USING CLASSIFIER CASCADES FOR SCALABLE E-MAIL CLASSIFICATION

Jay Pujara Hal Daumé III Lise Getoor jay@cs.umd.edu me@hal3.name getoor@cs.umd.edu

9/1/2011

Building a scalable e-mail system

- Goal: Maintain system throughput across conditions
- Varying conditions
 - Load varies
 - Resource availability varies
 - Task varies
- Challenge: Build a system that can adapt its operation to the conditions at hand

Problem structure informs scalable solution

Class Structure Feature Structure \mathcal{P} \$ Derived IP Spam features Ham Granularity Cost Derived **(**... Mail From features Social **Business** Network Derived Subject 6 features Personal Newsgroup Derived Body \$\$\$ features

Important facets of problem

Structure in input

- Features may have an order or systemic dependency
- Acquisition costs vary: cheap or expensive features
- Structure in output
 - Labels naturally have a hierarchy from coarse-to-fine
 - Different levels of hierarchy have different sensitivities to cost
- Exploit structure during classification
- Minimize costs, minimize error

Two overarching questions

- When should we acquire features to classify a message?
- How does this acquisition policy change across different classification tasks?

Classifier Cascades can answer both questions!

Series of classifiers: f₁, f₂, f₃ ... f_n
Each classifier operates on different, increasingly expensive sets of features (φ) with costs c₁, c₂, c₃ ... c_n

 Series of classifiers: $f_1, f_2, f_3 \dots f_n$ Each classifier operates on different, increasingly expensive sets of features (ϕ) with costs c₁, c₂, c₃ ... c_n Classifier outputs a value in [-1,1], the margin or confidence of decision

- Series of classifiers: $f_1, f_2, f_3 \dots f_n$ Each classifier operates on different, increasingly expensive sets of features (Φ) with costs $c_1, c_2, c_3 \dots c_n$ Classifier outputs a value in [-1,1], the margin or confidence of decision
- Y parameters control the relationship of classifiers

Optimizing Classifier Cascades

 \square Loss function: $L(y, \mathcal{F}(\mathbf{x}))$ – errors in classification

 Minimize loss function, incorporating cost
 Cost-constraint with budget (load-sensitive): min Σ_{(x,y)∈D}L(y, F(x)) s.t. C(x) < B
 Cost Sensitive loss function (granular): min Σ_{(x,y)∈D}L(y, F(x)) + λC(x)

Use grid-search to find optimal Y parameters

¹² Load-Sensitive Classification

Features have costs & dependencies

IP is known at socket connect time, is 4 bytes in size

Features have costs & dependencies

The Mail From is one of the first commands of an SMTP conversation From addresses have a known format, but higher diversity

Features have costs & dependencies

The subject, one of the mail headers, occurs after a number of network exchanges. Since the subject is user-generated, it is very diverse and often lacks a defined format

Load-Sensitive Problem Setting

- Train IP, MailFrom, and Subject classifiers
- For a given budget, **B**, choose γ_1, γ_2 that minimize error within **B**
- Constraint: C(x) < B

16

Load-Sensitive Challenges

 \Box Overfitting model when choosing Y_1, Y_2 Train-time costs underestimated versus test-time performance \Box Use a regularization constant Δ \square Sensitive to cost variance (σ) Accounts for variability \Box Revised constraint: C(x) + $\Delta \sigma$ < B

¹⁸ Granular Classification

E-mail Challenges: Spam Detection

19

- Most mail is spam
- Billions of classifications
- Must be incredibly fast

E-mail Challenges: Categorizing Mail

20

- E-mail does more, tasks such as:
 - Extract receipts, tracking info
 - Thread conversations
 - Filter into mailing lists
 - Inline social network response
- Computationally intensive processing
- Each task applies to one class

Coarse task is constrained by feature cost

Fine task is constrained by misclassification cost

Granular Classification Problem Setting

• Two separate models for different tasks, with different classifiers and cascade parameters

- Choose γ_1, γ_2 for each cascade to balance accuracy and cost with different tradeoffs λ

27 Experimental Results

Experimental Setup: Overview

- Two tasks: load-sensitive & granular classification
- Two datasets: Yahoo! Mail corpus and TREC-2007
 - Load-sensitive uses both datasets, granular uses only Yahoo!
- Results are L1O, 10-fold CV with **bold** values significant (p<.05)</p>
- Cascade stages use MEGAM MaxEnt classifier

Experimental Setup: Yahoo! Data

Class	Messages			
Spam	Spam 531		Feature	
span			IP	
Business	187		MailFrom	
Social Network	223			
Newsletter	174			Subject
Personal/Other	102			

- Data from 1227 Yahoo! Mail messages from 8/2010
- Feature costs calculated from network + storage cost

Experimental Setup: TREC data

Class	Messages
Spam	39055
Ham	8139

- Data from TREC-2007 Public Spam Corpus, 47194 messages
- Use same feature cost estimates

Results: Load-Sensitive Classification Regularization prevents cost excesses

Results: Load-Sensitive Classification Significant error reduction

33

Results: Granular Classification

Feature Set	Feature Cost	Misclass Cost		
		Coarse	Fine	Overall
Fixed: IP	.168	.139	.181	.229
ACC: $\lambda_{c} = 1.5$, $\lambda_{f} = 1$.187	.140	.156	.217
Fixed: IP+MailFrom	.490	.128	.142	.200
ACC: λ_{c} =.1, λ_{f} =.075	.431	.111	.100	.163
Fixed: IP+MailFrom+Subject	1.00	.106	.108	.162
ACC: $\lambda_c = .02$, $\lambda_f = .02$.691	.108	.105	.162

- Compare fixed feature acquisition policies to adaptive classifiers
- Significant gains in performance or cost (or both) depending on tradeoff

Dynamics of choosing λ_{c} and λ_{f}

Different approaches, same tradeoff

Conclusion

- Problem of scalable e-mail classification
- Introduce two settings
 - Load-sensitive Classification: known budget
 - Granular Classification: task sensitivity
- Use classifier cascades to achieve tradeoff between cost and accuracy
- Demonstrate results superior to baseline

Questions?