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Building a scalable e-mail system 

¨  Goal: Maintain system throughput across conditions 
¨  Varying conditions 

¤ Load varies 
¤ Resource availability varies 
¤ Task varies 

¨  Challenge: Build a system that can adapt its 
operation to the conditions at hand 
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Important facets of problem 

¨  Structure in input 
¤ Features may have an order or systemic dependency 
¤ Acquisition costs vary: cheap or expensive features 

¨  Structure in output 
¤ Labels naturally have a hierarchy from coarse-to-fine 
¤ Different levels of hierarchy have different sensitivities 

to cost 

¨  Exploit structure during classification 
¨  Minimize costs, minimize error 
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Two overarching questions 
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¨  When should we acquire features to classify a 
message? 

¨  How does this acquisition policy change across 
different classification tasks? 

 
¨  Classifier Cascades can answer both questions! 
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Introducing Classifier Cascades 

•  Series of classifiers:
 f1, f2, f3 ... fn

•  Each classifier operates 
on different, increasingly 
expensive sets of features 
(ϕ) with costs c1, c2, c3 ... cn 
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Optimizing Classifier Cascades 
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¨  Loss function:        – errors in classification 

¨  Minimize loss function, incorporating cost 
¤ Cost-constraint with budget (load-sensitive): 
 
¤ Cost Sensitive loss function (granular): 

 

¨  Use grid-search to find optimal γ parameters 

L(y,F(x))

min �(x,y)�DL(y,F(x)) s.t. C(x) < B
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Features have costs & dependencies 

The Mail From is one of the first commands of an SMTP conversation 
From addresses have a known format, but higher diversity 
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Features have costs & dependencies 

The subject, one of the mail headers, occurs after a number of network exchanges. 
Since the subject is user-generated, it is very diverse and often lacks a defined format 
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Load-Sensitive Problem Setting 

IP Classifier 

MailFrom 
Classifier 

Subject 
Classifier |f1|<γ1 |f2|<γ2 

•  Train IP, MailFrom, and Subject classifiers  
•  For a given budget, B, choose γ1, γ2 that 
minimize error within B 
•  Constraint: C(x) < B 
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Load-Sensitive Challenges 

¨ Overfitting model when choosing γ1, γ2
¨ Train-time costs underestimated versus 

test-time performance 
¨ Use a regularization constant Δ  

¤  Sensitive to cost variance (σ) 
¤  Accounts for variability 

¨ Revised constraint: C(x) + ∆σ < B 
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Granular Classification 18 



Spam Ham 

E-mail Challenges: Spam Detection 

•  Most mail is spam 
•  Billions of classifications 
•  Must be incredibly fast 
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Spam Ham 

E-mail Challenges: Categorizing Mail 

•  E-mail does more, tasks such as:  
•  Extract receipts, tracking info 
•  Thread conversations 
•  Filter into mailing lists 
•  Inline social network response 
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•  Computationally intensive processing 
•  Each task applies to one class 
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Coarse task is constrained by feature cost 

λc 
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Fine task is constrained by misclassification cost 
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Spam Ham 

Granular Classification Problem Setting 
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L(y, h(x)) + λcC(x) 

L(y, h(x)) + λfC(x) 

•  Two separate models for different tasks, with different classifiers 
and cascade parameters 
•  Choose γ1, γ2 for each cascade to balance accuracy and cost with 
different tradeoffs λ 

23 



Experimental Results 27 



Experimental Setup: Overview 
28 

¨  Two tasks: load-sensitive & granular classification 
¨  Two datasets: Yahoo! Mail corpus and TREC-2007 

¤ Load-sensitive uses both datasets, granular uses only 
Yahoo! 

¨  Results are L1O, 10-fold CV with bold values 
significant (p<.05) 

¨  Cascade stages use MEGAM MaxEnt classifier 



Experimental Setup: Yahoo! Data 

•  Data from 1227 Yahoo! Mail messages from 8/2010 
•  Feature costs calculated from network + storage cost 

Feature Cost 

IP .168 

MailFrom .322 

Subject .510 

Class Messages 

Spam 531 

Business 187 

Social Network 223 

Newsletter 174 

Personal/Other 102 
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Experimental Setup: TREC data 

•  Data from TREC-2007 Public Spam Corpus, 47194 messages 
•  Use same feature cost estimates 

Class Messages 

Spam 39055 

Ham 8139 
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Results: Load-Sensitive Classification 
Regularization prevents cost excesses 
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Δ Y!Mail TREC 

0 .115 .059 

.25 .020 0.00 

Average excess cost 

Y!Mail Dataset 



Results: Load-Sensitive Classification 
Significant error reduction 
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Results: Granular Classification 

Feature Set Feature Cost Misclass Cost 

Coarse Fine Overall 

Fixed: IP .168 .139 .181 .229 

ACC: λc=1.5, λf=1 .187 .140 .156 .217 

Fixed: IP+MailFrom .490 .128 .142 .200 

ACC: λc=.1, λf=.075 .431 .111 .100 .163 

Fixed: IP+MailFrom+Subject 1.00 .106 .108 .162 

ACC: λc=.02, λf=.02 .691 .108 .105 .162 

  

•  Compare fixed feature acquisition policies to adaptive classifiers 
•  Significant gains in performance or cost (or both) depending on tradeoff 
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Dynamics of choosing λc and λf 
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Different approaches, same tradeoff 
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Conclusion 

¨  Problem of scalable e-mail classification 
¨  Introduce two settings 

¤ Load-sensitive Classification: known budget 
¤ Granular Classification: task sensitivity 

¨  Use classifier cascades to achieve tradeoff between 
cost and accuracy  

¨  Demonstrate results superior to baseline 

Questions? 

Research funded by Yahoo! Faculty Research Engagement Program  
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