USING CLASSIFIER CASCADES FOR SCALABLE E-MAIL CLASSIFICATION

Jay Pujara
Hal Daumé III
Lise Getoor

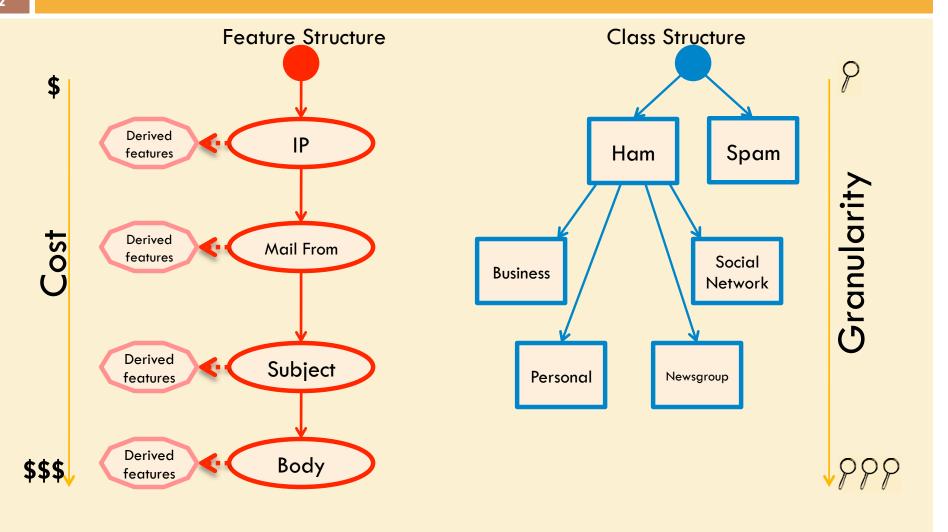
iay@cs.umd.edu me@hal3.name getoor@cs.umd.edu

2/23/2012

Building a scalable e-mail system

- □ Goal: Maintain system throughput across conditions
- Varying conditions
 - Load varies
 - Resource availability varies
 - Task varies
- Challenge: Build a system that can adapt its operation to the conditions at hand

Problem structure informs scalable solution



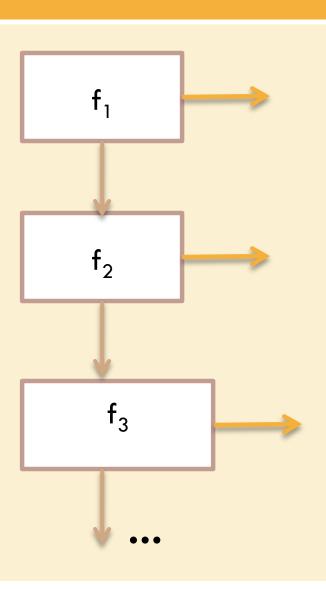
Important facets of problem

- □ Structure in input
 - □ Features may have an order or systemic dependency
 - Acquisition costs vary: cheap or expensive features
- □ Structure in output
 - Labels naturally have a hierarchy from coarse-to-fine
 - Different levels of hierarchy have different sensitivities to cost
- Exploit structure during classification
- □ Minimize costs, minimize error

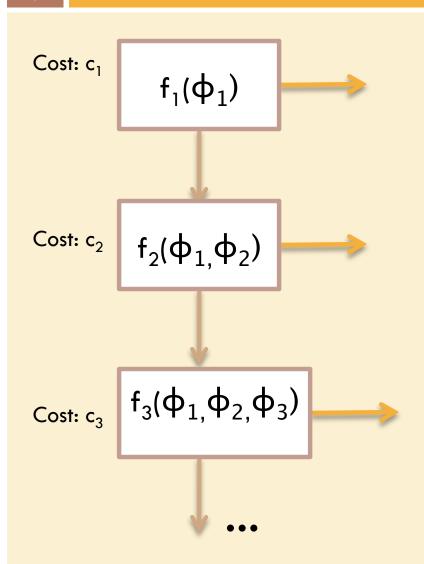
Two overarching questions

- When should we acquire features to classify a message?
- How does this acquisition policy change across different classification tasks?

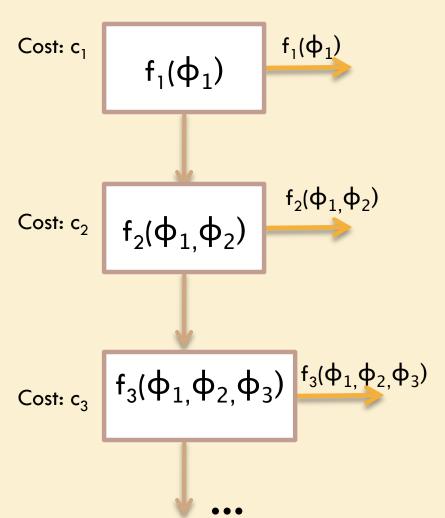
Classifier Cascades can answer both questions!



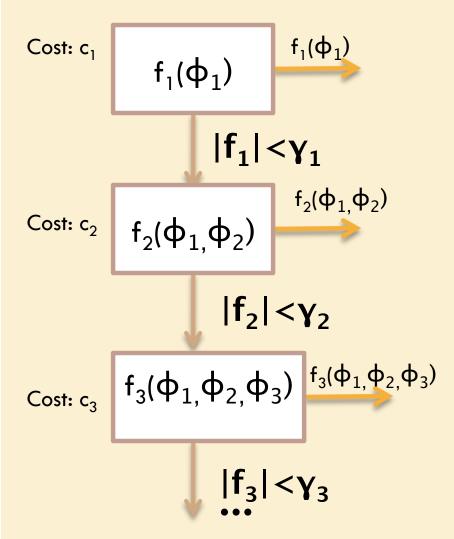
Series of classifiers:
 f₁, f₂, f₃ ... f_n



- Series of classifiers:
 f₁, f₂, f₃ ... f_n
- Each classifier operates on different, increasingly expensive sets of features (ϕ) with costs c_1 , c_2 , c_3 ... c_n



- Series of classifiers:
 f₁, f₂, f₃ ... f_n
- Each classifier operates on different, increasingly expensive sets of features (ϕ) with costs c_1 , c_2 , c_3 ... c_n
- Classifier outputs a value in [-1,1], the margin or confidence of decision



- Series of classifiers:
 f₁, f₂, f₃ ... f_n
- Each classifier operates on different, increasingly expensive sets of features (ϕ) with costs c_1 , c_2 , c_3 ... c_n
- Classifier outputs a value in [-1,1], the margin or confidence of decision
- Y parameters control the relationship of classifiers

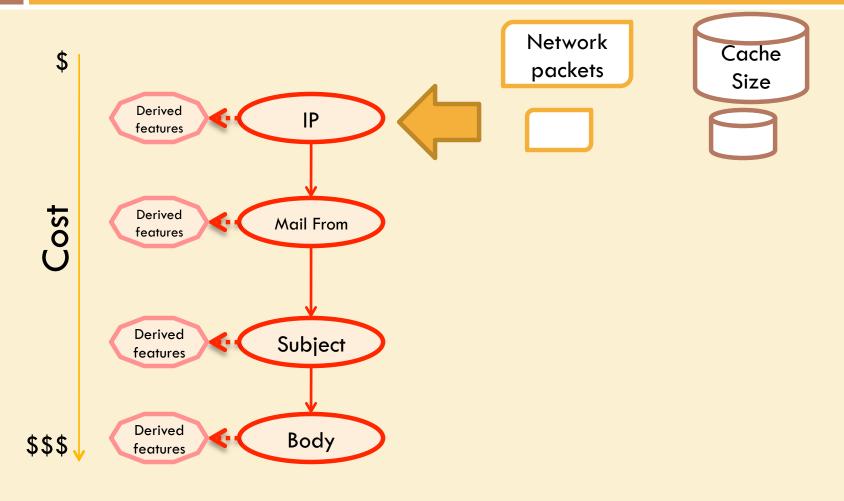
Optimizing Classifier Cascades

- $lue{}$ Loss function: $L(y, \mathcal{F}(\mathbf{x}))$ errors in classification
- Minimize loss function, incorporating cost
 - Cost-constraint with budget (load-sensitive): $\min \Sigma_{(\mathbf{x},y)\in D} L(y,\mathcal{F}(\mathbf{x})) \text{ s.t. } \mathcal{C}(\mathbf{x}) < B$
 - Cost Sensitive loss function (granular): $\min \Sigma_{(\mathbf{x},y)\in D} L(y,\mathcal{F}(\mathbf{x})) + \lambda \mathcal{C}(\mathbf{x})$

Use grid-search to find optimal Y parameters

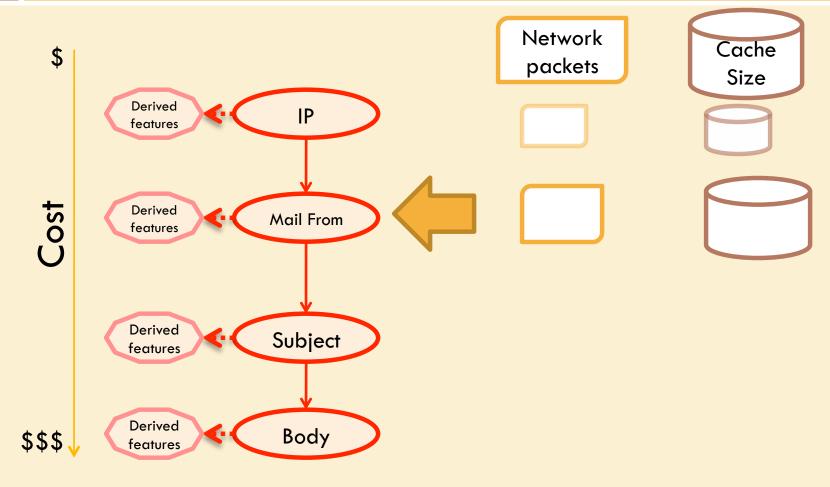
Load-Sensitive Classification

Features have costs & dependencies



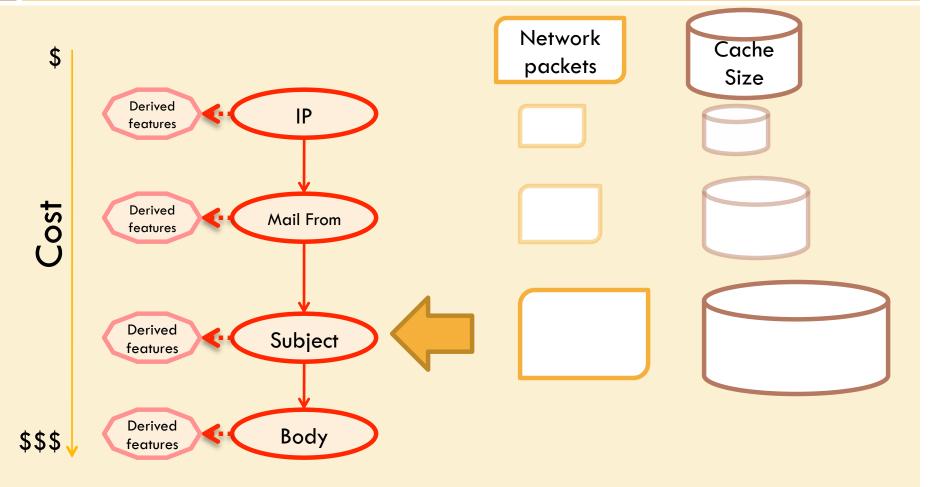
IP is known at socket connect time, is 4 bytes in size

Features have costs & dependencies



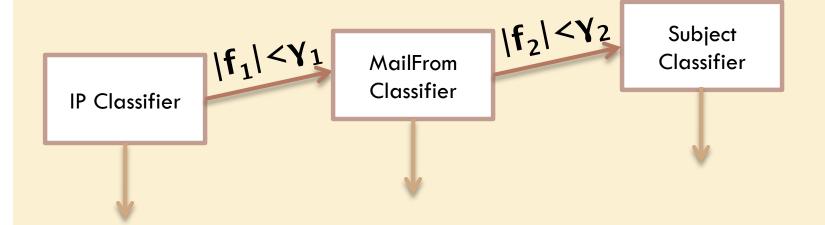
The Mail From is one of the first commands of an SMTP conversation From addresses have a known format, but higher diversity

Features have costs & dependencies



The subject, one of the mail headers, occurs after a number of network exchanges. Since the subject is user-generated, it is very diverse and often lacks a defined format

Load-Sensitive Problem Setting



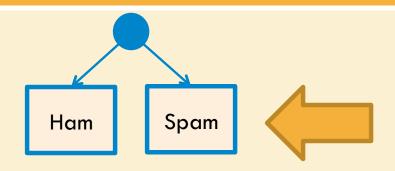
- Train IP, MailFrom, and Subject classifiers
- For a given budget, **B**, choose γ_1 , γ_2 that minimize error within **B**
- Constraint: C(x) < B

Load-Sensitive Challenges

- \square Overfitting model when choosing γ_1, γ_2
- Train-time costs underestimated versus test-time performance
- \square Use a regularization constant Δ
 - \square Sensitive to cost variance (σ)
 - Accounts for variability
- \square Revised constraint: $C(x) + \Delta \sigma < B$

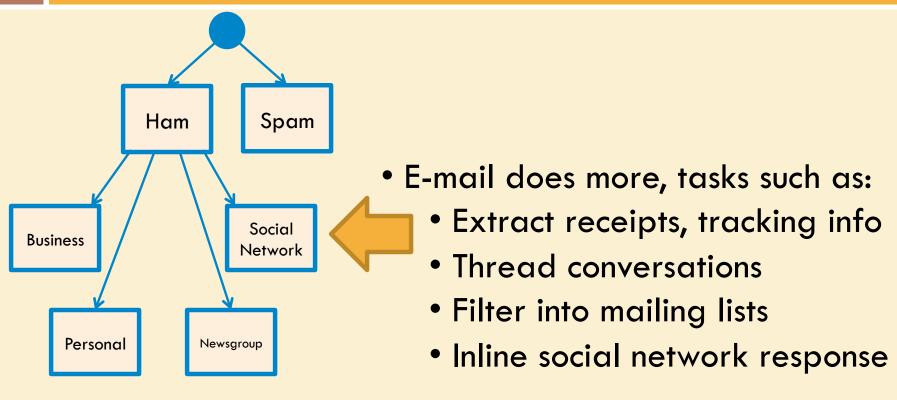
Granular Classification

E-mail Challenges: Spam Detection



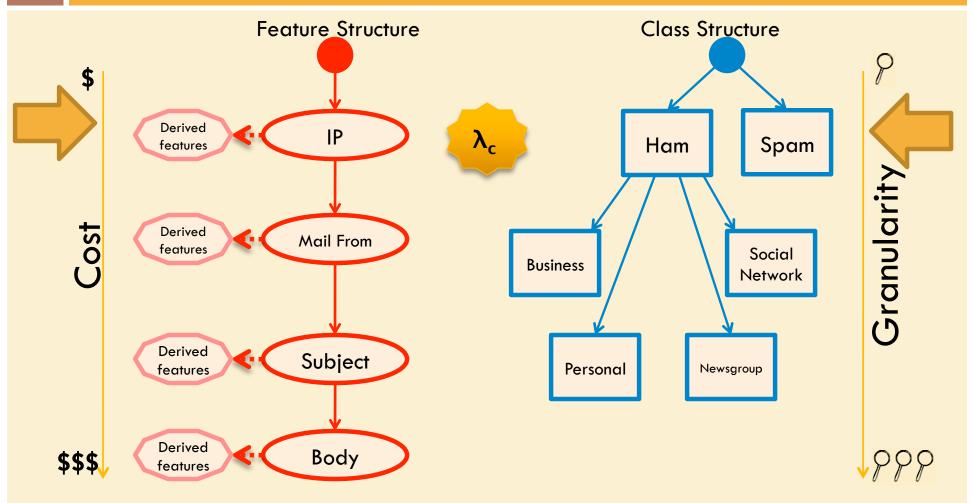
- Most mail is spam
- Billions of classifications
- Must be incredibly fast

E-mail Challenges: Categorizing Mail

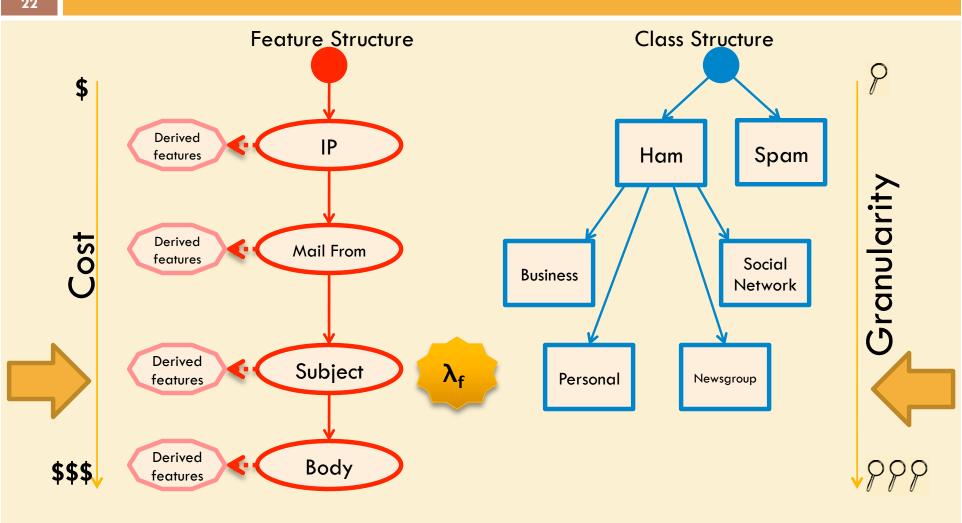


- Computationally intensive processing
- Each task applies to one class

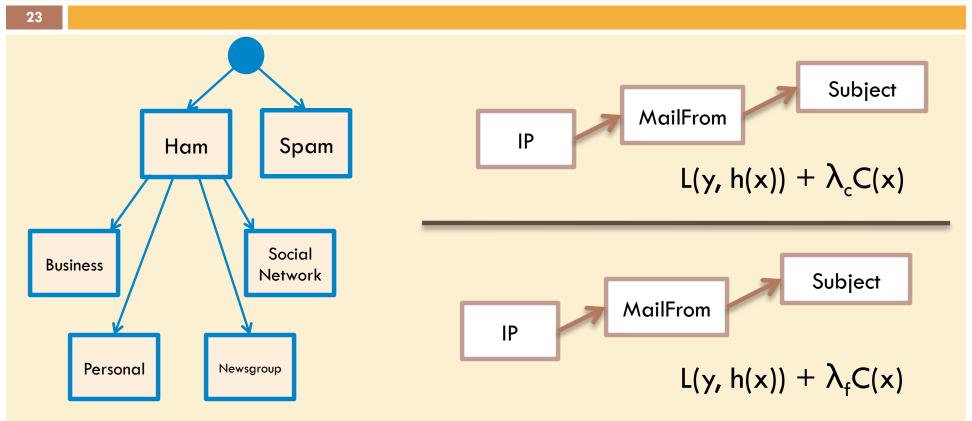
Coarse task is constrained by feature cost



Fine task is constrained by misclassification cost



Granular Classification Problem Setting



- Two separate models for different tasks, with different classifiers and cascade parameters
- Choose γ_1, γ_2 for each cascade to balance accuracy and cost with different tradeoffs λ

Experimental Setup: Overview

- Two tasks: load-sensitive & granular classification
- □ Two datasets: Yahoo! Mail corpus and TREC-2007
 - Load-sensitive uses both datasets, granular uses only Yahoo!
- Results are L1O, 10-fold CV with **bold** values significant (p<.05)
- Cascade stages use MEGAM MaxEnt classifier

Experimental Setup: Yahoo! Data

Class	Messages		
Spam	531		
Business	187		
Social Network	223		
Newsletter	174		
Personal/Other	102		

Feature	Cost		
IP	.168		
MailFrom	.322		
Subject	.510		

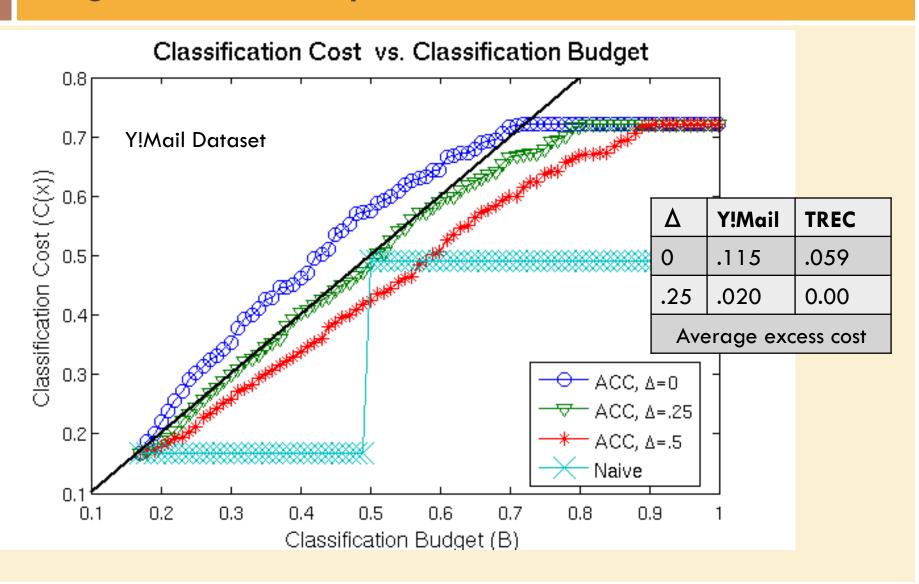
- Data from 1227 Yahoo! Mail messages from 8/2010
- Feature costs calculated from network + storage cost

Experimental Setup: TREC data

Class	Messages		
Spam	39055		
Ham	8139		

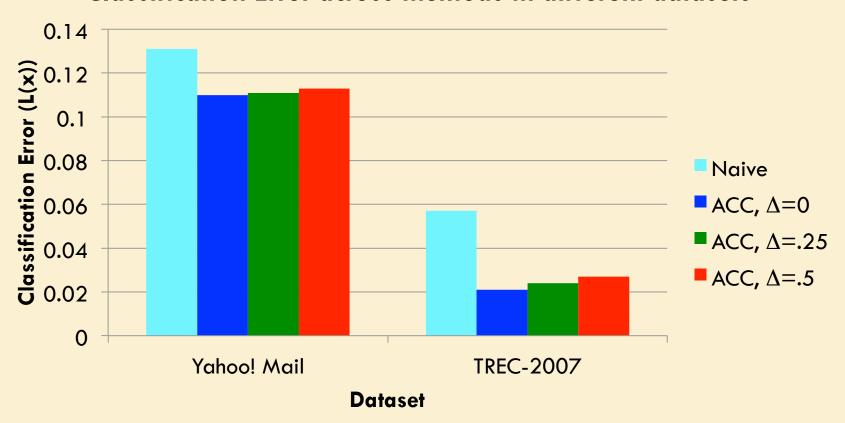
- Data from TREC-2007 Public Spam Corpus, 47194 messages
- Use same feature cost estimates

Results: Load-Sensitive Classification Regularization prevents cost excesses



Results: Load-Sensitive Classification Significant error reduction

Classification Error across methods in different datasets

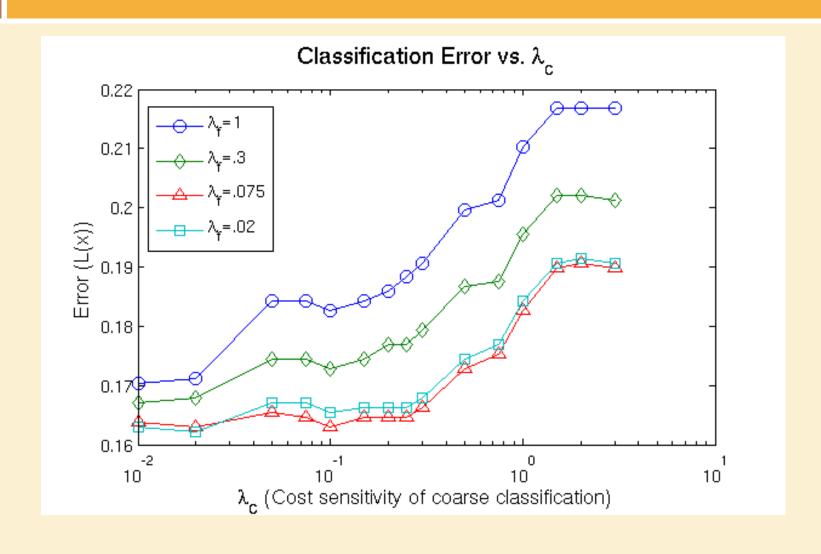


Results: Granular Classification

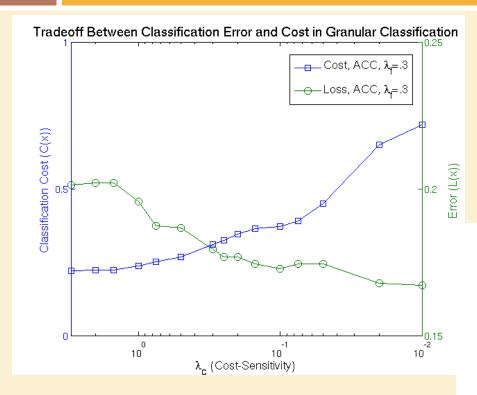
Feature Set	Feature Cost	Misclass Cost		
		Coarse	Fine	Overall
Fixed: IP	.168	.139	.181	.229
ACC: $\lambda_c = 1.5$, $\lambda_f = 1$.187	.140	.156	.217
Fixed: IP+MailFrom	.490	.128	.142	.200
ACC: λ_c =.1, λ_f =.075	.431	.111	.100	.163
Fixed: IP+MailFrom+Subject	1.00	.106	.108	.162
ACC: λ_c =.02, λ_f =.02	.691	.108	.105	.162

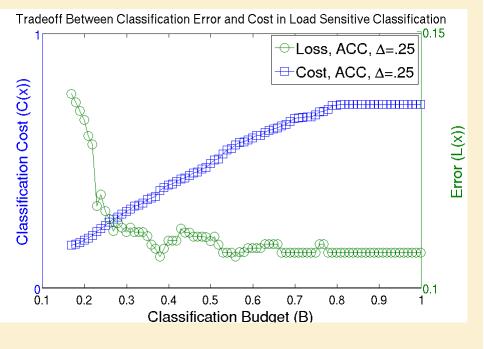
- Compare fixed feature acquisition policies to adaptive classifiers
- Significant gains in performance or cost (or both) depending on tradeoff

Dynamics of choosing $\lambda_{\rm c}$ and $\lambda_{\rm f}$



Different approaches, same tradeoff





Conclusion

- □ Problem of scalable e-mail classification
- Introduce two settings
 - Load-sensitive Classification: known budget
 - Granular Classification: task sensitivity
- Use classifier cascades to achieve tradeoff between cost and accuracy
- Demonstrate results superior to baseline

Questions?