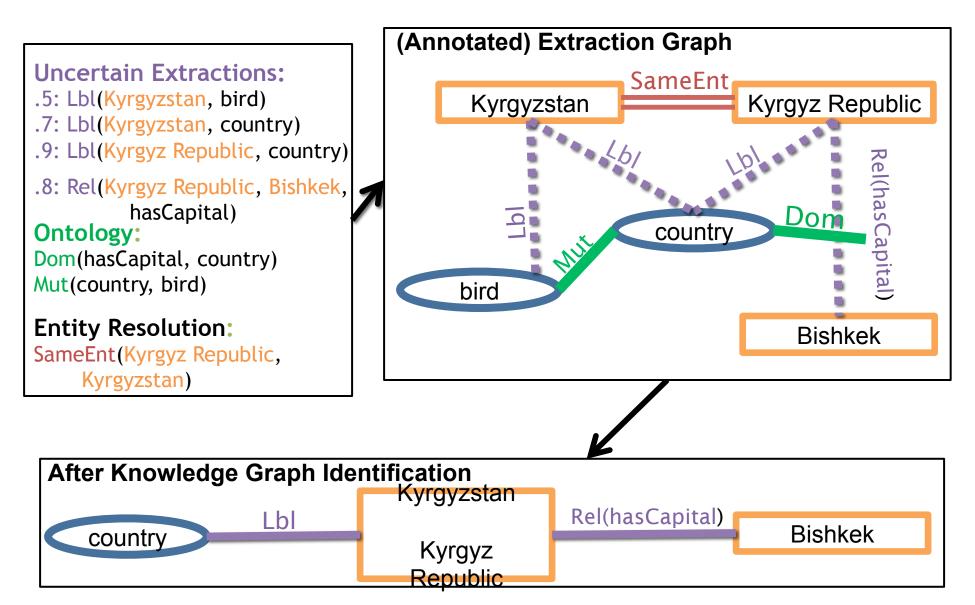
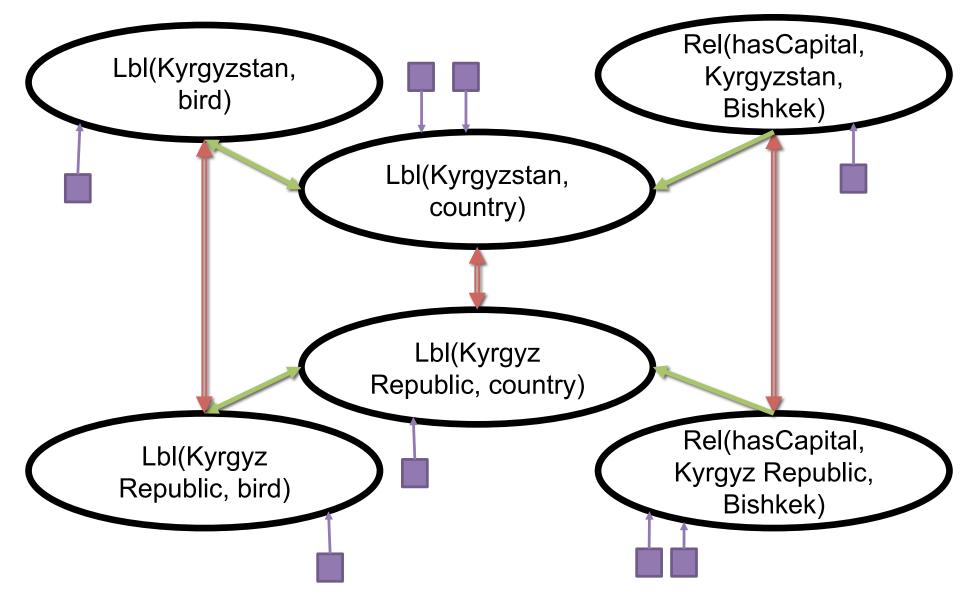


Illustration of KGI



Viewing KGI as a probabilistic graphical model



Background: Probabilistic Soft Logic (PSL)

(Broecheler et al., UAI10; Kimming et al., NIPS-ProbProg12)

- Templating language for hinge-loss MRFs, very scalable!
- Model specified as a collection of logical formulas SAMEENT $(E_1, E_2) \land LBL(E_1, L) \Rightarrow LBL(E_2, L)$
 - Uses soft-logic formulation
 - Truth values of atoms relaxed to [0,1] interval
 - Truth values of formulas derived from Lukasiewicz t-norm

Background: PSL Rules to Distributions

- Rules are *grounded* by substituting literals into formulas
- $\mathbf{w_{EL}} : SAMEENT(Kyrgyzstan, Kyrygyz Republic) \tilde{\wedge} \\ LBL(Kyrgyzstan, country) \Rightarrow LBL(Kyrygyz Republic, country)$
 - Each ground rule has a weighted distance to satisfaction derived from the formula's truth value

$$P(G | E) = \frac{1}{Z} \exp\left[-\sum_{r \in R} w_r \varphi_r(G)\right]$$

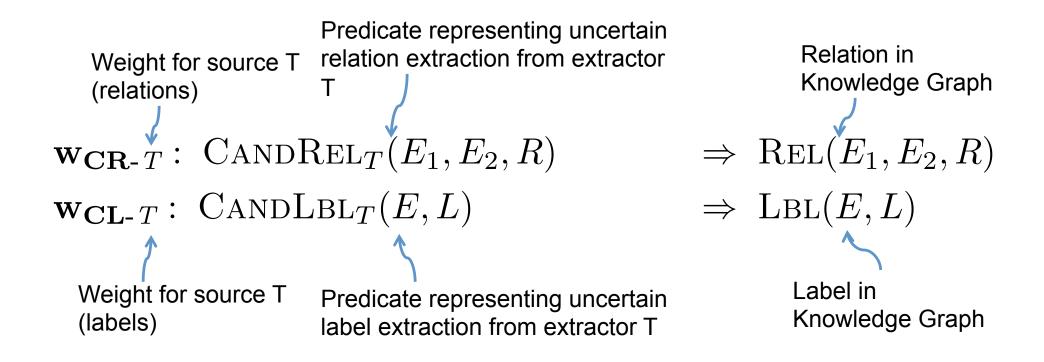
 The PSL program can be interpreted as a joint probability distribution over all variables in knowledge graph, conditioned on the extractions

Background: Finding the best knowledge graph

- MPE inference solves $max_G P(G)$ to find the best KG
- In PSL, inference solved by convex optimization
- Efficient: running time empirically scales with O(|R|) (Bach et al., NIPS12)

(Pujara et al., ISWC13)

PSL Rules: Uncertain Extractions



PSL Rules: Entity Resolution

 $\mathbf{w_{EL}} : \mathrm{SAMEENT}(E_1, E_2) \tilde{\wedge} \mathrm{LBL}(E_1, L) \Rightarrow \mathrm{LBL}(E_2, L)$ $\mathbf{w_{ER}} : \mathrm{SAMEENT}(E_1, E_2) \tilde{\wedge} \mathrm{REL}(E_1, E, R) \Rightarrow \mathrm{REL}(E_2, E, R)$ $\mathbf{w_{ER}} : \mathrm{SAMEENT}(E_1, E_2) \tilde{\wedge} \mathrm{REL}(E, E_1, R) \Rightarrow \mathrm{REL}(E, E_2, R)$

SameEnt predicate captures confidence that entities are co-referent

- Rules require co-referent entities to have the same labels and relations
- Creates an *equivalence class* of co-referent entities

PSL Rules: Ontology

Inverse:

 $\mathbf{w}_{\mathbf{O}}$: INV(R, S) $\tilde{\wedge}$ REL $(E_1, E_2, R) \Rightarrow$ REL (E_2, E_1, S)

Selectional Preference:

 $\mathbf{w_{O}}: \operatorname{DOM}(R, L) \qquad \tilde{\wedge} \operatorname{Rel}(E_{1}, E_{2}, R) \implies \operatorname{LBL}(E_{1}, L)$ $\mathbf{w_{O}}: \operatorname{RNG}(R, L) \qquad \tilde{\wedge} \operatorname{Rel}(E_{1}, E_{2}, R) \implies \operatorname{LBL}(E_{2}, L)$

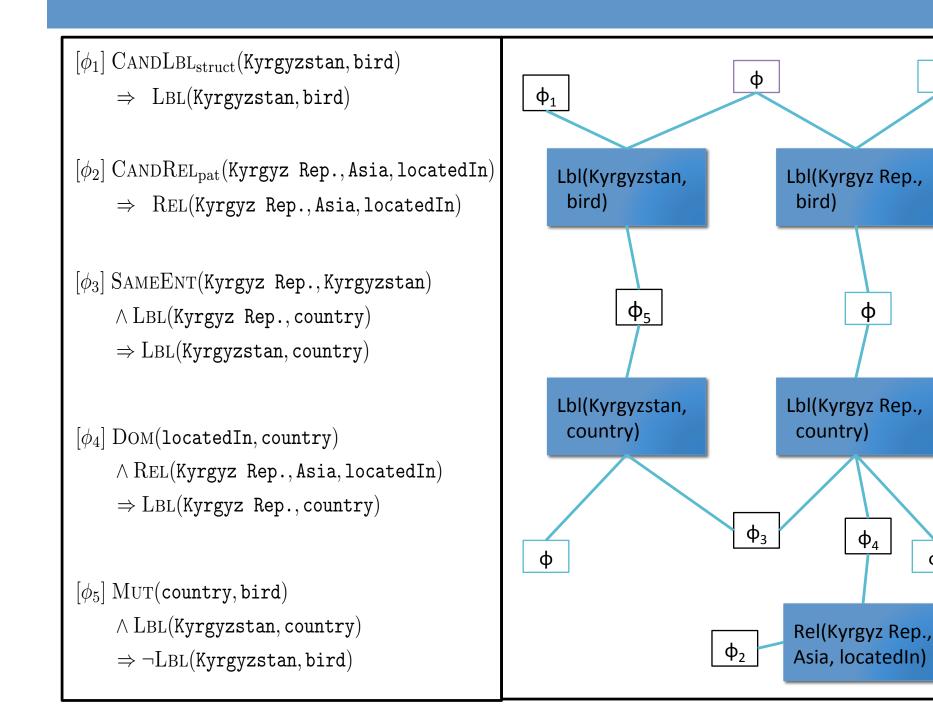
Subsumption:

 $\mathbf{w_{O}}: \operatorname{SUB}(L, P) \qquad \tilde{\wedge} \operatorname{LBL}(E, L) \qquad \Rightarrow \operatorname{LBL}(E, P)$ $\mathbf{w_{O}}: \operatorname{RSUB}(R, S) \qquad \tilde{\wedge} \operatorname{REL}(E_{1}, E_{2}, R) \qquad \Rightarrow \operatorname{REL}(E_{1}, E_{2}, S)$

Mutual Exclusion:

 $\mathbf{w}_{\mathbf{O}}: \operatorname{MUT}(L_{1}, L_{2}) \quad \tilde{\wedge} \operatorname{LBL}(E, L_{1}) \quad \Rightarrow \quad \tilde{\neg} \operatorname{LBL}(E, L_{2})$ $\mathbf{w}_{\mathbf{O}}: \operatorname{RMUT}(R, S) \quad \tilde{\wedge} \operatorname{REL}(E_{1}, E_{2}, R) \quad \Rightarrow \quad \tilde{\neg} \operatorname{REL}(E_{1}, E_{2}, S)$

Adapted from Jiang et al., ICDM 2012



φ

φ

Probability Distribution over KGs $P(G \mid E) = \frac{1}{Z} \exp\left[-\sum_{r \in R} w_r \varphi_r(G)\right]$ $CANDLBL_T(kyrgyzstan, bird)$ \Rightarrow LBL(kyrgyzstan, bird) MUT(bird, country) $\tilde{\wedge}$ LBL(kyrgyzstan, bird) $\Rightarrow \neg LBL(kyrgyzstan, country)$ SAMEENT(kyrgz republic,kyrgyzstan) $\tilde{\wedge}$ LBL(kyrgz republic, country) LBL(kyrgyzstan, country) \Rightarrow

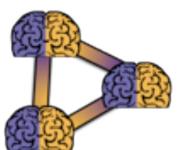
EVALUATION

Two Evaluation Datasets

	LinkedBrainz	NELL		
Description	Community-supplied data about musical artists, labels, and creative works	Real-world IE system extracting general facts from the WWW		
Noise	Realistic synthetic noise	Imperfect extractors and ambiguous web pages		
Candidate Facts	810K	1.3M		
Unique Labels and Relations	27	456		
Ontological Constraints	49	67.9K		

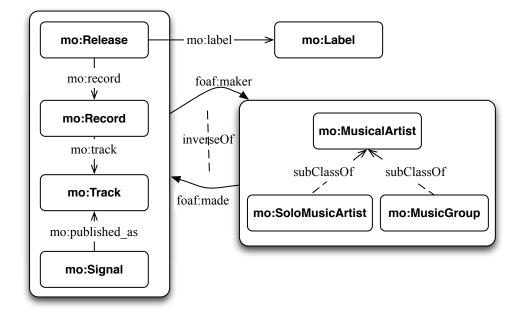
- Open source communitydriven structured database of music metadata
- Uses proprietary schema to represent data

- Built on popular ontologies such as FOAF and FRBR
- Widely used for music data (e.g. BBC Music Site)



LinkedBrainz project provides an RDF mapping from MusicBrainz data to Music Ontology using the D2RQ tool

LinkedBrainz dataset for KGI



Mapping to FRBR/FOAF ontology				

LinkedBrainz experiments

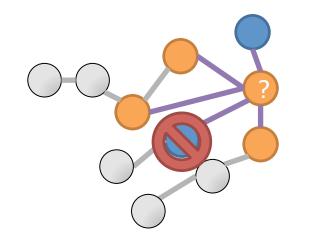
Comparisons:

Baseline PSL-EROnly PSL-OntOnly PSL-KGI model Use noisy truth values as fact scores Only apply rules for Entity Resolution Only apply rules for **Ont**ological reasoning Apply **K**nowledge **G**raph Identification

	AUC	Precision	Recall	F1 at .5	Max F1
Baseline	0.672	0.946	0.477	0.634	0.788
PSL-EROnly	0.797	0.953	0.558	0.703	0.831
PSL-OntOnly	0.753	0.964	0.605	0.743	0.832
PSL-KGI	0.901	0.970	0.714	0.823	0.919

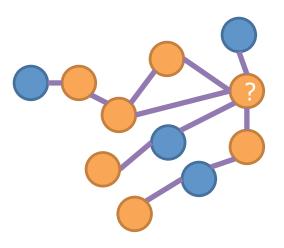
NELL Evaluation: two settings

Target Set: restrict to a subset of KG (Jiang, ICDM12)



- Closed-world model
- Uses a target set: subset of KG
- Derived from 2-hop neighborhood
- Excludes trivially satisfied variables

Complete: Infer full knowledge graph



- Open-world model
- All possible entities, relations, labels
- Inference assigns truth value to each variable

NELL experiments: Target Set

Task: Compute truth values of a target set derived from the evaluation data

Comparisons:

Baseline Average confidences of extractors for each fact in the NELL candidates

- **NELL** Evaluate NELL's promotions (on the full knowledge graph)
- **MLN** Method of (Jiang, ICDM12) estimates marginal probabilities with MC-SAT
- PSL-KGI Apply full Knowledge Graph Identification model

Running Time: Inference completes in 10 seconds, values for 25K facts

	AUC	F1
Baseline	.873	.828
NELL	.765	.673
MLN (Jiang, 12)	.899	.836
PSL-KGI	.904	.853

NELL experiments: Complete knowledge graph

Task: Compute a full knowledge graph from uncertain extractions

Comparisons:

NELL's strategy: ensure ontological consistency with existing KB

PSL-KGI Apply full Knowledge Graph Identification model

Running Time: Inference completes in 130 minutes, producing 4.3M facts

	AUC	Precision	Recall	F1
NELL	0.765	0.801	0.477	0.634
PSL-KGI	0.892	0.826	0.871	0.848

Conclusion

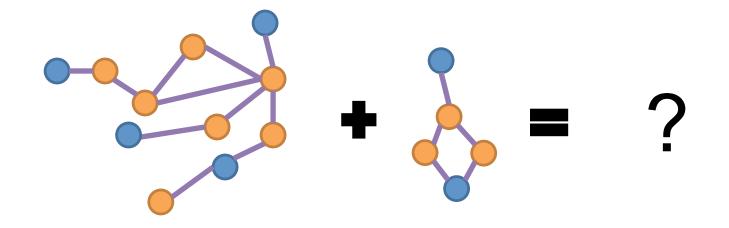
- Knowledge Graph Identification is a powerful technique for producing knowledge graphs from noisy IE system output
- Using PSL we are able to enforce global ontological constraints and capture uncertainty in our model
- Unlike previous work, our approach infers complete knowledge graphs for datasets with millions of extractions

Code available on GitHub:

https://github.com/linqs/KnowledgeGraphIdentification

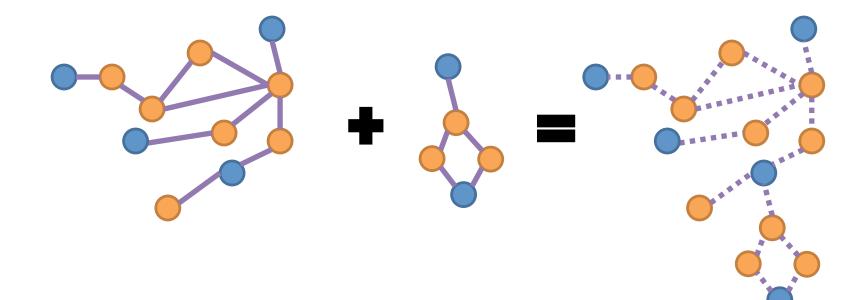
Questions?

Problem: Incremental Updates to KG



How do we add new extractions to the Knowledge Graph?

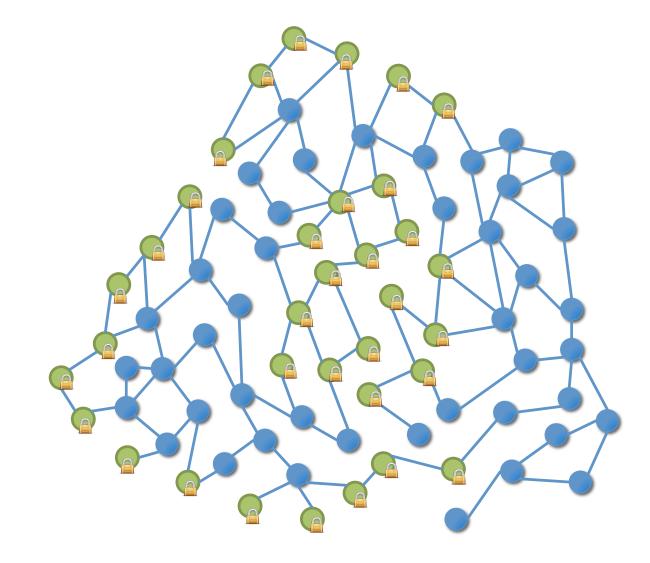
Naïve Approach: Full KGI over extractions



Improving the naïve approach

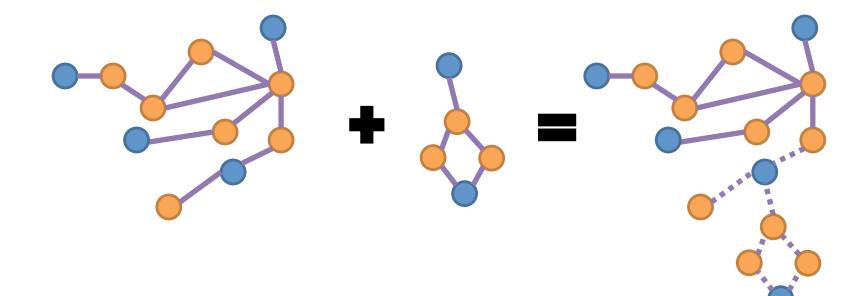
- Intuition: Much of previous KG does not change
- Online collective inference:
 - Selectively update the MAP state
 - Bound the *regret* of partial updates
 - Efficiently determine which variables to infer

Key Idea: fix some variables, infer others



Key Collaborators

Approximation: KGI over subset of graph



Theory: Bounding Inference Regret

Regret = ||full inference - partial update||

Theory: Bounding Inference Regret

Regret = ||full inference - partial update||

$$\mathfrak{R}_n(\mathbf{x}, \mathbf{y}_{\mathcal{S}}; \dot{\mathbf{w}}) \triangleq \frac{1}{n} \|h(\mathbf{x}; \dot{\mathbf{w}}) - h(\mathbf{x}, \mathbf{y}_{\mathcal{S}}; \dot{\mathbf{w}})\|_1$$

Theory: Bounding Inference Regret $\mathfrak{R}_n(\mathbf{x}, \mathbf{y}_{\mathcal{S}}; \dot{\mathbf{w}}) \triangleq \frac{1}{n} \|h(\mathbf{x}; \dot{\mathbf{w}}) - h(\mathbf{x}, \mathbf{y}_{\mathcal{S}}; \dot{\mathbf{w}})\|_1$

$$\mathfrak{R}_{n}(\mathbf{x}, \mathbf{y}_{\mathcal{S}}; \dot{\mathbf{w}}) \leq O\left(\sqrt{\frac{B\|\mathbf{w}\|_{2}}{n \cdot w_{p}}} \|\mathbf{y}_{\mathcal{S}} - \hat{\mathbf{y}}_{\mathcal{S}}\|_{1}\right)$$